

宇宙論特論

暗黒物質優勢宇宙における構造形成

樽家篤史 Atsushi Taruya

(京都大学 基礎物理学研究所) (Kyoto Univ. Yukawa Institute for Theoretical Physics)

Overview

Large-scale structure

Spatial matter inhomogeneities over Mpc ~10^3 Mpc Mpc=10^6 parsec ~3 · 10^6 light years (c.f., 40kpc for size of Milky Way) • Hierarchical clustering of matter distribution: galaxy C group / cluster C supercluster Contain rich cosmological information primordial fluctuations, structure formation dynamics of cosmic expansion Traditionally traced by galaxy redshift surveys (other LSS probes are gravitational lensing, Lyman-alpha forest)

Timeline of the Universe

Observing large-scale structure

Intensive use of telescope is necessary

8.2m

Very Large Telescope (Chile)

3.6m

Canada-France-Hawaii Telescope (Hawaii)

4m

2.5m

Sloan Digital Sky Survey @ APO (New Mexico)

Subaru Telescope (Hawaii)

Blanco telescope @ CTIO (Chile)

https://en.wikipedia.org/wiki/Very_Large_Telescope http://www.sdss.org/instruments/ http://subarutelescope.org/Information/Download/DImage/index.html http://www.cfht.hawaii.edu/en/news/CFHT30/#wallpaper http://www.darkenergysurvey.org/DECam/index.shtml

Redshift

A key measurement to probe 3D view of large-scale structure

Distant galaxies looks <u>redder</u> than nearby galaxies due to <u>cosmic expansion</u>

Redshift

A key measurement to probe 3D view of large-scale structure

Distant galaxies looks <u>redder</u> than nearby galaxies due to <u>cosmic expansion</u>

A section of 3D map

http://www.sdss.org/press-releases/astronomers-map-a-recordbreaking-I-2-million-galaxies-to-study-the-properties-of-dark-energy/

3D Map of galaxies

Sloan Digital Sky Survey

Miguel A Aragon (JHU), Mark Subbarao (Adler P.), Alex Szalay (JHU)

Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey

https://www.sdss3.org/press/dr9.php

3D Map of galaxies

Sloan Digital Sky Survey

Miguel A Aragon (JHU), Mark Subbarao (Adler P.), Alex Szalay (JHU)

Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey

https://www.sdss3.org/press/dr9.php

Cosmology with galaxy 3D map

Statistical properties

- Initial conditions for primordial fluctuations (cosmic inflation)
- Growth of structure
- Matter contents of the Universe

Gauging the scales of large-scale structure

$$(\vec{\theta}, z) \leftarrow cosmology \rightarrow \vec{r}$$

Angular position & redshift

(comoving) distance

Power spectrum of matter fluctuations

Baryon acoustic oscillations (BAO)

BAO

spectrum 560

มื้ 1.05 ด

0.95

BOSS

- Characteristic scale of primeval baryon-photon fluid (~150Mpc)
 (⇔ acoustic signal in CMB anisotropies)
- Can be used as <u>standard ruler</u> to measure cosmic expansion (theoretical prior)

Cosmological constraints from BAO

Aubourg et al. 15

Cosmological constraints from BAO

density

Ser Ler Combined BAO

Combined BAO+Planck D_M

Aubourg et al. 15

Distance-redshift relation from BAO measurement

 $\begin{array}{c|c} 30 \\ \hline & + & 6dFGS \\ \hline & \Delta & MGS \end{array}$

۵)

ACDM model (standard cosmological model)

flat universe filled with mysterious energy/matter components :

- dark matter \rightarrow structure formation
- dark energy \rightarrow late-time cosmic acceleration

(In Λ CDM model, dark energy=cosmological constant, Λ)

Origin & nature of these components are largely unknown. Need further observations !!

Two-point correlation function

RSD as a probe of gravity

Linear growth

scale factor

formula $\delta^{(S)}(\mathbf{k}) = (1 + \mathbf{f} \mu_k^2) \,\delta(\mathbf{k})$; $f \equiv \frac{d \ln D_+}{d \ln a}$ factor (Kaiser '87)

Kaiser

This parameter tells us

how the nature of gravity affects the growth of structure Importantly,

This Kaiser formula holds *irrespective of gravity theory*

probe of gravity (general relativity) on cosmological scales

- Untested hypothesis in ΛCDM model
- Hint for cosmic acceleration

e.g., Linder ('08); Guzzo et al. ('08); Yamamoto et al. ('08); Percival & White ('09)

Consistency test of GR

In practice

Testing gravity needs a nonlinear RSD model assuming underlying theory of gravity

Gravitational lensing effect

Light bending phenomena caused by gravity induced by massive objects such as galaxy and star

http://www.roe.ac.uk/~heymans/website_images/Gravitational-lensing-galaxyApril12_2010-1024x768.jpg

Observer will see distorted or multiple images of distant objects

Mapping dark matter with weak lensing effect

Gravitational lensing effect can be powerful to probe invisible mass distribution (dark matter)

w/o dark matter

w/ dark matter

https://en.m.wikipedia.org/wiki/Weak_gravitational_lensing

Projected mass map

Dark Energy Survey Ist year result ~1,500 deg²

(Chang et al. '17)

Tomographic maps

using photo-z information of source galaxies, projected mass maps are obtained from several redshift bins

(Chang et al. '17)

Shear correlation function

Troxel et al. ('17)

Cosmological results

DES lyr (cosmic shear + galaxy clustering)

Upcoming/on-going projects

Multi-purpose ground- & space-based experiments

DES (2013~)

WFIRST

(2024++)

space

LSST

(2022++)

HETDEX (2016+)

eBOSS (2014~)

DESI (2018+)

Euclid (2020)

LLS as precision cosmological tools

Large data set will reveal statistical properties of LSS at an unprecedented precision level (\rightarrow precision cosmology)

New opportunity & scientific synergy :

- Clarifying nature of dark energy (cosmic acceleration)
- Testing general relativity on cosmological scales
- Weighing total mass of neutrinos

Accurate theoretical description for LSS needs to be developed

Cosmological N-body simulation

 $N \to \infty$

z=0

Self-gravitating many-body system in an expanding universe

 $\frac{\vec{p}_i}{dt} = -\frac{Gm^2}{a} \sum_{i \neq i}^N \frac{\vec{x}_i - \vec{x}_j}{|\vec{x}_i - \vec{x}_j|^3} \quad \vec{p}_i = ma^2 \frac{d\vec{x}_i}{dt}$

125 Mpc/

 $(i=1,2,\cdots,N)$

Formation of halos and filamentary structure

z=5.7

125 Mpc/

z=1.4

z=18.3

http://www.mpa-garching.mpg.de/galform/millennium/

Nonlinear power spectrum

To what extent we can quantitatively understand statistical properties of large-scale structure?

Goal of this lecture

Understanding of large-scale structure (LSS) as cosmology probe

Theoretical basis of formation & evolution of LSS

- Structure formation Standard model (ACDM)
- Cosmological information imprinted in LSS

• Theoretical tools to confront with precision observations of LSS (mainly focusing on galaxy surveys)

- Perturbation theory of LSS

Plan

- Summary of background cosmology
- Linear theory of structure formation
- •Observational effects: Redshift-space & geometric distortions
- Analytic approaches to nonlinear structure formation
- Selected topics on statistics and dynamics of large-scale structure

Note and supplements

Lecture note and supplemental materials (PDF files) are found in:

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/lecture.html

宇宙論特論

日時: 2017年後期 水曜日 14:45--16:10

場所: 基礎物理学研究所 研究棟 K202

- 講義ノート: <u>PDF</u>
- 資料
 - 。 概観: <u>PDF</u>