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on the binning of the correlation function, as it likely reflects a
physical scale of the covariances between bins. However, some
of the simplicity likely results from the fact that the covariances
between nearby bins are dominated by small-scale correlations in
the density field that become independent of separation at large
separation. This property gives the matrix a regularity: bins at 90
and 100Mpc will be correlated to each other similarly to bins at
110 and 120Mpc. Tridiagonal matrices have inverses with expo-
nentially decreasing off-diagonal terms (Rybicki & Press 1995).
Apparently, treating the off-diagonal covariances as exponentially
decreasing with only weak dependences on separation provides a
good approximation.

For P (k), the measurements in k-bins are already fairly inde-
pendent, as one would expect for a near-Gaussian random field.
Correlations between bins can occur because of the finite sur-
vey volume and because of non-Gaussianity in the density field.
For CMASS, we find the mean first off-diagonal term of the re-
duced covariance matrix is 0.28 (with a standard deviation of 0.06).
When the P (k) measurements are divided by the best-fit smooth
model, P sm

(k), they are, generally, even less correlated. We de-
termine P (k)/P sm

(k) for each mock sample and construct a re-
vised “BAO” covariance matrix from this. We do not use this co-
variance matrix to perform any fits—our fits are to the full P (k)
and use the original covariance matrix. For the revised covariance
matrix, the mean first off-diagonal term of the correlation matrix is
reduced to 0.03 (with a standard deviation of 0.15). The diagonal
elements within this covariance matrix are also reduced in ampli-
tude, reflecting the smaller variance available once a smooth fit has
been removed. The errors derived from this matrix thus better rep-
resent the errors on the measured BAO; the data when presented as
P (k)/P

sm

(k) are more independent and provide a more accurate
visualisation of the measurements.

Fig. 16 displays the measured post-reconstruction values of
P (k)/P sm

(k), for the BOSS CMASS sample in DR9, DR10, and
DR11 (from top to bottom), showing the evolution in the signal-to-
noise ratio of the BAO as BOSS has increased its observed foot-
print. In the DR11 sample, the third peak is clearly visible. In Fig.
17, we display the DR11 post-reconstruction P (k)/P sm

(k) for the
two BOSS samples; the CMASS sample at z

e↵

= 0.57 is presented
in the top panel and the LOWZ sample at z

e↵

= 0.32 is shown in
the bottom panel. The LOWZ sample possesses a clear BAO fea-
ture, but the signal-to-noise ratio is considerably lower than that of
the CMASS sample.

7 BAO MEASUREMENTS FROM ANISOTROPIC
CLUSTERING ESTIMATES

7.1 Anisotropic Clustering Estimates

In Section 5, we detailed our analysis techniques (multipoles and
wedges statistics), and demonstrated they recover un-biased esti-
mates of the BAO scales both along and perpendicular to line-of-
sight with similar uncertainties. We now apply these two techniques
to BOSS CMASS sample (at z = 0.57). Fig. 18 displays the multi-
poles, ⇠

0,2, of the DR11 CMASS sample correlation function pre-
and post-reconstruction, using our fiducial binning choice, for the
range of scales fitted (45 < s < 200h�1

Mpc). For the quadrupole
(⇠

2

), we see a dramatic change from the pre- to post-reconstruction
results, as the reconstruction algorithm has removed almost all of
the redshift space distortion contribution. Further, an apparent dip
is now seen in the data on scales slightly larger than the peak in the

Figure 18. The DR11 multipole measurements along with their fits using
the method described in Sec 5. The top panel is pre-reconstruction while
the bottom one is post-reconstruction.

monopole. The strength of this feature is related to the deviation in
✏ from 0 (or the deviation in ↵? from 1).

Fig. 19 displays the correlation function divided into two
wedges (⇠||,?), once again with the pre-reconstruction measure-
ments displayed in the top panel and the post-reconstruction mea-
surements in the bottom panel. Reconstruction has made the BAO
peak sharper for both ⇠|| and ⇠?. Further, reconstruction has de-
creased the difference in their amplitudes as the redshift space dis-
tortion signal has been reduced.

7.2 DR11 Acoustic Scale Measurement from Anisotropic
Clustering

As for our isotropic analysis, the results of our anisotropic BAO fits
to the DR10 and DR11 mocks show significant improvement on
average with reconstruction (see Table 5), and therefore we adopt
post-reconstruction results as our default. Our consensus value for
the CMASS anisotropic BAO measurement, ↵|| = 0.968± 0.032,
↵? = 1.044 ± 0.013, is determined from a combination of the
measurements using the multipoles and the wedges methodologies,
and we describe the individual measurements and the process of
arriving at our consensus measurement in what follows.
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et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies
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Figure 2. The galaxy power spectrum amplitude as a function of wavevectors (k⊥, k∥) perpendicular and parallel to the line-of-sight,
determined by stacking observations in different WiggleZ survey regions in four redshift slices. The contours correspond to the best-
fitting non-linear empirical Lorentzian redshift-space distortion model. We note that because of the differing degrees of convolution in
each region due to the window function, a “de-convolution” method was used to produce this plot. Before stacking, the data points were
corrected by the ratio of the unconvolved and convolved two-dimensional power spectra corresponding to the best-fitting model, for the
purposes of this visualization. Only the top-right quadrant of data for each redshift is independent; the other three quadrants are mirrors
of this first quadrant. The k⊥ = 0 axis is noisiest because it contains the lowest number of Fourier modes available for power spectrum
determination.

Figure 3. The galaxy power spectrum as a function of amplitude and angle of Fourier wavevector (k, µ), determined by stacking
observations in different WiggleZ survey regions in four redshift slices. The contours correspond to the best-fitting non-linear empirical
Lorentzian redshift-space distortion model. A similar stacking method was used to that employed in the generation of Figure 2. In the
absence of redshift-space distortions, the model contours would be horizontal lines.
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Figure 10. The multipole power spectra Pℓ(k) for ℓ = 0, 2, 4 for WiggleZ survey observations in four redshift slices. The monopole
(l = 0) spectrum primarily contains information about the underlying shape of the isotropic clustering pattern. The quadrupole (l = 2)
spectrum holds the leading-order signal from the anisotropic modulation in power due to redshift-space effects. The (black) solid circles
are generated from the stacked measurements of Pg(k, µ) across the different survey regions using Equation 17. The (red) open circles,
which are offset slightly in the x-direction for clarity, are generated by combining the estimates of Pℓ(k) in each region using the Yamamoto
et al. estimator of Equation 19. The model lines correspond to the best-fitting non-linear empirical Lorentzian redshift-space distortion
model in each case. The bottom row displays the quadrupole-to-monopole ratio P2(k)/P0(k). Two models are overplotted: the large-scale
Kaiser limit predicted in a ΛCDM cosmological model with Ωm = 0.27, labelled as “Linear”, and the non-linear redshift-space distortion
model, labelled as “Damping”.

integration of the binned power spectrum P (k, µ) and by
implementing the estimator described by Yamamoto et al.
(2006). Measurements of the quadrupole-to-monopole ratio
P2/P0 as a function of scale k delineate the influence of
redshift space distortions in a manner independent of the
shape of the underlying matter power spectrum or a scale-
dependent bias.

• Under the assumption Pgθ = −
√

PggPθθ, which is a
good approximation in the quasi-linear regime, we used the
redshift-space power spectra to fit directly for Pgg(k) and
Pθθ(k). We found that (within an overall normalization fac-
tor) the galaxy and velocity power spectra are consistent
with each other and with the model linear power spectrum
at low k. For k > 0.1 h Mpc−1 we delineated for the first
time the characteristic non-linear damping of the velocity
power spectrum as a function of redshift, with a tentative
indication that the amplitude of the non-linear effects in-

creases with decreasing redshifts. The Jennings et al. (2011)
fitting formula provides a good fit to these power spectra.

A future investigation will involve the confrontation of
this data with a range of modified-gravity models, combining
the large-scale structure measurements with self-consistent
fits to the Cosmic Microwave Background observations. Fur-
thermore, a joint analysis of the redshift-space distortions
and Alcock-Paczynski effect is also in preparation.
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Figure 10. The multipole power spectra Pℓ(k) for ℓ = 0, 2, 4 for WiggleZ survey observations in four redshift slices. The monopole
(l = 0) spectrum primarily contains information about the underlying shape of the isotropic clustering pattern. The quadrupole (l = 2)
spectrum holds the leading-order signal from the anisotropic modulation in power due to redshift-space effects. The (black) solid circles
are generated from the stacked measurements of Pg(k, µ) across the different survey regions using Equation 17. The (red) open circles,
which are offset slightly in the x-direction for clarity, are generated by combining the estimates of Pℓ(k) in each region using the Yamamoto
et al. estimator of Equation 19. The model lines correspond to the best-fitting non-linear empirical Lorentzian redshift-space distortion
model in each case. The bottom row displays the quadrupole-to-monopole ratio P2(k)/P0(k). Two models are overplotted: the large-scale
Kaiser limit predicted in a ΛCDM cosmological model with Ωm = 0.27, labelled as “Linear”, and the non-linear redshift-space distortion
model, labelled as “Damping”.
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implementing the estimator described by Yamamoto et al.
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Figure 10. The multipole power spectra Pℓ(k) for ℓ = 0, 2, 4 for WiggleZ survey observations in four redshift slices. The monopole
(l = 0) spectrum primarily contains information about the underlying shape of the isotropic clustering pattern. The quadrupole (l = 2)
spectrum holds the leading-order signal from the anisotropic modulation in power due to redshift-space effects. The (black) solid circles
are generated from the stacked measurements of Pg(k, µ) across the different survey regions using Equation 17. The (red) open circles,
which are offset slightly in the x-direction for clarity, are generated by combining the estimates of Pℓ(k) in each region using the Yamamoto
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model in each case. The bottom row displays the quadrupole-to-monopole ratio P2(k)/P0(k). Two models are overplotted: the large-scale
Kaiser limit predicted in a ΛCDM cosmological model with Ωm = 0.27, labelled as “Linear”, and the non-linear redshift-space distortion
model, labelled as “Damping”.
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Figure 10. The multipole power spectra Pℓ(k) for ℓ = 0, 2, 4 for WiggleZ survey observations in four redshift slices. The monopole
(l = 0) spectrum primarily contains information about the underlying shape of the isotropic clustering pattern. The quadrupole (l = 2)
spectrum holds the leading-order signal from the anisotropic modulation in power due to redshift-space effects. The (black) solid circles
are generated from the stacked measurements of Pg(k, µ) across the different survey regions using Equation 17. The (red) open circles,
which are offset slightly in the x-direction for clarity, are generated by combining the estimates of Pℓ(k) in each region using the Yamamoto
et al. estimator of Equation 19. The model lines correspond to the best-fitting non-linear empirical Lorentzian redshift-space distortion
model in each case. The bottom row displays the quadrupole-to-monopole ratio P2(k)/P0(k). Two models are overplotted: the large-scale
Kaiser limit predicted in a ΛCDM cosmological model with Ωm = 0.27, labelled as “Linear”, and the non-linear redshift-space distortion
model, labelled as “Damping”.
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Figure 10. The multipole power spectra Pℓ(k) for ℓ = 0, 2, 4 for WiggleZ survey observations in four redshift slices. The monopole
(l = 0) spectrum primarily contains information about the underlying shape of the isotropic clustering pattern. The quadrupole (l = 2)
spectrum holds the leading-order signal from the anisotropic modulation in power due to redshift-space effects. The (black) solid circles
are generated from the stacked measurements of Pg(k, µ) across the different survey regions using Equation 17. The (red) open circles,
which are offset slightly in the x-direction for clarity, are generated by combining the estimates of Pℓ(k) in each region using the Yamamoto
et al. estimator of Equation 19. The model lines correspond to the best-fitting non-linear empirical Lorentzian redshift-space distortion
model in each case. The bottom row displays the quadrupole-to-monopole ratio P2(k)/P0(k). Two models are overplotted: the large-scale
Kaiser limit predicted in a ΛCDM cosmological model with Ωm = 0.27, labelled as “Linear”, and the non-linear redshift-space distortion
model, labelled as “Damping”.
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redshift space distortions in a manner independent of the
shape of the underlying matter power spectrum or a scale-
dependent bias.
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Figure 10. The multipole power spectra Pℓ(k) for ℓ = 0, 2, 4 for WiggleZ survey observations in four redshift slices. The monopole
(l = 0) spectrum primarily contains information about the underlying shape of the isotropic clustering pattern. The quadrupole (l = 2)
spectrum holds the leading-order signal from the anisotropic modulation in power due to redshift-space effects. The (black) solid circles
are generated from the stacked measurements of Pg(k, µ) across the different survey regions using Equation 17. The (red) open circles,
which are offset slightly in the x-direction for clarity, are generated by combining the estimates of Pℓ(k) in each region using the Yamamoto
et al. estimator of Equation 19. The model lines correspond to the best-fitting non-linear empirical Lorentzian redshift-space distortion
model in each case. The bottom row displays the quadrupole-to-monopole ratio P2(k)/P0(k). Two models are overplotted: the large-scale
Kaiser limit predicted in a ΛCDM cosmological model with Ωm = 0.27, labelled as “Linear”, and the non-linear redshift-space distortion
model, labelled as “Damping”.
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P2/P0 as a function of scale k delineate the influence of
redshift space distortions in a manner independent of the
shape of the underlying matter power spectrum or a scale-
dependent bias.
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with each other and with the model linear power spectrum
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power spectrum as a function of redshift, with a tentative
indication that the amplitude of the non-linear effects in-
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fitting formula provides a good fit to these power spectra.

A future investigation will involve the confrontation of
this data with a range of modified-gravity models, combining
the large-scale structure measurements with self-consistent
fits to the Cosmic Microwave Background observations. Fur-
thermore, a joint analysis of the redshift-space distortions
and Alcock-Paczynski effect is also in preparation.
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Figure 5. The correlation matrix for the NGC (left) and SGC (right) of CMASS-DR11. The colour indicates the level of correlation,
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the bins in the monopole is shown in the lower left hand corner, while the correlation between the k-bins in the quadrupole is shown in
the upper right hand corner. The upper left hand corner and the lower right hand corner show the cross-correlations.
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variance matrix of the power spectrum multipoles in CMASS-
DR11. The upper three dashed lines show the quadrupole error
and the lower three solid lines show the error in the monopole.
Because of the larger volume, the error in the NGC of CMASS-
DR11 (black lines) is about a factor of 1.6 smaller than the error
in the SGC (red lines). The power spectrum error for the entire
CMASS-DR11 sample (blue lines) shows an error of ∼ 1.5% in
the monopole and ∼ 10% in the quadrupole at k = 0.10h/Mpc.

ance matrix as

C−1
ij,Hartlap =

Ns − nb − 2
Ns − 1

C−1
ij , (28)

where nb is the number of power spectrum bins. With these
covariance matrices we can then perform a standard χ2 min-
imisation to find the best fitting parameters.

In Figure 6 we show the diagonal elements of the co-

variance matrix for the monopole and quadrupole power
spectrum. We find an error of ∼ 1.5% in the monopole and
∼ 10% in the quadrupole at k = 0.10h/Mpc. This represents
the most precise measurement of the galaxy power spectrum
multipoles ever obtained.

5 THE SURVEY WINDOW FUNCTION

The power spectrum estimator we discussed in section 3 is
not actually estimating the true galaxy power spectrum, but
rather the galaxy power spectrum convolved with the survey
window function:

P conv(k⃗) =

∫

dk⃗′P true(k⃗′)|W (k⃗ − k⃗′)|2

− |W (k⃗)|2

|W (0)|2

∫

dk⃗′P true(k⃗′)|W (k⃗′)|2.
(29)

The window function, W (k⃗) has the following two effects:
(1) It mixes the modes with different wave-numbers and
introduces correlations and (2) it changes the amplitude of
the power spectrum at small k. First we discuss the first
term of eq. 29, the convolution of the true power spectrum
with the window function. The second term of eq. 29, the
so-called integral constraint, will be discussed in the next
subsection. We present the full derivation of the equations
of this section in Appendix B and restrict the discussion here
to the main results.

5.1 The convolution of the power spectrum with
the window function

Window function effects in the measured power spec-
trum do not necessarily represent a problem, since the
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Figure 3. The measured CMASS-DR11 monopole (top) and quadrupole (bottom) power spectra. The black data points are the measure-
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The black data points have been shifted by ∆k = 0.001h/Mpc to the right for clarity. The error bars are the diagonal of the covariance
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red and black lines are based on the same cosmology and only differ in the effect of the window function (see section 5). The lower two
panels show the difference between the measured monopole and the best fitting monopole (middle panel) and the measured quadrupole
and the best fitting quadrupole (bottom panel), both relative to the diagonal elements of the covariance matrix. We fit the monopole and
quadrupole simultaneously. The best fitting χ2 is 66.6 + 73.9 = 140.5 (NGC + SGC) for 152 bins and 7 free parameters (see Table 2).
The contribution to χ2 from the monopole and quadrupole alone is given in the middle and lower panel, for comparison.

and its error, we generate a very large (i.e., dense) random
catalogue with α′ = 0.036.

The final power spectrum is then calculated as the av-

erage over spherical k-space shells

Pℓ(k) = ⟨Pℓ(k⃗)⟩ =
1
Vk

∫

k-shells

dk⃗ Pℓ(k⃗) (16)

=
1

Nmodes

∑

k−∆k
2

<|⃗k|<k+∆k
2

Pℓ(k⃗), (17)
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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Figure 15. As Figure 15, but for the DR11 LOWZ correlation function
transformed as defined by Eq. 46 with a = 0.39 and b = 0.04. As before,
these error bars are nearly independent, with a worst case of 12 per cent
and an r.m.s. of 3.4 per cent in the off-diagonal elements of the reduced
covariance matrix.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error-bars and the best-fit model is dis-
played with the curves. Both are divided by the best-fit smooth model. We
note that a finer binning was used in the DR9 analysis.

noted that transformations based on the symmetric square root of
the Fisher matrix had surprisingly compact support for their power
spectrum analysis. When we formed this matrix for the DR11
CMASS correlation function, we found that the first and second
off-diagonal terms are nearly constant and that subsequent off-
diagonals are small. This suggests that a basis transform of the pen-
tadiagonal form

X(si) =
xi � a (xi�1

+ xi+1

)� b (xi�2

+ xi+2

)

1� 2a� 2b
(46)

will approach a diagonal form. Here, xi = s2i ⇠0(si) and si is the

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fit model is displayed with the curve.
Both are divided by the best-fit smooth model.

bin center of measurement bin i. We introduce the 1 � 2a � 2b
factor so as to normalize X such that it returns X = x for constant
x. For the first two and last two bins, the terms beyond the end of
the range are omitted and the normalization adjusted accordingly.

We find that for DR11 CMASS after reconstruction, values
of a = 0.3 and b = 0.1 sharply reduce the covariances between
the bins. The reduced covariance matrices for ⇠(r) and X(r) are
shown in Figure 13. The bins near the edge of the range retain some
covariances, but the off-diagonal terms of the central 10⇥ 10 sub-
matrix of the reduced covariance matrix have a mean and r.m.s. of
0.008 ± 0.044, with a worst value of 0.11. For display purposes,
this is a good approximation to a diagonal covariance matrix, yet
the definition of X(s) is well localized and easy to state. For com-
parison, the reduced covariance matrix of s2⇠

0

has typical first off-
diagonals values of 0.8 and second off-diagonals values of 0.6.

We display this function in Figure 14. One must also trans-
form the theory to the new estimator: we show the best-fit BAO
models with and without broadband marginalization, as well as the
best-fit non-BAO model without broadband marginalization. The
presence of the BAO is clear, but now the error bars are representa-
tive. For example, the significance of the detection as measured by
the ��2 of the best-fit BAO model to the best-fit non-BAO model
is 69.5 using only the diagonal of the covariance matrix of X , as
opposed to 74 with the full covariance matrix. We do not use this
transformation when fitting models, but we offer it as a pedagogical
view.

The same result is shown for DR11 LOWZ post-
reconstruction in Figure 15. Here we use a = 0.39 and b = 0.04.
The level of the off-diagonal terms is similarly reduced, with an
r.m.s. of 3.4 per cent and a worst value of 12 per cent.

It is expected that the best values of a and b will depend on
the data set, since data with more shot noise will have covariance
matrices of the correlation function that are more diagonally dom-
inant. Similarly, the choice of a pentadiagonal form may depend
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Figure 2. Monopole (top), quadrupole (middle), and hexadecapole (bottom) moments of the SDSS LRGs. The black filled circle
corresponds to power spectrum measured from SDSS LRG catalogue with the method developed in (Yamamoto et al. 2010). The error
bars are estimated based on FKP method (Feldman, Kaiser & Peacock 1994). The best-fitting line describe in Section 5 is shown as
black solid line. We also display parameter sensitivity of our model, introduced in the following section, in colored lines. The green, red,
and blue lines show sensitivity to the growth rate (f), angular diameter distance (DA), Hubble parameter (H), and one-dimensional
velocity dispersion (σv), respectively. The dotted lines are drawn with f (DA, H, or σv) increased by 20% (10%, 10%, 20%, respectively)
from the best-fitting value keeping others fixed at the best-fitting parameters. The dashed lines are the same as the dotted ones but with
f (DA, H, or σv) decreased by 20% (10%, 10%, 20%, respectively).

corresponds to the survey volume of the SDSS. They assume a flat ΛCDM model with the best-fitting cosmological parameters

by the five-year observations of WMAP satellite (Komatsu et al. 2009); Ωm = 0.279, Ωb = 0.046, h = 0.701, ns = 0.96 and

σ8 = 0.817. The N-body simulations run from zin = 99 to zout = 0.35 with the initial condition given by the second-order

Lagrangian perturbation theory (Scoccimarro 1998; Crocce, Pueblas & Scoccimarro 2006). The output redshift zout = 0.35

corresponds to the redshift where the LRG multiple power spectra are measured.

To construct mock LRG catalogue, we use subhalos in addition to halos. This is because recent observations have been

suggested that several LRGs resided in the same host halo (Reid & Spergel 2009). A subhalo is defined as a locally overdense,

self-bound particle group within a halo. We identify subhalos in each FoF halo with independently implemented SUBFIND

algorithm (Springel et al. 2001).

To measure halo/subhalo multipole power spectra, we evaluate halo/subhalo density field assigned on 1, 0243 grids by

Cloud-in-Cell interpolation technique (Hockeney & Eastwood 1981). Halo/subhalo density field on a lattice is transformed to

the Fourier space, and then we compute the power multiplied by the Legendre polynomial and integrate over angles. over the

modes in each k-bin. On the other hand, we multiply the averaged power by the Legendre polynomial weighted µ = kz/k,

and then average over each k-bin. The size of k-bin is set to ∆k = 0.005[h/Mpc]. We measure the multipole power spectra

for each run with the procedure described above. Finally, we take the average of the multipole power spectra over all runs,

and we estimate statistical errors, ∆P sim
ℓ , defined as,

∆P sim
ℓ (k) =

1
Nrun − 1

s X

i−th run

“
P sim

ℓ,i (k)
”2
−

“ X

j−th run

P sim
ℓ,j (k)

”2
, (21)
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Figure 2. Monopole (top), quadrupole (middle), and hexadecapole (bottom) moments of the SDSS LRGs. The black filled circle
corresponds to power spectrum measured from SDSS LRG catalogue with the method developed in (Yamamoto et al. 2010). The error
bars are estimated based on FKP method (Feldman, Kaiser & Peacock 1994). The best-fitting line describe in Section 5 is shown as
black solid line. We also display parameter sensitivity of our model, introduced in the following section, in colored lines. The green, red,
and blue lines show sensitivity to the growth rate (f), angular diameter distance (DA), Hubble parameter (H), and one-dimensional
velocity dispersion (σv), respectively. The dotted lines are drawn with f (DA, H, or σv) increased by 20% (10%, 10%, 20%, respectively)
from the best-fitting value keeping others fixed at the best-fitting parameters. The dashed lines are the same as the dotted ones but with
f (DA, H, or σv) decreased by 20% (10%, 10%, 20%, respectively).

corresponds to the survey volume of the SDSS. They assume a flat ΛCDM model with the best-fitting cosmological parameters

by the five-year observations of WMAP satellite (Komatsu et al. 2009); Ωm = 0.279, Ωb = 0.046, h = 0.701, ns = 0.96 and

σ8 = 0.817. The N-body simulations run from zin = 99 to zout = 0.35 with the initial condition given by the second-order

Lagrangian perturbation theory (Scoccimarro 1998; Crocce, Pueblas & Scoccimarro 2006). The output redshift zout = 0.35

corresponds to the redshift where the LRG multiple power spectra are measured.

To construct mock LRG catalogue, we use subhalos in addition to halos. This is because recent observations have been

suggested that several LRGs resided in the same host halo (Reid & Spergel 2009). A subhalo is defined as a locally overdense,

self-bound particle group within a halo. We identify subhalos in each FoF halo with independently implemented SUBFIND

algorithm (Springel et al. 2001).

To measure halo/subhalo multipole power spectra, we evaluate halo/subhalo density field assigned on 1, 0243 grids by

Cloud-in-Cell interpolation technique (Hockeney & Eastwood 1981). Halo/subhalo density field on a lattice is transformed to

the Fourier space, and then we compute the power multiplied by the Legendre polynomial and integrate over angles. over the

modes in each k-bin. On the other hand, we multiply the averaged power by the Legendre polynomial weighted µ = kz/k,

and then average over each k-bin. The size of k-bin is set to ∆k = 0.005[h/Mpc]. We measure the multipole power spectra

for each run with the procedure described above. Finally, we take the average of the multipole power spectra over all runs,

and we estimate statistical errors, ∆P sim
ℓ , defined as,

∆P sim
ℓ (k) =
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corresponds to power spectrum measured from SDSS LRG catalogue with the method developed in (Yamamoto et al. 2010). The error
bars are estimated based on FKP method (Feldman, Kaiser & Peacock 1994). The best-fitting line describe in Section 5 is shown as
black solid line. We also display parameter sensitivity of our model, introduced in the following section, in colored lines. The green, red,
and blue lines show sensitivity to the growth rate (f), angular diameter distance (DA), Hubble parameter (H), and one-dimensional
velocity dispersion (σv), respectively. The dotted lines are drawn with f (DA, H, or σv) increased by 20% (10%, 10%, 20%, respectively)
from the best-fitting value keeping others fixed at the best-fitting parameters. The dashed lines are the same as the dotted ones but with
f (DA, H, or σv) decreased by 20% (10%, 10%, 20%, respectively).

corresponds to the survey volume of the SDSS. They assume a flat ΛCDM model with the best-fitting cosmological parameters

by the five-year observations of WMAP satellite (Komatsu et al. 2009); Ωm = 0.279, Ωb = 0.046, h = 0.701, ns = 0.96 and

σ8 = 0.817. The N-body simulations run from zin = 99 to zout = 0.35 with the initial condition given by the second-order

Lagrangian perturbation theory (Scoccimarro 1998; Crocce, Pueblas & Scoccimarro 2006). The output redshift zout = 0.35

corresponds to the redshift where the LRG multiple power spectra are measured.

To construct mock LRG catalogue, we use subhalos in addition to halos. This is because recent observations have been

suggested that several LRGs resided in the same host halo (Reid & Spergel 2009). A subhalo is defined as a locally overdense,

self-bound particle group within a halo. We identify subhalos in each FoF halo with independently implemented SUBFIND

algorithm (Springel et al. 2001).

To measure halo/subhalo multipole power spectra, we evaluate halo/subhalo density field assigned on 1, 0243 grids by

Cloud-in-Cell interpolation technique (Hockeney & Eastwood 1981). Halo/subhalo density field on a lattice is transformed to

the Fourier space, and then we compute the power multiplied by the Legendre polynomial and integrate over angles. over the

modes in each k-bin. On the other hand, we multiply the averaged power by the Legendre polynomial weighted µ = kz/k,

and then average over each k-bin. The size of k-bin is set to ∆k = 0.005[h/Mpc]. We measure the multipole power spectra

for each run with the procedure described above. Finally, we take the average of the multipole power spectra over all runs,
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ℓ , defined as,
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Figure 6. Comparisons of the multipole spectrum from the mock catalogues
and the best-fitting curves for the different set-ups in Fig. 5. The meaning of
the curves is noted in the top panel, the same as those of Fig. 5. The diamond
shows the multipole power spectra measured from our mock catalogue. Note
that the error bars show the statistical error for the SDSS DR7 LRG sample,
and do not reflect the uncertainties of the mock power spectrum.

compute the model power spectra, assuming a flat !CDM model
with ("m, "b, h, ns, σ8) = (0.32, 0.0496, 0.67, 0.96, 0.809)
favoured by the Planck result [Ade et al. (Planck Collaboration)
2013]. Note that we assume the same redshift–distance relation as
that in measuring the multipole power spectra from the DR7 LRG
catalogue.

Figure 7. Simultaneous constraints on f, DA, and H from the multipole
power spectra of the SDSS DR7 LRG sample. In each panel, the inner and
outer contours, respectively, represent 68 and 95 per cent confidence levels.
We plot the best-fitting results in cross symbols as well as the !CDM
prediction with the Planck cosmological parameters in stars.

In the analysis of this section, we use the multipole power spectra
of the DR7 LRGs up to ℓ = 4 within the range of the wavenum-
ber k ≤ kmax = 0.175 (h Mpc−1) (see Section 2), which includes
Nbin = 17 equally spaced bins for each multipole, unless explicitly
stated otherwise.

5.1 Simultaneous constraints on f , DA, and H

Our best-fitting model is shown together with the DR7 LRG Pℓ(k)
in Fig. 1. Simultaneous constraints on f, DA, and H marginalized
over the other model parameters are presented in Fig. 7.

The value of χ2/dof for our best-fitting model is 0.45, which is
somewhat smaller than the expectation (χ2/dof ∼ 1). The reason
for the small χ2/dof may partly come from the fact that we neglect
the covariance both between different ks and ℓs. We expect that full
treatment of the covariance matrix can increase the χ2 although we
do not fully understand the reason why χ2 is small. The estimated
parameters, however, will not change significantly even when the
off-diagonal components of covariance are taken into account as
discussed in Takahashi et al. (2009, 2011).

In Fig. 7, we compare our results with the values predicted by
the Planck best-fitting !CDM cosmology and find no evidence of
significant discrepancy.

Let us discuss the degeneracy between (f, DA, H) and the other
nuisance parameters. The FoG parameter, σ v , is strongly degen-
erated with the linear growth rate, f (the correlation coefficient
r(f, σ v) = −0.62). Also, the Hubble parameter, H, is moderately
correlated with f and σ v (r(H, f) = 0.53 and r(H, σ v) = −0.74,
respectively). These facts are not surprising since f, σ v , and H are
all sensitive to the higher multipoles (ℓ = 2 and 4), where a proper
modelling of non-linearity RSDs is essential. There is no significant
degeneracy with the bias parameters, A1 and A2, although the linear
bias parameter, b0, has non-negligible correlations with DA and H
(r(b0, DA) = 0.40 and r(b0, H) = −0.75, respectively).

Nonetheless, these degeneracies are not perfect. This fact implies
that the power spectrum amplitude adds information on the geomet-
ric parameters, as opposed to the isotropic case. This is explained
as follows. In principle, through the AP effect, the power spectrum
amplitude depends not only on b2

0 but also on H/D2
A. But the de-
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Figure 1. The filled circles with error bars are the observed multipole
spectra, monopole (top), quadrupole (middle), and hexadecapole (bottom)
power spectra of the SDSS DR7 LRG sample. We plot the best-fitting results
with solid curves, whose details are described in Section 5. The results are
multiplied by k1.5. The best-fitting curves are plotted in the range of the
wavenumbers k ≤ kmax = 0.175 (h Mpc−1) that corresponds to the valid
range of our theoretical model (see Section 4.3). We used the data in the
range of the wavenumbers k ≤ kmax = 0.175 (h Mpc−1), which include 51
data points, as described in Section 5.

Fig. 1 demonstrates the resultant multipole power spectra, the
monopole (top), quadrupole (middle), and hexadecapole (bottom),
respectively. The solid curves in each panel show the best-fitting
results described in Section 5.

3 MO D E L L I N G T H E MU LT I P O L E
POWER SPECTR A

In this section, we briefly review the theoretical model of the multi-
pole power spectra used in the cosmological analysis. Our goal is to
constrain the linear growth rate and geometrical factors simultane-
ously through RSDs and AP effect in an unbiased manner. For this
purpose, a proper modelling of the shape and the amplitude of the
anisotropic power spectrum is rather crucial (e.g. Padmanabhan &
White 2008), and we will investigate the robustness of our model in
detail in Section 4. The model presented here is based on the pertur-
bation theory calculation, and we will separately give prescription
on how to compute the multipole power spectra.

3.1 Redshift-space distortions and non-linear gravitational
growth

RSDs and gravitational clustering involve, in nature, non-linear
and non-Gaussian effects, and it is quite essential to take a proper
account of these for a robust cosmological analysis beyond the
linear scales. Since we are interested in a large-scale anisotropic
clustering at moderately high redshift, the PT approach should work
well, and a per cent-level precision is achievable with PT calculation
in weakly non-linear regime k ! 0.2 (h Mpc−1).

Let us first consider RSDs. It is well known that the clustering
statistics in redshift space are influenced by the two effects, the
Kaiser and FoG effects. While the former comes from the coherent
motion of galaxies and enhances the clustering amplitude, the latter
is mainly attributed to the virialized random motion of galaxies
sitting in a halo and suppresses the power spectrum significantly
along the line of sight. Strictly speaking, these effects cannot be
treated separately, and through the higher order corrections, a tight
correlation between the density and velocity fields still plays an
important role on the scales of our interest. In the present paper,
among several proposed models to account for the non-linear RSDs
(Matsubara 2008a; Reid & White 2011; Seljak & McDonald 2011),
we adopt the model given by Taruya et al. (2010, hereafter TNS
model):

P s(k, µ) = DFoG(kµf σv)

× [PKaiser(k, µ; f ) + A(k, µ; f ) + B(k, µ; f )], (8)

where σ v is a nuisance parameter, which is related to the one-
dimensional velocity dispersion. The function DFoG(kµfσ v) charac-
terizes the suppression of the power spectrum by the FoG effect, for
which we adopt the Gaussian form:

DFoG(x) = exp(−x2). (9)

The function PKaiser(k, µ) is the non-linear generalization of the
Kaiser term given by (Scoccimarro 2004)

PKaiser(k, µ; f ) = Pδδ(k) + 2f µ2Pδθ (k) + f 2µ4Pθθ (k). (10)

Here, the functions Pδδ(k), Pθθ (k), and Pδθ (k) are, respectively, the
autopower spectra of the density and the velocity divergence, and
their cross-power spectrum. Here, the velocity divergence, θ , is
normalized as θ ≡ −∇v/(f aH ).

The main characteristic of the model (8) is the two additional
terms A and B, which represent the higher order coupling between
the velocity and density fields, usually ignored in a phenomenolog-
ical model of RSDs. These corrections have been properly derived
on the basis of the low-k expansion from the exact expression of the
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Fig. 14. Acoustic-scale distance ratio DV(z)/rdrag in the base
⇤CDM model divided by the mean distance ratio from Planck
TT+lowP+lensing. The points with 1� errors are as follows:
green star (6dFGS, Beutler et al. 2011); square (SDSS MGS,
Ross et al. 2014); red triangle and large circle (BOSS “LOWZ”
and CMASS surveys, Anderson et al. 2014); and small blue cir-
cles (WiggleZ, as analysed by Kazin et al. 2014). The grey bands
show the 68 % and 95 % confidence ranges allowed by Planck
TT+lowP+lensing.

The changes to the data points compared to figure 15 of
PCP13 are as follows. We have replaced the SDSS DR7 mea-
surements of Percival et al. (2010) with the recent analysis of
the SDSS Main Galaxy Sample (MGS) of Ross et al. (2014) at
ze↵ = 0.15, and by the Anderson et al. (2014) analysis of the
Baryon Oscillation Spectroscopic Survey (BOSS) ‘LOWZ’ sam-
ple at ze↵ = 0.32. Both of these analyses use peculiar veloc-
ity field reconstructions to sharpen the BAO feature and reduce
the errors on DV/rdrag. The blue points in Fig. 14 show a re-
analysis of the WiggleZ redshift survey by Kazin et al. (2014)
applying peculiar velocity reconstructions. The reconstructions
causes small shifts in DV/rdrag compared to the unreconstructed
WiggleZ results of Blake et al. (2011) and lead to reductions
in the errors on the distance measurements at ze↵ = 0.44 and
ze↵ = 0.73. The point labelled BOSS CMASS at ze↵ = 0.57
shows DV/rdrag from the analysis of Anderson et al. (2014), up-
dating the BOSS-DR9 analysis of Anderson et al. (2012) used in
PCP13.

In fact, the Anderson et al. (2014) analysis solves jointly for
the positions of the BAO feature in both the line-of-sight and
transverse directions (the distortion in the transverse direction
caused by the background cosmology is sometimes called the
Alcock-Paczynski e↵ect, Alcock & Paczynski 1979), leading to
joint constraints on the angular diameter distance DA(ze↵) and
the Hubble parameter H(ze↵). These constraints, using the tabu-
lated likelihood included in the CosmoMC module16, are plotted
in Fig. 15. Samples from the Planck TT+lowP+lensing chains
are plotted coloured by the value of ⌦ch2 for comparison. The
length of the degeneracy line is set by the allowed variation in H0
(or equivalently⌦mh2). In the Planck TT+lowP+lensing⇤CDM
analysis the line is defined approximately by

DA(0.57)/rdrag

9.384

 
H(0.57)rdrag/c

0.4582

!1.7

= 1 ± 0.0004, (26)

16http://www.sdss3.org/science/boss_publications.php
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Fig. 15. 68 % and 95 % constraints on the angular diameter dis-
tance DA(z = 0.57) and Hubble parameter H(z = 0.57) from
the Anderson et al. (2014) analysis of the BOSS CMASS-DR11
sample. The fiducial sound horizon adopted by Anderson et al.
(2014) is rfid

drag = 149.28 Mpc. Samples from the Planck
TT+lowP+lensing chains are plotted coloured by their value of
⌦ch2, showing consistency of the data, but also that the BAO
measurement can tighten the Planck constraints on the matter
density.

which just grazes the BOSS CMASS 68 % error ellipse plotted
in Fig. 15. Evidently, the Planck base ⇤CDM parameters are
in good agreement with both the isotropized DV BAO measure-
ments plotted in Fig. 14, and with the anisotropic constraints
plotted in Fig. 15.

In this paper, we use the 6dFGS, SDSS-MGS and BOSS-
LOWZ BAO measurements of DV/rdrag (Beutler et al. 2011;
Ross et al. 2014; Anderson et al. 2014) and the CMASS-DR11
anisotropic BAO measurements of Anderson et al. (2014). Since
the WiggleZ volume partially overlaps that of the BOSS-
CMASS sample, and the correlations have not been quantified,
we do not use the WiggleZ results in this paper. It is clear from
Fig. 14 that the combined BAO likelihood is dominated by the
two BOSS measurements.

In the base ⇤CDM model, the Planck data constrain the
Hubble constant H0 and matter density ⌦m to high precision:

H0 = (67.3 ± 1.0) km s�1Mpc�1

⌦m = 0.315 ± 0.013

)
Planck TT+lowP. (27)

With the addition of the BAO measurements, these constraints
are strengthened significantly to

H0 = (67.6 ± 0.6) km s�1Mpc�1

⌦m = 0.310 ± 0.008

)
Planck TT+lowP+BAO.

(28)
These numbers are consistent with the Planck+lensing con-
straints of Eq. (21). Section 5.4 discusses the consistency of
these estimates of H0 with direct measurements.

Although low redshift BAO measurements are in good agree-
ment with Planck for the base ⇤CDM cosmology, this may not
be true at high redshifts. Recently, BAO features have been mea-
sured in the flux-correlation function of the Ly↵ forest of BOSS
quasars (Delubac et al. 2014) and in the cross-correlation of the
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Fig. 13. Changes in the CMB TT spectrum and foreground
spectra, between the best-fitting AL model and the best-fitting
base ⇤CDM model to the Planck TT+lowP data. Blue lines
show the di↵erence between the AL model and ⇤CDM (solid),
and the same, but with AL set to unity (dashed) to show the
changes in the spectrum arising from di↵erences in the other
cosmological parameters. Also shown are the changes in the
best-fitting foreground contributions to the four frequency cross-
spectra between the AL model and the ⇤CDM model. The data
points (with ±1� errors) are the di↵erences between the high-
` maximum-likelihood frequency-averaged CMB spectrum and
the best-fitting ⇤CDM model to the Planck TT+lowP data (as
in Fig. 1). Note that the changes in the CMB spectrum and the
foregrounds should be added when comparing to the residuals in
the data points.

for base ⇤CDM is AL = 1. The results of such an analysis for
models with variable AL is shown in Fig. 12. The marginalized
constraint on AL is

AL = 1.22 ± 0.10 (68%,Planck TT+lowP) . (22)

This is very similar to the result from the 2013 Planck data re-
ported in PCP13. The persistent preference for AL > 1 is dis-
cussed in detail there. For the 2015 data, we find that ��2 = �6.4
between the best-fitting ⇤CDM+AL model and the best-fitting
base ⇤CDM model. There is roughly equal preference for high
AL from intermediate and high multipoles (i.e., the Plik likeli-
hood; ��2 = �2.6) and from the low-` likelihood (��2 = �3.1),
with a further small change coming from the priors.

Increases in AL are accompanied by changes in all other pa-
rameters, with the general e↵ect being to reduce the predicted
CMB power on large scales, and in the region of the second
acoustic peak, and to increase CMB power on small scales (see
Fig. 13). A reduction in the high-` foreground power compen-
sates the CMB increase on small scales. Specifically, ns is in-
creased by 1 % relative to the best-fitting base model and As is
reduced by 4 %, both of which lower the large-scale power to
provide a better fit to the measured spectra around ` = 20 (see
Fig. 1). The densities !b and !c respond to the change in ns, fol-
lowing the usual ⇤CDM acoustic degeneracy, and Ase�2⌧ falls
by 1 %, attempting to reduce power in the damping tail due to
the increase in ns and reduction in the di↵usion angle ✓D (which
follows from the reduction in !m). The changes in As and Ase�2⌧

lead to a reduction in ⌧ from 0.078 to 0.060. With these cos-
mological parameters, the lensing power is lower than in the

base model, which additionally increases the CMB power in the
acoustic peaks and reduces it in the troughs. This provides a poor
fit to the measured spectra around the fourth and fifth peaks, but
this can be mitigated by increasing AL to give more smoothing
from lensing than in the base model. However, AL further in-
creases power in the damping tail, but this is partly o↵set by
reduction in the power in the high-` foregrounds.

The trends in the TT spectrum that favour high AL have a
similar pull on parameters such as curvature (Sect. 6.2.4) and
the dark energy equation of state (Sect. 6.3) in extended models.
These parameters a↵ect the late-time geometry and clustering
and so alter the lensing power, but their e↵ect on the primary
CMB fluctuations is degenerate with changes in the Hubble con-
stant (to preserve ✓⇤). The same parameter changes as those in
AL models are found in these extended models, but with, for ex-
ample, the increase in AL replaced by a reduction in ⌦K . Adding
external data, however, such as the Planck lensing data or BAO
(Sect. 5.2), pull these extended models back to base ⇤CDM.

Finally, we note that lensing is also detected at lower signif-
icance in the polarization power spectra (see Fig. 12):

AL = 0.98+0.21
�0.24 (68%,Planck TE+lowP) ; (23a)

AL = 1.54+0.28
�0.33 (68%,Planck EE+lowP) . (23b)

These results use only polarization at low multipoles, i.e. with
no temperature data at multipoles ` < 30. These are the first de-
tections of lensing in the CMB polarization spectra, and reach
almost 5� in T E. We caution the reader that the AL constraints
from EE and low-` polarization are rather unstable between
high-` likelihoods, because of di↵erences in the treatment of the
polarization data (see Fig. 12, which compares constraints from
the Plik and CamSpec polarization likelihoods). The result of
replacing Plik with the CamSpec likelihood is AL = 1.19+0.20

�0.24,
i.e., around 1� lower than the result from Plik reported in
Eq. (23b). If we additionally include the low-` temperature data,
AL from T E increases:

AL = 1.13 ± 0.2 (68%,Planck TE+lowT,P) . (24)

The pull to higher AL in this case is due to the reduction in TT
power in these models on large scales (as discussed above).

5.2. Baryon acoustic oscillations

Baryon acoustic oscillation (BAO) measurements are geometric
and largely una↵ected by uncertainties in the nonlinear evolu-
tion of the matter density field and other systematic errors that
may a↵ect other types of astrophysical data. As in PCP13, we
therefore use BAO as a primary astrophysical dataset to break
parameter degeneracies from CMB measurements.

Figure 14 shows an updated version of figure 15 from
PCP13. The plot shows the acoustic-scale distance ratio
DV(z)/rdrag measured from a number of large-scale struc-
ture surveys with e↵ective redshift z, divided by the mean
acoustic-scale ratio in the base ⇤CDM cosmology using Planck
TT+lowP+lensing. Here rdrag is the comoving sound horizon at
the end of the baryon drag epoch and DV is a combination of the
angular diameter distance DA(z) and Hubble parameter H(z),

DV(z) =
"
(1 + z)2D2

A(z)
cz

H(z)

#1/3
. (25)

The grey bands in the figure show the ±1� and ±2� ranges
allowed by Planck in the base ⇤CDM cosmology.
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parameter min. value max. value

b�8 1.0 1.6
f�8 0.0 1.0
↵|| 0.8 1.2
↵? 0.8 1.2
�FOG 0.0 50.0
⌦mh2 0.08 0.14
⌦bh2 0.018 0.026

ns 0.8 1.2

Table 1. The priors on the model parameters.

parameter central value 1� error

b�8 1.29 0.03
f�8 0.441 0.043
↵|| 1.006 0.033
↵? 1.015 0.017

Table 2. Constraints on the model parameters.

where rd(⌦mh2,⌦bh2) is the sound horizon scale at the drag epoch.
This marginalized likelikood can be approximated as a Gaussian
with mean

DV/rd = 13.85,
F = 0.6725, (30)

f�8 = 0.4412 .

and covariance matrix

0
BBBBBBBB@

DV/rd F f�8

DV/rd 2.88 ⇥ 10�2 �9.67 ⇥ 10�4 �4.46 ⇥ 10�4

F �9.67 ⇥ 10�4 7.98 ⇥ 10�4 9.70 ⇥ 10�4

f�8 �4.46 ⇥ 10�4 9.70 ⇥ 10�4 1.89 ⇥ 10�3

1
CCCCCCCCA. (31)

Equations (30) and (31) use values of rd = rs(zd) derived by nu-
merically integrating the recombination equations and integrating
the sound speed up to the drag epoch. These values are related to
the results derived from commonly used fitting formula of Eisen-
stein & Hu (1998) adjusted by a factor of rEH

d /rd = 1.026. This
ratio is independent of cosmology for a wide range of conventional
cosmological models (see, e.g., Mehta et al. 2012).

Figure 8 shows the constraints on main cosmological parame-
ters compared to the expectations from the Planck data within stan-
dard ⇤CDM-GR models along with DR9 results from Reid et al.
(2012). The DR11 results are in a good agreement with the Planck
predictions; the �2 difference between them is 1.6 for 3 degrees of
freedom.

Equations (30) and (31) represent the main results of our work
and will be used later to constrain models of DE and MG (see sec-
tion 7).

6.1 Comparison to other similar measurements

The companion papers, Anderson et al. (2013), Beutler et al.
(2013), Sanchez et al. (2013b) and Chuang et al. (2013) use the
same CMASS DR11 data to constrain the distance-redshift relation
at z = 0.57.

Figure 9 shows our measurement of distance along with the

Figure 9. Various estimates of DV/rd from CMASS DR9 and DR11
datasets. The blue band corresponds to 1� uncertainty in Planck predic-
tion assuming ⇤CDM. All measurements are mutually consistent.

result from BAO only fits and previous similar measurements and
Planck predictions for spatially-flat ⇤CDM model.

In figure 9, the label 1D refers to the result derived by fitting
the monopole of the correlation function only, while the label 2D
refers to the result derived from the fit to the monopole and the
quadrupole of the correlation function (see Anderson et al. 2013,
for details). Anderson et al. (2013) differ from our analysis in two
important aspects. They apply “reconstruction” to the measured
galaxy distribution to partially remove the nonlinear smearing of
the BAO feature, and marginalize over the broadband shape of the
correlation function, so that the estimate of the distance comes from
the BAO peak feature alone. Beutler et al. (2013) is more similar to
our analyses as they utilize unreconstructed galaxy distribution and
obtain the information from the full shape of the power-spectrum.
Unlike our work they perform the analysis in the Fourier space and
use an alternative theoretical model. Despite differences in the ap-
plied methodology, the estimates are consistent within 1� error-
bars. Chuang et al. (2013) analysis is in configuration space, but
they use a different theoretical model and range of scales.

The growth rate, f�8, has also been measured in the same red-
shift bin by Beutler et al. (2013) (DR11), Reid et al. (2012) (DR9),
Chuang et al. (2013) (DR11) and Sanchez et al. (2013b). The com-
parison of results is presented on figure 10. Beutler et al. (2013)
perform their analysis in Fourier space. The Chuang et al. (2013)
analysis is in configuration space but uses a different range of scales
and theoretical model than our work. They get a lower estimate of
the growth rate, which is still compatible with our result at 1.5�. In
the Sanchez et al. (2013b) analysis f�8 is a derived parameter com-
puted by combining CMASS data with Planck assuming ⇤CDM
model; their estimate is perfectly consistent with ours. The Reid
et al. (2012) analysis is similar in the range of scales and theoreti-
cal modelling to the current paper, but performed on DR9 dataset.
All measurements are consistent with each other and are somewhat
lower than the Planck ⇤CDM-GR expectations.

6.1.1 Comparison with our DR9 measurements

The fitting methodology adopted in this paper is identical to that
used in our DR9 analysis (Reid et al. 2012), but some of the pri-
ors have been updated. We adopt a prior on the linear matter power
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Figure 8. Posterior likelihood of parameters DV/rd, F and f�8 from BOSS DR11 (red contours) and BOSS DR9 (green contours) data, along with expectations
from Planck data within standard ⇤CDM-GR models (blue contours). All estimates are mutually consistent.

Figure 10. Various estimates of f�8 from CMASS DR9 and DR11. The
blue band corresponds to 1� uncertainty in Planck prediction assum-
ing ⇤CDM-GR. Clustering measurements are mutually consistent and are
lower than the CMB prediction.

spectrum shape from Planck rather than WMAP7; Planck has sub-
stantially smaller errors, and so we expect the marginalization over
the P(k) to contribute negligibly to our error budget in DR11. We
also adopted a slightly more conservative top-hat prior on �2

FOG, by
increasing the allowed range from 0 � 40 Mpc2 to 0 � 50 Mpc2, as
the large-scale clustering data alone can not well constrain this dis-
persion term; we have checked that this change of prior range does
not affect our best-fit parameter values significantly.

The effective area of DR11 is a factor of 2.5 larger than DR9;
in the limit of negligible boundary effects, we would expect the co-
variance matrix on DV/rd, F, f�8 to be reduced by the same factor.
A direct comparison indicates agreement at the ⇠ 15% level on the
diagonals, with DR11 errors slightly larger than expected and with
different off-diagonal structure. When projected onto f�8 (at fixed
DV/rd and F), which is the relevant case for the modified gravity
constraints we present, our error in DR9 was 0.033 and is 0.028
in DR11, while we would have expected 0.021 from the effective
volumes. This situation arises because, as we showed in Table 2 of
Reid et al. (2012), the prior on�2

FOG reduces the uncertainty on f�8

in the fixed geometry case substantially. The statistical errors have
shrunk significantly in DR11 but we did not assume better prior
knowledge on �2

FOG.
A measurement of �2

FOG from small-scale clustering is in

Figure 11. Constraints on b�8 and f�8 from monopole and quadrupole
separately. Solid lines show expected directions of the principal components
based on predictions of linear theory.

progress (Reid et al. 2013); if this parameter were perfectly known,
the f�8 error would be reduced to 0.017 when the geometric and
power spectrum parameters are held fixed.

In DR11 we obtain higher values for DV/rs and f�8, which
brings us slightly closer to the values predicted by Planck. The �2

offset between DR11 and DR9 results is just 0.3 per three degrees
of freedom.

6.2 Constraints from Monopole and Quadrupole Separately

To determine the separate contribution of monopole and
quadrupole we perform the same fit to each individually. The
monopole and quadrupole measurements on their own are unable
to break the degeneracy between b�8 and f�8 and can only con-
strain combinations of the two. Figure 11 shows the constrains in
b�8 - f�8 derived from the two multipoles. The solid lines show the
expected degeneracy directions based on linear theory predictions.

The quadrupole best constrains A2 = (4/3b f + 4/7 f 2)�2
8,

as expected from linear theory. The amplitude constraints from
monopole are collinear to the combination A0 = (b2 + 2/3b f +
1/5 f 2)�2

8, also as expected from linear theory.
The AP parameters ↵|| and ↵? show a qualitatively similar pic-

ture. Individual multipoles can only constrain certain combinations
of parameters. Figure 12 presents constraints in the ↵|| - ↵? plane
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