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Chapter 1

Friedmann-Robertson-Walker
cosmology

Friedmann-Lemet̂re-RobertsonWalker metric

ds2 = −dt2 + {a(t)}2 dℓ⃗2 (1.1)

with the spatial metric given by

dℓ⃗2 =
dr2

1−K r2
+ r2(θ2 + sin2 θ dϕ2) (1.2)

=


dχ2 + χ2 (dθ2 + sin2 θ dϕ2) ; (K = 0)

dχ2 +

(
sinh
√
−Kχ√
−K

)2

(dθ2 + sin2 θ dϕ2) ; (K ̸= 0)

≡ dχ2 + {r(χ)}2 (dθ2 + sin2 θ dϕ2), (1.3)

where K is the spatial curvature, and χ is the comoving radial distance defined by

χ ≡
∫

dt

a(t)
=

∫
dr√

1−K r2
(1.4)

Energy-momentum tensor

T µ
ν = diag(−ρ, P, P, P ), (1.5)

The main components for energy density in the Universe are radiation, matter, and dark
energy:

ρ = ρr + ρm + ρDE (1.6)
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4 CHAPTER 1. FRIEDMANN-ROBERTSON-WALKER COSMOLOGY

with the equation of state (EOS):

Pr =
1

3
ρr, Pm = 0, PDE = w ρDE (1.7)

The EOS parameter of dark energy, w (< 0), is assumed to be −1 in ΛCDM model
(cosmological constant), but it may deviate from −1. Further, it may possibly depend on
time, and is conveniently characterized in the literature by

w(a) = w0 + wa(1− a). (1.8)

Einstein equation/Friedmann equation

Gµ
ν = 8π GT µ

ν ; Gµ
ν ≡ Rµ

ν −
1

2
Rδµν =⇒


3

(
ȧ

a

)2

= 8π Gρ− K

a2
,

3
ä

a
= −4π G (ρ+ 3P ).

(1.9)

The first equation is especially called Friedmann equation. One can check that these two
equations are compatible with the following equation derived from the conservation law
(T µ

ν ;µ = 0):

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (1.10)

Cosmological parameters

Hubble parameter : H ≡ ȧ

a
, (1.11)

Density parameter : Ω∗ ≡
8π G

3H2
ρ∗, (∗ = r, m, DE) (1.12)

Curvature parameter : ΩK ≡ −
K

3H2
(1.13)

Note that these are time-dependent quantities. The parameters given at present time are
specifically denoted by H0, Ω∗,0, and Ω0,K .

With the definitions above, the Friedmann equation [first line of Eq. (1.9)] is reduced
to

Ωr(a) + Ωm(a) + ΩDE(a) + ΩK(a) = 1. (1.14)

In terms of the parameters at present time, the Friedmann equation with a help of con-
servation law and EOS of each energy component leads to (using the redshift defined by
1 + z = 1/a):(
H(z)

H0

)2

= Ωr,0 (1 + z)4 + Ωm,0 (1 + z)3 + ΩDE,0 exp

[
3

∫
dz′

1 + w(z′)

1 + z′

]
+ ΩK,0 (1 + z)2.

(1.15)
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To be more precise, the matter and radiation components are broken up into baryon
(b), cold dark matter (c), neutrinos (ν), and photons (γ). While the baryon and cold
dark matter are non-relativistic and thus their energy density evolves as ρb,c ∝ a−3, the
photons are relativistic and evolves as ργ ∝ a−4. On the other hand, because of the small
mass, the treatment of neutrinos needs a bit care. The neutrinos are initially relativistic,
but become non-relativistic around z ∼ 200. Taking a proper account of these facts, a
refined version of Eq. (1.15) is given by [18](

H(z)

H0

)2

= Ωγ,0

{
1 + 0.227Neff f

(
mν

Tν,0(1 + z)

)}
(1 + z)4

+ (Ωb,0 + Ωc,0) (1 + z)3 + ΩDE,0 exp

[
3

∫
dz′

1 + w(z′)

1 + z′

]
+ ΩK,0 (1 + z)2,

(1.16)

where Neff is the effective number of neutrino species (Neff = 3.046 is the standard value),
mν is the neutrino mass (assuming the equal mass for each species), and the present-day
neutrino temperature, Tν,0 = (4/11)1/3Tγ,0 = 1.945K. The function f is given by

f(y) ≡ 120

7π4

∫ ∞

0

dx
x2
√

x2 + y2

ex + 1
≃ {1 + (0.3173y)1.83}1/1.83. (1.17)

Table 1.1: Cosmological parameters of ΛCDM models derived from Planck 2015 results
[31]

Ωm,0 0.315
Ωb,0 0.049
Ωc,0 0.265
Ων,0 ——∗

ΩDE,0 0.685†

h‡ 0.673

∗ In ΛCDM model, neutrinos are supposed to be massless, but in Planck 2015, they assumed mν = 0.06eV

(Ων,0h
2 ≈

∑
mν/93.04 eV ≈ 0.0006), with the standard value of Neff = 3.046.

† ΛCDM assumes a spatially flat universe (ΩK,0 = 0), which gives ΩDE,0 = 1− Ωm,0.
‡ h is dimensionless Hubble parameter defined by H0 = 100h km s−1 Mpc−1.

Cosmological distances

• Luminosity distance: determined through the observation of apparent flux of the
standard candle, for which the absolute luminosity of the distant object is a priori
known:

dL(z) ≡
√

Luminosity

4π Flux
= (1 + z) r(χ(z)) (1.18)
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• Angular-diameter distance: estimated from measurement of apparent angular
size of the standard ruler, for which the proper (physical) size is a priori known:

dA(z) ≡
Proper size

Angular size
=

1

(1 + z)
r(χ(z)) (1.19)

At z ≪ 1, one can expand

dL(z) = (1 + z)2 dA(z) ≃
z

H0

[
1 +

1

2
(1− q0)z + · · ·

]
, q0 ≡ −

aä

ȧ2

∣∣∣∣
t0

=
d lnH(z)

dz

∣∣∣∣
z=0

− 1.

(1.20)



Chapter 2

Linear theory of structure formation

2.1 Basic equations

Metric (flat)

ds2 = −(1 + 2Ψ)dt2 + {a(t)}2 (1 + 2Φ) δij dx
i dxj. (2.1)

Perturbed quantities

Photon : fγ(p, x) =
[
exp

{
p

T (1+Θ)

}
− 1
]−1

CDM : δ(x), v⃗(x)

Baryon : δb(x), v⃗b(x)

Neutrino : fν =
[
exp

{
E

Tν(1+N )

}
+ 1
]−1

(2.2)

Fourier expansion

δ(x) =

∫
d3k

(2π)3
δ(k) eik·x, (2.3)

v⃗(x) =

∫
d3k

(2π)3
ik

k
v(k) eik·x (2.4)

Note that in the absence of vector/tensor metric fluctuations, the velocity field only
possesses the gradient mode (i.e., irrotational flow).

Evolution equations
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8 CHAPTER 2. LINEAR THEORY OF STRUCTURE FORMATION

(
k

a

)2

Φ + 3H(Φ̇−HΨ) = 4π G
∑
i

ρi δi, (2.5)(
k

a

)2

(Φ + Ψ) = −8π GΠ ; Π ≡ 4(ργ Θ2 + ρν N2) (2.6)

Θ̇ + i
kµ

a
(Θ + Ψ) + Φ̇ = ne σT

[
Θ0 −Θ+ iµ vb −

P2(µ)

2
Θ2

]
, (2.7)

δ̇ − k

a
v + 3Φ̇ = 0, (2.8)

v̇ +H v +
k

a
Ψ = 0, (2.9)

δ̇b −
k

a
vb + 3Φ̇ = 0, (2.10)

v̇b +H vb +
k

a
Ψ = −ne σT

R

(
3Θ1 + vb

)
; R ≡ 3ρb

4ργ
, (2.11)

Ṅ + i
kµ

a

(
p

E
N +

E

p
Ψ

)
+ Φ̇ = 0; E2 = m2

ν + p2 (2.12)

Note

• Polarization dependence of the Thomson scattering is ignored.

• Photon and neutrino fluctuations, Θ and N , additionally have directional depen-
dence of the momentum. Further, in the presence of non-zero mass, the neu-
trino fluctuation also depends on the momentum, i.e., N (k, µ, p), and Θ(k, µ) with
µ ≡ k · /p/(kp). It is thus convenient to characterize them by introducing the
multipole expansion:

Θ(k, µ) =
∑
ℓ

(−i)ℓ (2ℓ+ 1)Θℓ(k)Pℓ(µ), (2.13)

N (k, p, µ) =
∑
ℓ

(−i)ℓ (2ℓ+ 1)Nℓ(k, p)Pℓ(µ). (2.14)

Boltzmann hierarchy

Applying the multipole expansion in Eqs. (2.13) and (2.14), with a help of formulas
in Appendix A.2, Eqs.(2.7) and (2.12) respectively lead to a infinite set of hierarchy
equations:
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Θ̇0 +
k

a
Θ1 + Φ̇ = 0, (2.15)

Θ̇1 +
k

3a
(2Θ2 −Θ0 −Ψ) = neσT

(
−Θ1 −

vb
3

)
, (2.16)

Θ̇2 +
k

5a
(3Θ3 − 2Θ2) = neσT

(
−Θ2 +

1

10
Θ2

)
, (2.17)

Θ̇ℓ +
k

(2ℓ+ 1)a
{(ℓ+ 1)Θℓ − ℓΘℓ−1} = −neσT Θℓ, (ℓ ≥ 3). (2.18)

Ṅ0 +
k

a

p√
p2 +m2

ν

N1 + Φ̇ = 0, (2.19)

Ṅ1 +
k

3a

{
p√

p2 +m2
ν

(2N2 −N0)−
√
p2 +m2

ν

p
Ψ

}
= 0, (2.20)

Ṅ2 +
k

5a

p√
p2 +m2

ν

(3N3 − 2N2) = 0, (2.21)

Ṅℓ +
k

(2ℓ+ 1)a

p√
p2 +m2

ν

{(ℓ+ 1)Nℓ − ℓNℓ−1} = 0, (ℓ ≥ 3). (2.22)

2.2 Initial conditions

Adiabatic perturbations at the radiation-dominated epoch:

Θ0 = N0 =
1

2
Φp, (2.23)

δ = δb =
3

2
Φp, (2.24)

v = vb =
k

2 aH
Φp, (2.25)

Θ1 = N1 = −
k

6 aH
Φp. (2.26)

Θℓ = Nℓ = 0, (ℓ ≥ 2) (2.27)

Here, Φp is the primordial curvature fluctuation, which is thought to be quantum-mechanically
generated during the inflation. These initial conditions are given at super-horizon scales
(k ≪ aH).

Note –. To be precise, the neutrino quadrupole moment N2 is not negligibly small, and
it leads to Φ + Ψ = (2/5)RνΨ. This slightly alters the initial conditions given above.
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2.3 Solutions: from radiation- to matter-dominated

epoch

Below, assuming the massless neutrinos (mν = 0) for simplicity, we derive the (approxi-
mate) solution for matter fluctuations.

Super-horizon evolution (k ≪ aH)

d2Φ

dy2
+

21y2 + 54y + 32

2y(y + 1)(3y + 4)

dΦ

dy
+

Φ

y(y + 1)(3y + 4)
= 0,

(
y ≡ a

aeq

)
(2.28)

The solution satisfying Φ→ Φp at y → 0 becomes

Φ(y) =
Φp

10

1

y3

[
16
√

1 + y + 9y3 + 2y2 − 8y − 16
]

(2.29)

y≫1−→ 9

10
Φp (2.30)

Sub-horizon evolution (k ≫ aH)

δ̈ + 2Hδ̇ − 4π Gρc δ = 0

=⇒ d2δ

dy2
+

3y + 2

2y(y + 1)

dδ

dy
− 3

2

1

y(y + 1)
δ = 0, (Meszaros equation) (2.31)

δ = c1D1(y) + c2D2(y),


D1(y) =

2

3
+ y

D2(y) = D1(y) ln

[√
y + 1 + 1√
y + 1− 1

]
− 2
√

y + 1
(2.32)

Horizon crossing at RD epoch

Using the conformal time defined by a dη = dt, we obtain

δ′′ +
a′

a
δ′ = −3Φ′′ + k2Φ− 3

a′

a
Φ′ ≡ S(η), (2.33)

Φ′′ +
4

η
Φ′ +

k2

3
Φ = 0, (2.34)

where the prime denotes the derivative with respect to η.
The solution of Eq. (2.33) is written as

δ = d1 ln a+ d2 +

∫ η

0

dη′ {ln a(η′)− ln a(η)}
(
d ln a(η′)

dη′

)−1

S(η′). (2.35)
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From the adiabatic initial condition given in Eq. (2.24), we have d1 = 0 and d2 = (3/2)Φp.
For more explicit expression, we need to know the behavior of Φ from Eq. (2.34). The
solution satisfying Φ→ Φp at k ≪ aH becomes

Φ = Φp

(
3
sin(kη/

√
3)− (kη/

√
3) cos(kη/

√
3)

(kη/
√
3)3

)
(2.36)

kη≫1−→ Φp

(
−9cos(kη/

√
3)

(kη)2

)
(2.37)

Substituting Eq. (2.37) into Eq. (2.35), the solution relevant at aH ≪ a≪ aeq is approx-
imately given by

δ ≃ AΦp ln

(
B

a

aeq

)
(2.38)

with A ∼ 9 and B ∼ 0.6.

Matching the solutions

From Eqs. (2.38) and (2.32), we have

Horizon crossing at RD epoch [Eq. (2.38)] : δ ≃ AΦp ln

(
B

a

aeq

)
,

Sub-horizon at MD/RD epoch [Eq. (2.32)] : δ = c1D1

(
a

aeq

)
+ c2D2

(
a

aeq

)
(2.39)

At ym = am/aeq satisfying the condition yH ≪ ym ≪ 1, matching the above two
solutions give the explicit expression for the coefficients of the growing mode, c1:

c1 =

dD2

dy
|ym ln(B

ym
yH

)−D2(ym)
1

ym

D1(ym)
dD2

dy
|ym −D2(ym)

dD1

dy
|ym

AΦp

ym≪1−→ −9

4

[
−2

3
ln

(
B
ym
yH

)
− 2

3
ln

(
4

ym
+ 2

)]
=

3

2
AΦp ln

(
4B e−3

yh

)
. (2.40)

Thus, the sub-horizon solution of (CDM) density fluctuation at RD/MD epoch be-
comes

δ ≃ 3

2
AΦp ln

(
4
√
2B e−3 k

keq

)
D1(a), (k ≫ keq), (2.41)

with A ∼ 9 and B ∼ 0.6.

Late-time sub-horizon evolution at MD/DE epoch
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At the time after the radiation-matter equality time a≫ aeq, the radiation component
becomes negligible, the universe is described by Einstein-de Sitter model. At later time,
however, the deviation from Einstein-de Sitter model becomes significant, and it affects
growth factor D1. The late-time evolution for D1 is described by

D̈1 + 2HD1 − 4π GρD1 = 0 ; ρ = ρm + ρDE. (2.42)

The growing-mode solution is characterized by

D1(a) ∝ a g(a). (2.43)

The deviation from the Einstein-de Sitter universe is also characterized by the linear
growth-rate, defined by

f(a) ≡ d lnD1(a)

d ln a
. (2.44)

For the Universe with cosmological constant, the functions g(a) and f(a) are approx-
imately described by [8]

g(a) ≃ 5

2
Ωm(a)

[
Ω4/7

m (a)− ΩΛ(a) +

{
1 +

Ωm(a)

2

}{
1 +

ΩΛ(a)

70

}]−1

, (2.45)

f(a) ≃ Ω4/7
m (a) +

ΩΛ(a)

70

{
1 +

Ωm(a)

2

}
. (2.46)

In a flat Universe filled with matter and dark energy with constant EOS parameter
(w), the exact solution is known, and the functions g(a) and f(a) are expressed in terms
of the hyper-geometric function (e.g., [29]):

g(a) = 2F1

(
− 1

3w
,
w − 1

w
, 1− 5

6w
; −q(a)

)
, (2.47)

f(a) = 1− 3(w − 1)

6w − 5

2F1

[3w − 1

2w
,
3w − 1

3w
,
12w − 5

6w
, −q(a)

]
2F1

[
− 1

3w
,
w − 1

2w
,
6w − 5

6w
, −q(a)

] (2.48)

with q(a) ≡ {(1− Ωm,0)/Ωm,0} a−3w.

2.4 Transfer function

While the wavelength of the observable fluctuations is basically shorter than the horizon
size, these modes have experienced the super-horizon evolution. Since the evolution of
fluctuations can change depending on when the mode crosses (or re-enters) the horizon
scale, it is convenient to introduce the transfer function defined by

T (k; tm) ≡
Φ(k; tm)

Φ(k → 0; tm)
, (2.49)



2.4. TRANSFER FUNCTION 13

where the time tm is chosen at the matter-dominated era, close to the Einstein-de Sitter
Universe. Here, the Φ(k) in the our interest is the sub-horizon mode. From Eq. (2.30),
we have Φ(k → 0; tm) = (9/10)Φp.

Using (2.49), the matter fluctuation at sub-horizon scales may be expressed as (at
t > tm)

δm(k; a) =
3

5

k2

Ωm,0H2
0

Φp(k)T (k) D1(a)

≡ δ0(k)D1(a). (2.50)

Asymptotic behavior of T (k)

FromEq. (2.41) and (2.49), we obtain1

T (k) ≃


5

2
A

(
k

keq

)−2

ln

(
4
√
2B e−3 k

keq

)
≃ 12

(
k

keq

)−2

ln

(
k

8keq

)
, k ≫ keq

1, k ≪ keq.

(2.51)

Thus, the important characteristic scale is

keq ≡ aeq Heq =

√
2

Ωr,0H2
0

Ωm,0H
2
0

c
= 0.0095

(
Ωm,0h

2

0.13

)
Mpc−1. (2.52)

BBKS fitting formula

A simple but accurate formula for transfer function is given by [1]

T (k) =
ln[1 + 2.34q]

2.34q

{
1 + 3.39q + (16.2)2 + (5.47)3 + (6.71q)4

}−1/4
; q ≡ k

ΓhMpc−1

(2.53)

with the shape parameter Γ = Ωm,0h. This is the transfer function for CDM fluctuation,
but simply replacing the shape parameter with Γ = Ωm,0h exp[−Ωb,0 − (2h)1/2Ωb/Ωm,0],
it can represent in a good accuracy the transfer function for matter fluctuations [34].

Note

• An improved fitting formula for transfer function including the baryon acoustic
oscillations is given by Ref. [12].

1Strictly, the asymptotic form given here is not the transfer function for matter fluctuation, but that
for the CDM fluctuation.
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• For the transfer function including massive neutrinos, a fitting formula relevant at
small scales is presented in Ref. [15].

• For more accurate transfer function, use CMB Boltzmann code. Now, the available
public codes are camb2 and class3.

2.5 Baryon acoustic oscillations

Acoustic oscillations

d2Θ0

dη2
+

R

1 +R
H dΘ0

dη
+

k2

3(1 +R)
Θ0 = −

k2

3
Ψ− d2Φ

dη2
− R

1 +R
HdΦ

dη
(2.54)

cs ≡

√
1

3(1 +R)
; R =

3ρb
4ργ

. (2.55)

Θ0 ∝ exp(i k rs) ; rs ≡
∫ η

0

dη′ cs(η
′) · · · sound horizon scale (2.56)

rs(η) =
2

3 keq

√
6

Req

ln

(√
1 +R(η) +

√
R(η) +Req

1 +
√

Req

)
(2.57)

≈ 147

(
Ωm,0h

2

0.13

)−0.25(
Ωb,0h

2

0.024

)−0.008

at η = ηrec

Relation to baryon fluctuations

vb ≃ −3Θ1
k≫aH≃ 3

k

dΘ0

dη
,

dδb
dη
≃ k vb ≃ 3

dΘ0

dη
−→ δb ≃ 3Θ0 ∝ exp(ik rs) (2.58)

2.6 Baryon catch-up

Just after the time of decoupling, the baryon fluctuations is negligible, and the potential is
basically determined by the CDM fluctuations. Thus, the evolution of baryon fluctuations
is approximately described by

δ̈b + 2Hδ̇b ≃ 4π Gρc δ. (2.59)

Using the fact that ρc ∝ a−3, and δ ∝ a at MD era, the above equation is reduced to

y1/2
d

dy

(
y3/2

dδb
dy

)
=

3

2
δ ; y ≡ a

adec
. (2.60)

2 http://camb.info
3 http://class-code.net
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The solution which fulfills the condition, δb = 0 at y = 1, becomes

δb =

(
1− 3

y
+

2

y3/2

)
δ. (2.61)

This implies that the baryon fluctuations soon catch up the CDM fluctuations. Note
importantly that the acoustic signature (BAO) imprinted on the baryon fluctuations still
remains even after the baryon catch-up.

2.7 Effect of non-zero mass of neutrinos

Even when the neutrinos become non-relativistic, they have a large velocity dispersion
due to their small non-zero masses:

σ2
ν =

∫
d3q

(
q

mν

)2

fν(q)∫
d3q fν(q)

=
15ζ(5)

ζ(3)

(
4

11

)2/3 T 2
γ,0(1 + z)2

m2
ν

≃
(
6.03× 10−4 c

)2(1 eV

mν

)2

(1 + z)2. (2.62)

This leads to the characteristic scale below.

Free-streaming scale, kFS
4

kFS ≡
√

3

2

aH

c2s
≃
√

3

2

aH

σν

=
0.677

(1 + z)2
mν

1 eV

√
Ωm,0(1 + z)3 + ΩΛ hMpc−1. (2.63)

At the scales below the free-streaming scale, k ≪ kFS, the neutrino fluctuations do not
grow, and hence the fluctuations of the total matter is suppressed relative to those in the
massless neutrino case. The suppression of linear matter power spectrum is approximately
characterized as

P (k)|fν ̸=0

P (k)|fν=0

≃ 1− 8 fν ; fν ≡
Ων,0

Ωm,0

≃ 0.075

(
0.1426

Ωm,0h2

)(∑
mν

1 eV

)
(2.64)

at z = 0. A more refined (but partly empirical) formula is given by [see Eq. (141) of
Ref. [19]]:

P (k)|fν ̸=0

P (k)|fν=0

≃ (1− fν)
3

(
D1(a)

anr

)−(6/5)fν

= (1− fν)
3

{
1.9× 105

Ων,0h
2

Neff

D1(a)

a

}−(6/5)fν

.

(2.65)

4As remarked in Ref. [33], the sound velocity, cs = (δp/δρ)1/2, slightly differs from σν , and in the
non-relativistic limit, it gives cs ≃ (

√
5/3)σν .





Chapter 3

Observational effects

3.1 Redshift-space distortions

Redshift space

1 + zobs ≃ (1 + z)(1 + v∥) −→ s = x+
1 + z

H(z)
v∥ x̂. (3.1)

For distance galaxies, the observer’s line-of-sight to the galaxy-clustering region is approx-
imately fixed so that one can introduce a particular direction, ẑ, and write v∥ = (v · ẑ).
We then have

s = x+
1 + z

H(z)
(v · ẑ) ẑ. (3.2)

Galaxy density field in redshift space:

{1 + δ(S)(s)}d3s = {1 + δg(x)}d3x

−→ δ(S)(s) = {1 + δg(x)}
∣∣∣∣ ∂s∂x

∣∣∣∣−1

− 1. (3.3)

In Fourier space,

δ(S)(k) =

∫
d3s δ(S)(s) e−ik·s

=

∫
d3x

[
δg(x)−

1 + z

H(z)

∂vz(x)

∂z

]
e−ik·x−ikµk(1+z)/H(z) vz(x) (3.4)

with µk ≡ (k · ẑ)/|k|.

Linear perturbation (Kaiser formula)

Linearizing RHS of Eq. (3.4) yields

δ(S)(k) ≃
∫

d3x

[
δg(x)−

1 + z

H(z)

∂vz
∂z

]
e−ik·x = δg(k) +

1 + z

H(z)
k µ2

k v(k). (3.5)

17
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Using the linearized continuity equation δ̇m−(k/a)v = 0 [see e.g., Eq. (2.8) on sub-horizon
scales] and assuming the linear galaxy bias δg = b δm, we obtain

δ(S)(k) = (b + f µ2
k)δm(k), (3.6)

where f is the linear growth rate defined by Eq. (2.44). Then, the (linear) redshift-space
power spectrum becomes

P (S)(k) = (b+ f µ2
k)

2 Pm(k) =
∑
ℓ

P
(S)
ℓ (k)Pℓ(µk) ;



P
(S)
0 (k) =

(
b2 +

2

3
fb+

1

5
f 2

)
Pm(k)

P
(S)
2 (k) =

(
4

3
fb+

4

7
f 2

)
Pm(k)

P
(S)
4 (k) =

8

35
f 2 Pm(k)

(3.7)

The corresponding redshift-space correlation function is

ξ(S)(s) =

∫
d3k

(2π)3
P (S)(k) eik·s

=
∑

ℓ=0,2,4

ξ
(S)
ℓ (s)Pℓ(µs) ; ξ

(S)
ℓ (s) = (−i)ℓ

∫
dkk2

2π2
jℓ(k s)P

(S)
ℓ (k), (3.8)

where the directional cosine µs is defined by µs = s · ẑ/|s|.

3.2 Geometric distortions (Alcock-Paczynski effect)

On top of the redshift-space distortions, there appears another anisotropies induced by the
geometric distortions (Alcock-Paczynski effect). This distortion arises if the background
expansion of the real universe differs from the fiducial cosmology used to convert the
observed galaxy positions (i.e., redshift and angular positions) to the comoving radial and
transverse distances.

Correlation function

Denoting the transverse and radial separations of a galaxy pair in the true cosmology
by s′⊥ and s′∥, their relation to the observed separation in the fiducial cosmological model,

sobs⊥ and sobs∥ , is given by

s′⊥ =
dA
dA,fid

sobs⊥ , s′∥ =
H−1

H−1
fid

sobs∥ . (3.9)

Here, the quantities with subscript fid represent those in the fiducial cosmology. The
above relation indicates that the measured correlation function in the fiducial cosmological
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model, ξ
(S)
obs is related to the actual one in the true cosmology, ξ(S), through

ξ
(S)
obs(s

obs, µobs
s ) = ξ(S)(s′, µ′

s) ;


s′ ≡

√
(s′⊥)

2 + (s′∥)
2 = sobs β(µobs

s )

µ′
s ≡ s′∥/s

′ =
Hfid

H

µobs
s

β(µobs
s )

(3.10)

with

β(µobs
s ) =

√√√√( dA
dA,fid

)2

+

{(
Hfid

H

)2

−
(

dA
dA,fid

)2
}
(µobs

s )2. (3.11)

Power spectrum

Similarly, one has the Fourier counterpart of Eq. (3.9):

k′
⊥ =

dA,fid

dA
kobs
⊥ , k′

∥ =
H−1

fid

H−1
kobs
∥ . (3.12)

Then, from Eq. (3.10), we obtain

P
(S)
obs(k

obs, µobs
k ) =

H

Hfid

(
dA,fid

dA

)2

P (S)(k′, µ′
k) ;


k′ = kobs α(µobs

k )

µ′
k =

H

Hfid

µobs
k

α(µobs
k )

(3.13)

with

α(µobs
k ) =

√√√√(dA,fid

dA

)2

+

{(
H

Hfid

)2

−
(
dA,fid

dA

)2
}
(µobs

k )2. (3.14)

The expressions given in Eqs. (3.10) and (3.13) imply that in the presence of mis-
match between the fiducial and true cosmologies, the higher-multipole moments of the
power spectrum/correlation function (ℓ > 4) naturally arises even if the linear formula of
redshift-space distortions holds [Eqs. (3.7) and (3.8)].





Chapter 4

Analytic approaches to nonlinear
structure formation

4.1 Spherical collapse model

A simple nonlinear model for gravitational collapse which tells you characteristic proper-
ties of gravitationally bound objects (i.e., dark matter halos).

Consider a homogeneous (uniform) density of sphere with radius R and mass M . The
motion of the shell at R is described by

d2R

dt2
= −GM

R2
. (4.1)

The solution which becomes collapsed at finite time is parametrically expressed as

R =
GM

2|E|
(1− cos θ), t =

GM

(2|E|)3/2
(θ − sin θ). (4.2)

Here, E is the total energy of the shell (E = Ṙ2/2−GM/R). Note that at tta = t(θ = π),
the radius of the sphere becomes maximum, and one has R = Rmax = GR/|E|. On the
other hand, the radius becomes zero at tcoll = t(θ = 2π) = 2tta.

Then the density of the sphere is estimated to give

ρ ≡ M

(4π/3)R3
=

6

π

|E|3

G3M2
(1− cos θ)−3. (4.3)

Taking the ratio to the background density of the universe ρm = 3H2/(8π G), the density
contrast becomes

δ ≡ ρ

ρm
− 1 =

9

2

(θ − sin θ)2

(1− cos θ)3
− 1, (4.4)

Here, for simplicity, we assumed the Einstein-de Sitter universe [i.e., ρEdSm = 1/(6π G t2)].

Critical density contrast

21
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δcrit ≡ δlin(tcoll) =
3

20
(12π)2/3 ≃ 1.68647. (4.5)

Virial overdensity

∆vir ≡
ρvir

ρEdSm (tcoll)
=

8ρ(tta)

ρEdSm (tta)/4
= 18π2 ≃ 177.6 (4.6)

Extension to ΛCDM cosmology [27, 7, 26]

δcrit = 1.686{Ωm(tcoll)}0.055 (4.7)

∆vir =
18π2 + 82y − 39y2

Ωm(tcoll)
; y ≡ Ωm(tcoll)− 1. (4.8)

4.2 Zel’dovich approximation

This section is based on Ref. [22].

Zel’dovich approximation is the first-order Lagrangian perturbation theory, and de-
scribes the quasi-linear evolution of matter fluctuations [40]. In contrast to the spherical
collapse model, Zel’dovich approximation tells us (qualitatively) how the asphericity of
the structure develops according to its initial configuration. In particular, it is used to
generate the initial conditions for cosmological N -body simulations.

As mentioned above, the Zel’dovich approximation is the Lagrangian-based treatment
by following the trajectories of particles. Motion of each mass particle is described by

L =
1

2
ma2ẋ2 −mΨ(x), (4.9)

which gives

ẍ+ 2Hẋ+
1

a2
∇xΨ(x) = 0. (4.10)

The quantity of interest here is the displacement field ψ(q) which maps the initial particle
positions q into the final Eulerian particle positions x,

x(q, t) = q +ψ(q, t). (4.11)

With this definition, taking the divergence of Eq. (4.10) gives

∇x

(
ψ̈ + 2Hψ̇

)
= −4π Gρm δm(x) (4.12)
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In the above, the sources of nonlinearity are

1 + δm(x) =

∣∣∣∣∂x∂q
∣∣∣∣−1

≡ 1

J
, (4.13)

∂

∂xi

=

(
∂x

∂q

)−1

ij

∂

∂qj
≡ (J−1)ij

∂

∂qj
. (4.14)

Regarding ψ as a perturbed quantity, the leading-order evaluation leads to

J =
1

6
ϵijkϵpqrJipJjqJkr ≃ 1 +∇q ·ψ, (4.15)

(J−1)ij =
1

2J
ϵjkpϵiqrJkqJpr ≃ δij +O(ψ). (4.16)

Eq. (4.12) is then rewritten at leading order with

(J−1)ij
∂

∂qj

(
ψ̈ + 2Hψ̇

)
= −4π Gρm

( 1
J
− 1
)

=⇒ (∇q ·ψ).. + 2H(∇q ·ψ). − 4π Gρm(∇q ·ψ) ≃ 0. (4.17)

Eq. (4.17) is nothing but the evolution equation for linear density field. Since δm ≃ −∇q ·ψ
at t→ 0, we may write the displacement field as

ψ(q; a) = −D1(a)∇qφ(q), ∇2
qφ(q) = δ0(q). (4.18)

Here, D1 is the linear growth factor, and δ0 is the initial density field.

A crucial point may be that the density field is not assumed to be small. Thus, it is
often said that the solution may be applied to the quasi-linear regime. Plugging Eq. (4.18)
into Eq. (4.13), we obtain

1 + δm(x) ≃
1

(1−D1 λ1)(1−D1 λ2)(1−D1 λ3)
. (4.19)

where λi is the eigenvalue of the vector φ,i. This illustrates how the non-sphericity of the
structure develops according to the initial condition. In particular, the above equation
implies that in the Gaussian initial condition, most of the nonlinear structure is aspherical.

4.3 Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.20)

supplemented with the Poisson equation:

∇2Ψ(x) = 4π Ga2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.21)
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Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.22)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.20) yields

∂δm
∂t

+
1

a
∇ [(1 + δ)v] = 0, (4.23)

∂v

∂t
+

1

a
(v · ∇)v = −1

a

∂Ψ

∂x
, (4.24)

1

a2
∇2Ψ = 4π Gρm δm. (4.25)

In what follows, we omit the subscript of δm, and simply denote the mass density field by
δ.

Evolution equations in Fourier space

Introducing the velocity-divergence field, θ ≡ ∇·v/(aH), Eqs. (4.23)-(4.25) are rewrit-
ten in terms of the Fourier-space quantities1:

a
dδ(k)

da
+ θ(k) = −

∫
d3k1d

3k2

(2π)3
δD(k − k12)α(k1,k2) θ(k1)δ(k2), (4.26)

a
dθ(k)

da
+

(
2 +

Ḣ

H2

)
θ(k) +

3

2
Ωm(a) δ(k) = −

∫
d3k1d

3k2

(2π)3
δD(k − k12) β(k1,k2) θ(k1)θ(k2)

(4.27)

with the functions α and β given by

α(k1,k2) = 1 +
k1 · k2

|k1|2
, β(k1,k2) = 1 +

(k1 · k2)|k1 + k2|2

|k1|2|k2|2
. (4.28)

Standard PT expansion

Eqs .(4.26) and (4.27) may be expanded as2

δ(k) =
∑
n

Dn
1 δn(k), θ(k) = −f

∑
n

Dn
1 θn(k). (4.29)

1The vorticity component of the velocity field is ignored.
2Strictly speaking, the expansion in Eq. (4.29) is correct only in the Einstein-de Sitter cosmology, in

which we have D1 = a. Nevertheless, this expansion is shown to give a very good approximation.
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The perturbative solutions δn and θn are formally expressed as

δn(k) =

∫
d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Fn(k1, · · · ,kn) δ0(k1) · · · δ0(kn), (4.30)

θn(k) =

∫
d3k1 · · · d3kn

(2π)3(n−1)
δD(k − k12···n)Gn(k1, · · · ,kn) δ0(k1) · · · δ0(kn) (4.31)

with k12···n = k1 + · · · + kn. The function δ0 is the initial density field originated from
primordial curvature perturbation, Φp [see Eq. (2.50)]. The functions Fn and Gn are called
perturbation theory (PT) kernels, whose functional forms are determined recursively.

Constructing PT kernels

First defining the kernel

F (n)
a (k1, · · · ,kn) =

(
Fn(k1, · · · ,kn)
Gn(k1, · · · ,kn)

)
, (4.32)

then the recursion relation of the PT kernel is obtained from Eqs. (4.26) and (4.27)3:

F (n)
a (k1, · · · ,kn) =

n−1∑
m=1

σ
(n)
ab γbcd(q1, q2)F (m)

c (k1, · · · ,km)F (n−m)
d (km+1, · · · ,kn), (4.33)

with F (1) = (1, 1). Here, q1 = k1 + · · ·+km and q1 = km+1 + · · ·+kn. The σ
(n)
ab and γabc

are respectively given by (e.g., Ref. [2, 11, 28])

σ
(n)
ab =

1

(2n+ 3)(n− 1)

(
2n+ 1 2

3 2n

)
, (4.34)

γabc(k1,k2) =



α(k2,k1)/2 (a, b, c) = (1, 1, 2)

α(k1,k2)/2 (a, b, c) = (1, 2, 1)

β(k1,k2) (a, b, c) = (2, 2, 2)

0 otherwise

(4.35)

Note that the PT kernels obtained from recursion relation are not yet symmetric for
all possible permutations of the variables, e.g., k1 ↔ k2. For later statistical calculations,
they must be symmetrized:

sF (3)
a (k1, · · · ,kn) ≡

1

n!

∑
permutations

F (n)
a (k1, · · · ,kn). (4.36)

Examples

3Again, the recursion relation obtained here is exact only in the Einstein-de Sitter Universe.
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Here, we give explicit expression for PT kernels up to third order:

sF2(k1,k2) =
5

7
+

1

2

k1 · k2

k1k2

(
k1
k2

+
k2
k1

)
+

2

7

(k1 · k2)
2

k2
1k

2
2

, (4.37)

sG2(k1,k2) =
3

7
+

1

2

k1 · k2

k1k2

(
k1
k2

+
k2
k1

)
+

4

7

(k1 · k2)
2

k2
1k

2
2

. (4.38)

sF3(k1,k2,k3) =
1

6

[ 7
9

(k123 · k3)

k2
3

sF2(k1,k2) +
{7
9

(k123 · k12)

k2
12

+
2

9

k2
123(k3 · k12)

k2
3k

2
12

}
sG2(k1,k2)

]
+ (cyclic perm.) , (4.39)

sG3(k1,k2,k3) =
1

6

[ 1
3

(k123 · k3)

k2
3

sF2(k1,k2) +
{1
3

(k123 · k12)

k2
12

+
2

3

k2
123(k3 · k12)

k2
3k

2
12

}
sG2(k1,k2)

]
+ (cyclic perm.) . (4.40)

Relation to Lagrangian PT

Instead of expanding δ and θ like Eq. (4.29), we may introduce the Lagrangian frame
in which the mass distribution looks homogeneous (q, the rest frame of mass element),
and follow the motion of flow with the displacement field (vector), ψ [ Eq. (4.11) ]:

x(q, t) = q +ψ(q, t).

Note ψ → 0 at t → 0. The perturbative treatment of the displacement field is called
Lagrangian PT. In Fourier space, we can expand

ψ(k; a) ≡
∫

d3q ψ(q) e−ik·q =
∑
n

Dn
1 (a)ψn(k) ;

ψn(k) = i

∫
d3p1 · · · d3pn
(2π)3(n−1)

δD(k − p12···n)Ln(p1, · · · ,pn) δ0(p1) · · · δ0(pn). (4.41)

The function Ln is called Lagrangian PT kernel. Note that the first-order Lagrangian PT
is the Zel’dovich approximation.

The Lagrangian PT kernels are related to standard PT kernels as follows. In terms of
the displacement field, the density field in Fourier space is described as (using the relation
d3q = {1 + δ(x)}d3x):

δ(k) =

∫
d3x δ(x) e−ik·x

=

∫
d3q e−ik·{q+ψ(q)} − (2π)3 δD(k),

(
∵ δ(x) =

∣∣∣∣∂x∂q
∣∣∣∣− 1

)
=
∑
n

(∫
d3k1 · · · d3kn

(2π)3(n−1)
δD(k − p12···n)

(−i)n

n!
{k ·ψ(k1)} · · · {k ·ψ(kn)}

)
− (2π)3δD(k)

(4.42)
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Substituting Eq. (4.41) into the above, the order-by-order comparison of the Fourier
kernels with those of the standard PT kernel given in Eq. (4.30) leads to

F1(k) = 1 = k ·L1(k),

F2(k1,k2) = k ·L2(k1,k2) +
1

2
{k ·L1(k1)}{k ·L1(k2)},

F3(k1,k2,k3) = k ·L3(k1,k2,k3) +
1

3

[
{k ·L1(k1)}{k ·L2(k2,k3)}+ (cyclic perm.)

]
+

1

6
{k ·L1(k1)}{k ·L1(k2)}{k ·L1(k3)}. (4.43)

Using these relations, one can reconstruct the longitudinal mode of the Lagrangian PT
kernels recursively without solving evolution equation of ψ. Notice that the reconstructed
kernels in this way actually miss transverse modes, which appears non-vanishing at n ≥ 3.
A systematic calculation of the Lagrangian PT kernels including both longitudinal and
transverse modes is given by Ref. [22].

Gaussian initial condition

For explicit calculations of the statistical quantities based on PT, one needs to specify
the statistical properties of the density field δ0 as a seed of PT expansion [Eqs. (4.30),
(4.31) and (4.41)]. Standard assumption/hypothesis may be the Gaussian initial condi-
tion. In this case, all the statistical information is encoded in the initial power spectrum
P0(k), and any statistical quantity is constructed with P0. We have

⟨δ0(k)⟩ = 0, (4.44)

⟨δ0(k1)δ0(k2)⟩ = (2π)3 δD(k12)P0(k) (4.45)

⟨δ0(k1)δ0(k2)δ0(k3)⟩ = 0, (4.46)

⟨δ0(k1)δ0(k2)δ0(k3)δ0(k4)⟩ = (2π)6
[
δD(k12)δD(k34)P0(k1)P0(k2) + (cyclic perm.)

]
,

(4.47)

...

In general, for positive integer n,

⟨δ0(k1) · · · δ0(k2n+1)⟩ = 0, (4.48)

⟨δ0(k1) · · · δ0(k2n)⟩ =
∑

all pair associations p

∏
pairs (i,j)

⟨δ0(ki)δ0(kj)⟩. (4.49)

These properties are known as Wick’s theorem or Isserlis’ theorem.

Statistical calculations

• Power spectrum : ⟨δ(k1)δ(k2)⟩ = (2π)3δD(k12)P (k1)
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An explicit calculation of the ensemble average at next-to-leading order (called one-
loop) leads to

⟨δ(k1)δ(k2)⟩ ≃ ⟨δ1(k1)δ1(k2)⟩+ ⟨δ2(k1)δ2(k2)⟩+ ⟨δ1(k1)δ3(k2)⟩+ ⟨δ3(k1)δ1(k2)⟩+ · · · .
(4.50)

We thus obtain

P (k, a) ≃ {D1(a)}2 P0(k) + {D1(a)}4
{
P22(k) + P13(k)

}
. (4.51)

The first term at RHS is nothing but the linear power spectrum. The parenthesis
represents the contributions from the higher-order PT, given by

P22(k) =

∫
d3p

(2π)3
{F2(k − p,p)}2 P0(|k − p|)P0(p), (4.52)

P22(k) = 2P0(k)

∫
d3p

(2π)3
{F3(k,p,−p)}2 P0(p). (4.53)

Because of the different dependence on the linear growth factor, these nonlinear
contributions give rise to the scale-dependent growth of power spectrum.

• Bispectrum : ⟨δ(k1)δ(k2)δ(k3)⟩ = (2π)3 δD(k123)B(k1,k2,k3)

At leading-order, we have

⟨δ(k1)δ(k2)δ(k3)⟩ ≃ ⟨δ1(k1)δ1(k2)δ2(k3)⟩+ ⟨δ2(k1)δ1(k2)δ1(k3)⟩
+ ⟨δ1(k1)δ2(k2)δ1(k3)⟩+ · · · . (4.54)

Thus, the non-vanishing bispectrum arises:

B(k1,k2,k3) ≃ {D1(a)}4
{
2F2(k1,k2)P0(k1)P0(k2) + (cyclic perm.)

}
. (4.55)

This implies that the nonlinear gravitational evolution generally produces non-
Gaussianity, and other higher-order statistics also become non-vanishing. In other
words, the statistical information initially encoded in the power spectrum is partly
transferred to the higher-order statistics.

Resummed perturbation theory

In order to improve the performance of PT-based prediction, we need to include the
higher-order PT corrections. A crucial remark is that the applicable range of the PT
prediction largely depends on the PT scheme itself. Indeed, standard PT is known to
have bad convergence properties, and produces ill-behaved higher-order corrections. The
resummation or renormalization is one of the techniques to improve the convergence of
PT expansion.

Among various methods proposed so far (e.g., [38, 30, 20, 11, 35]), we here present a
specific prescription for resummed PT treatment, called multi-point propagator expansion
or Γ-expansion [3, 21]
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For the evolved (nonlinear) density field δ(k, a), one defines

1

p!

⟨ δpδ(k, a)

δδ0(k1) · · · δδ0(kp)

⟩
≡ δD(k − k12···p)

1

(2π)3(p−1)
Γ(p)(k1, · · · ,kp) (4.56)

The function Γ(p) is called (p+1)-point propagator. This is the non-perturbative statistical
quantity characterizing nonlinear mode-coupling. In terms of the standard PT expansion,
it is expressed as

Γ(p)(k1, · · · ,kp; a) = {D1(a)}p Fp(k1, · · · ,kp) +
∑
n=1

{D1(a)}p+2n Γ
(p)
n-loop(k1, · · · ,kp)

(4.57)

with higher-order correction Γ
(p)
n-loop given by

Γ
(p)
n-loop(k1, · · · ,kp)

= c(p)n

∫
d3q1 · · · d3qn

(2π)3n
F2n+p(q1,−q1, · · · , qn,−qn,k1, · · · ,kp)P0(q1) · · ·P0(qn).

(4.58)

with the symmetric factor c
(p)
n = (2 − 1)!! 2n+pCp. Using these expressions, it is straight-

forward to show that the standard PT expansion of the power spectrum is re-organized
in terms of the multi-point propagators as follows:

P (k, a) = {Γ(1)(k; a)}2 P0(k)

+
∑
n=2

n!

∫
d3q1 · · · d3qn
(2π)3(n−1)

δD(k − q12···n)
{
Γ(n)(q1, · · · , qn; a)

}2
P0(q1) · · ·P0(qn).

(4.59)

Similarly, other statistical quantities such as bispectrum and trispectrum are systemati-
cally constructed with multi-point propagators [3, 4, 39].

A crucial point is how to accurately construct a regularizedmulti-point propagator that
can describe their global shape, i.e., their whole k-dependence. A couple of important
properties to be noted is

• High-k behaviors: In the limit k →∞, resummation of the standard PT expansion
at all order is possible, and one gets [3, 5]

Γ(p)(k1, · · · ,kp; a)
k→∞−→ {D1(a)}p Fp(k1, · · · ,kp) e

−k2σ2
d/2 (4.60)

with σd being the rms of the displacement field given by

σ2
d = {D1(a)}2

∫
dq

6π2
P0(q). (4.61)

• Low-k behaviors: At low-k, a perturbative calculation with standard PT expansion
may be applied. While this should be restricted to a certain low-k regime, each
perturbative correction in Eq. (4.58) possesses the following asymptotic form:

Γ
(p)
n-loop(k1, · · · ,kp; a)

k→∞−→ 1

n!

(
−k2σ2

d

2

)n

{D1(a)}p Fp(k1, · · · ,kp) (4.62)
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The above properties indicate that there exists well-defined matching scheme that
smoothly interpolates between the low-k and high-k results of any multi-point propagator
[4]. Construction of such a regularized propagator is given by

Γ(p)
reg(k1, · · · ,kp; a) = {D1(a)}p

×
[
Fp(k1, · · · ,kp)

{
1 +

k2σ2
d

2

}
+ {D1(a)}2 Γ(p)

1-loop(k1, · · · ,kp)
]
exp

{
−k2σ2

d

2

}
, (4.63)

which consistently reproduces one-loop PT results at low-k. At high-k, it approaches the
asymptotic behavior in Eq. (4.60). This construction is easily generalized to include the
higher-order PT corrections at low-k.

Finally, comments to be noted (or advertisement) are

• Code to compute power spectrum based on this resummed PT scheme is publicly
available [37]4.

• Based on this resummed scheme, an algorithm that allows accelerated power spec-
trum calculations is proposed and is implemented in the public code [37].

4.4 Halo model

Halo model provides a qualitative view of gravitational clustering of large-scale structure
on both large and small scales, and it can be even applied for a quantitative study of
matter/halo clustering. The underlying assumption of the halo model is that the spatial
volume of the Universe is entirely filled with the self-gravitating bound objects called dark
matter halos, and all the CDM particles (and baryons) constitute these halos.

To start with, consider the two-point correlation function as the Fourier counter-
part of the power spectrum, ξ(r) = ⟨δ(x)δ(x + r)⟩. The two-point correlation function
measures the excess probability above the Poisson distribution of finding pair of objects
(CDM particles) with separation r. We can write the contributions to ξ as two separate
terms, one from particle pairs in the same halo, and the other from pairs that reside in
two different halos. The dark matter halos exhibit a spectrum of masses that can be
characterized by a distribution function nhalo(M) called the halo mass function, and the
halo centers are spatially correlated. Taking these factors into consideration, we can write
the two- point correlation function in terms of the halo density profile ρhalo(r), halo mass
function nhalo(M), and halo-halo correlation ξhh(r):

ξ(r) = ξ1-halo(r) + ξ2-halo(r) ; (4.64)

ξ1-halo(r) =

∫
dM nhalo(M)

∫
d3x

ρhalo(x; M)

ρm

ρhalo(x+ r; M)

ρm
, (4.65)

ξ2-halo(|x− x′|) =
∫

dM1 nhalo(M1)

∫
dM2 nhalo(M2)

×
∫

d3x1
ρhalo(x− x1; M1)

ρm

∫
d3x1

ρhalo(x
′ − x2; M2)

ρm
ξhh(x1 − x2; M1,M2).

(4.66)
4http://ascl.net/1404.012
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Then, the corresponding Fourier counter-part (power spectrum) becomes

P (k) = P1-halo(k) + P2-halo(k) ; (4.67)

P1-halo(k) =

∫
dM nhalo(M)

∣∣∣∣ ρ̃halo(k; M)

ρm

∣∣∣∣2 , (4.68)

P2-halo(k) =

∫
dM1 nhalo(M1)

∫
dM2 nhalo(M2)

ρ̃halo(k; M1)

ρm

ρ̃halo(k; M2)

ρm
Phh(k; M1,M2).

(4.69)

where the quantities ρ̃halo and Phh are the Fourier transform of the density profile and
correlation function, respectively.

Given the explicit functional forms of nhalo, ρhalo, and ξhh, the above equations describe
the nonlinear matter clustering reasonably well. In particular, halo model description is
powerful to predict the statistics at small scales, where the perturbation theory treat-
ment cannot reach. For more detail, see Ref. [10] for applications and extension to the
galaxy clustering (for recent interesting applications, see Ref. [14] to the redshift-space
distortions, Refs. [36, 17] to the non-Gaussian covariance).

4.5 Galaxy/halo bias

So far, we have focused on the dark matter clustering on large scales. However, the
fundamental observables of the large-scale structure by the galaxy redshift surveys are the
galaxies. To be precise, what we can observe/measure is the number density fluctuations of
galaxies, which differs from the mass density fluctuations we have so far considered. In this
respect, the galaxy distribution may be a biased tracer of large-scale matter distribution.
Connecting the dark matter clustering with galaxy clustering is thus important issues,
and needs to be addressed5.

δgal(x) =
ngal(x)

ngal

− 1 ←→ δ(x) =
ρm(x)

ρm
− 1. (4.70)

Prescriptions for galaxy bias6

• Linear bias: the simplest prescription that has been first invented by Ref. [16]:

δgal(x) = b δm(x). (4.71)

5Comprehensive review on galaxy bias by V. Desjacques, D. Jeong, and F. Schmidt is supposed to
appear soon.

6Examples presented here are regarded as Eulerian local bias. Another class of local bias prescription
in terms of the Lagrangian quantities is called Lagrangian local bias.
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• Nonlinear bias : the second simplest prescription (e.g., [13])

δgal(x) =
∑
n

bn
n!

[
{δm(x)}n − ⟨{δm(x)}n⟩

]
. (4.72)

A more general prescription of the bias may be non-local, nonlinear and stochastic
bias. But, generic prescription of it looks intractable.

Toy models for bias

Representative models of galaxy biasing are halo bias and peak bias. These are clas-
sified as the Lagrangian bias model, and the density fields are defined in Lagrangian
space:

Halo bias: 1 + δhalo(q; M) =
n̂halo(q; M)

nhalo(M)
, (4.73)

Peak bias: 1 + δpeak(q; νc) =
n̂peak(q; νc)

npeak(νc)
, (4.74)

where n̂halo and n̂peak are the random fields, and nhalo and npeak represent their mean, i.e.,
⟨n̂halo⟩ = nhalo and ⟨n̂peak⟩ = npeak. Explicit expression for n̂halo is (see Ref. [23]):

n̂halo(q; M) = −2ρm
M

∂

∂M
Θ
[
δ(q|M)− δcrit] (4.75)

with Θ being the Heaviside step function. The quantity δcrit is the critical density deter-
mined by the spherical collapse model [see Eq. (4.5) or (4.7)], and δ(q|M) is the linearly
extrapolated density field smoothed over the radius {M/(4π ρm/3)}1/3 with top-hat filter.
For the peak, it is defined in terms of the smoothed linear density field with Gaussian
filter [23]:

n̂peak(q; νc) =
33/2

R3
∗
δD(ν − νc)δD(η⃗)Θ(λ3)|det(ζij)| (4.76)

with R∗ =
√
3σ1/σ2, ν = δ/σ, ηi = ∇iδ/σ1, and ζij = ∇i∇jδ/σ2. Here, σn is defined by

σ2
n = ⟨(∇nδ)2⟩.

The halo/peak density fields in Lagrangian space are given as nonlinear and scale-
dependent functions of linear density field. Moreover, they are mapped into Eulerian
space:

1 + δX(x) =

∫
d3q [1 + δX(q)] δD

(
x− q −ψ(q)

)
, (X = halo, peak). (4.77)

This further induces non-locality of the bias through the gravitational evolution (see
Ref [25] for some attempts).

Practical bias parameterization ?
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For practical application to observed galaxy power spectrum or correlation function
(specifically BOSS), the bias prescription recently used in the literature is [32, 24, 9]

δgal(x) = b1 δ(x) +
b2
2

[
δ(x)2 − ⟨δ(x)2⟩

]
+

1

2
bs2
[
s(x)2 − ⟨s(x)2⟩

]
+ · · · (4.78)

with the non-local field s defined by

s(x)2 = sij(x)s
ij(x) ; sij(x) =

(
∇i∇j∇−2 − 1

3
δij

)
δ(x) (4.79)

Note that when you go to third-order, another non-local correction arises from the coupling
between the tidal fields of density and velocity, whose coefficient is called b3nl [32]. At the
end, on top of the cosmological parameters of our interest, there additionally appear 5 free
parameters in the galaxy power spectrum, which have to be determined simultaneously
from the measured power spectrum [6]7:

Pgal(k) = b21 Pδδ(k) + 2b2b1 Pb2,δ(k) + 2bs2b1 Pbs2,δ(k) + 2b3nlb1 σ
2
3(k)Plin(k)

+ b22 Pb22(k) + 2 b2bs2 Pb2s2(k) + b2s2 Pbs22(k) +N, (4.80)

where Pδδ and Plin are the nonlinear and linear matter power spectrum. The definitions
and expressions for other power spectra are given in Ref. [32, 6].

7In redshift space, one more free parameter arises from the Finger-of-God damping factor.





Appendix A

Useful formulas

A.1 Fourier transformation

A(x) =

∫
d3k

(2π)3
A(k) eik·x, (A.1)

A(k) =

∫
d3xA(x) e−ik·x. (A.2)

Dirac’s delta-function:

δD(x) =

∫
d3k

(2π)3
eik·x. (A.3)

Relation between ξ(r) and P (k) (Wiener-Khintchine relation):

ξ(r) =

∫
d3k

(2π)3
P (|k|) eik·x, (A.4)

P (k) =

∫
d3r ξ(|r|) e−ik·r. (A.5)

A.2 Legendre polynomials

(1− µ2)
d2Pℓ(µ)

dµ2
− 2µ

dPℓ(µ)

dµ
+ ℓ(ℓ+ 1)Pℓ(µ) = 0 (A.6)

∫ 1

−1

dµPℓ(µ)Pℓ′(µ) =
2

2ℓ+ 1
δℓℓ′ (A.7)

ℓPℓ(µ)− (2ℓ− 1)µPℓ−1(µ) + (ℓ− 1)Pℓ−2(µ) = 0 (A.8)

(µ2 − 1)
dPℓ(µ)

dµ
= ℓ {µPℓ(µ)− Pℓ−1(µ)} = (ℓ+ 1){Pℓ+1(µ)− µPℓ−1(µ)} (A.9)
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