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Overview



Large-scale structure
Spatial matter inhomogeneities over Mpc ~10^3 Mpc

Mpc=10^6 parsec ~3・10^6 light years

•Traditionally traced by galaxy redshift surveys

•Contain rich cosmological information

(other LSS probes are gravitational lensing,  Lyman-alpha forest)

•Hierarchical clustering of matter distribution:

(c.f., 40kpc for size of Milky Way )

galaxy group / cluster supercluster� �

primordial fluctuations, 

dynamics of cosmic expansion
structure formation



Timeline of the Universe

380,000 yrs 13.8G yrs

Nuclea
osyn

thesis

Bary
ogen

esis

Inflatio
n

Dark
 age

s

Firs
t-st

ars
/gal

axies

NowBig-B
ang

Large-scale structure
(galaxies・clusters)

Cosmic microwave 
background

Last 
sca

tter
ing su

rfac
e

Planck 2015



Observing large-scale structure

Sloan Digital Sky Survey 
@ APO (New Mexico)

Blanco telescope 
@ CTIO (Chile)

Very Large Telescope (Chile)

3.6m

4m

8.2m

Canada-France-Hawaii 
Telescope (Hawaii)

Subaru Telescope (Hawaii)

8.2m

2.5m

http://subarutelescope.org/Information/Download/DImage/index.html
http://www.sdss.org/instruments/

http://www.cfht.hawaii.edu/en/news/CFHT30/#wallpaper
http://www.darkenergysurvey.org/DECam/index.shtml

https://en.wikipedia.org/wiki/Very_Large_Telescope

Intensive use of telescope is necessary



Redshift

SDSS SkyServer

Nearby galaxy

Distant galaxy

Ca H & K OIII HβNa Mg 

A key measurement to probe 3D view of large-scale structure

Distant galaxies looks redder than nearby galaxies
due to cosmic expansion

wavelength



Redshift

SDSS SkyServer

Nearby galaxy

Distant galaxy

Ca H & K OIII HβNa Mg 

A key measurement to probe 3D view of large-scale structure

Distant galaxies looks redder than nearby galaxies
due to cosmic expansion

wavelength

z=0.1462

E.Hubble

G. Lemaitre

recession ‘velocity’ distance to galaxy
(= c z) Hubble parameter

v = H d
Hubble law

Redshift 
parameter z = ��/�

v = H d



Blue：young
Red  : old

2 G yrsEarth
(observer)

Redshift

(look back time)

http://www.sdss.org/science/#Cosmology

A Slice of galaxy catalog
by Sloan Digital Sky 

Color indicates age of galaxy

finished in 2008



http://www.mpa-garching.mpg.de/131601/hl201506

Yellow：SDSS-II main
Red：SDSS-II LRG

White：SDSS-III CMASS

A slice of galaxy catalog 
by Sloan Digital Sky 

Redshift

6 G yrs
(look back time)

finished in 2014

Earth
(observer)



A section of 3D map

http://www.sdss.org/press-releases/astronomers-map-a-record-
breaking-1-2-million-galaxies-to-study-the-properties-of-dark-energy/

120,000 galaxies
redshift



3D Map of galaxies

Sloan Digital Sky Survey III
Baryon Oscillation Spectroscopic Survey https://www.sdss3.org/press/dr9.php



3D Map of galaxies

Sloan Digital Sky Survey III
Baryon Oscillation Spectroscopic Survey https://www.sdss3.org/press/dr9.php



Cosmology with galaxy 3D map
Statistical properties

• Initial conditions for primordial fluctuations (cosmic inflation)

• Growth of structure

• Matter contents of the Universe

Gauging the scales of large-scale structure 

(��, z) �r

Angular position & redshift (comoving) distance

cosmology



Power spectrum of matter fluctuations

3448 L. Anderson et al.

Figure 7. Histogram of (α − ⟨α⟩)/σα measured from ξ (r) of the post-
reconstruction mocks, where ⟨α⟩ is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − ⟨α⟩)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − ⟨w(r)n(r)⟩
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r⟨w(r)n(r)⟩2
}1/2

, (32)

and ⟨w(r)n(r)⟩ is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

C⃝ 2012 The Authors, MNRAS 427, 3435–3467
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Baryon acoustic oscillations (BAO)
• Characteristic scale of primeval baryon-photon fluid (~150Mpc)

(⇔ acoustic signal in CMB anisotropies)

7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c
� 2011 RAS, MNRAS 000, 2–33
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Figure 15. As Figure 15, but for the DR11 LOWZ correlation function
transformed as defined by Eq. 46 with a = 0.39 and b = 0.04. As before,
these error bars are nearly independent, with a worst case of 12 per cent
and an r.m.s. of 3.4 per cent in the off-diagonal elements of the reduced
covariance matrix.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error-bars and the best-fit model is dis-
played with the curves. Both are divided by the best-fit smooth model. We
note that a finer binning was used in the DR9 analysis.

noted that transformations based on the symmetric square root of
the Fisher matrix had surprisingly compact support for their power
spectrum analysis. When we formed this matrix for the DR11
CMASS correlation function, we found that the first and second
off-diagonal terms are nearly constant and that subsequent off-
diagonals are small. This suggests that a basis transform of the pen-
tadiagonal form

X(si) =
xi � a (xi�1

+ xi+1

)� b (xi�2

+ xi+2

)

1� 2a� 2b
(46)

will approach a diagonal form. Here, xi = s2i ⇠0(si) and si is the

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fit model is displayed with the curve.
Both are divided by the best-fit smooth model.

bin center of measurement bin i. We introduce the 1 � 2a � 2b
factor so as to normalize X such that it returns X = x for constant
x. For the first two and last two bins, the terms beyond the end of
the range are omitted and the normalization adjusted accordingly.

We find that for DR11 CMASS after reconstruction, values
of a = 0.3 and b = 0.1 sharply reduce the covariances between
the bins. The reduced covariance matrices for ⇠(r) and X(r) are
shown in Figure 13. The bins near the edge of the range retain some
covariances, but the off-diagonal terms of the central 10⇥ 10 sub-
matrix of the reduced covariance matrix have a mean and r.m.s. of
0.008 ± 0.044, with a worst value of 0.11. For display purposes,
this is a good approximation to a diagonal covariance matrix, yet
the definition of X(s) is well localized and easy to state. For com-
parison, the reduced covariance matrix of s2⇠

0

has typical first off-
diagonals values of 0.8 and second off-diagonals values of 0.6.

We display this function in Figure 14. One must also trans-
form the theory to the new estimator: we show the best-fit BAO
models with and without broadband marginalization, as well as the
best-fit non-BAO model without broadband marginalization. The
presence of the BAO is clear, but now the error bars are representa-
tive. For example, the significance of the detection as measured by
the ��2 of the best-fit BAO model to the best-fit non-BAO model
is 69.5 using only the diagonal of the covariance matrix of X , as
opposed to 74 with the full covariance matrix. We do not use this
transformation when fitting models, but we offer it as a pedagogical
view.

The same result is shown for DR11 LOWZ post-
reconstruction in Figure 15. Here we use a = 0.39 and b = 0.04.
The level of the off-diagonal terms is similarly reduced, with an
r.m.s. of 3.4 per cent and a worst value of 12 per cent.

It is expected that the best values of a and b will depend on
the data set, since data with more shot noise will have covariance
matrices of the correlation function that are more diagonally dom-
inant. Similarly, the choice of a pentadiagonal form may depend

c� 2014 RAS, MNRAS 000, 2–38
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• Can be used as standard ruler to measure cosmic expansion
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Baryon acoustic oscillations (BAO)
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• Characteristic scale of primeval baryon-photon fluid (~150Mpc)
(⇔ acoustic signal in CMB anisotropies)

• Can be used as standard ruler to measure cosmic expansion
(theoretical prior)



Cosmological constraints from BAO
Aubourg et al. ‘15

less than 0.5σ differences in best-fit parameter values
between using compressed and full chains. The residual
differences are driven by the fact that our compressed
likelihood attempts to extract purely geometric information
from the CMB data (for example, values of ωb and ωm are
different at roughly the same level between chains that
marginalize over lensing potential and those that do not).
For BAO-only data combinations the results are completely
consistent.
Throughout the paper, we refer to the constraints

represented by Eqs. (18)–(20) simply as “Planck” (although
they also include information from WMAP polarization
measurements). In Sec. III we treat the CMB as a BAO
experiment measuring DMð1090Þ=rd, but we eliminate its
calibration of the absolute BAO scale by artificially blow-
ing up the errors on ωb and ωcb; we denote this case as
“þPlanck DM”. Conversely, in Sec. IV we use the CMB
information on ωb and ωcb to set the size of our standard
ruler rd but omit the DMð1090Þ=rd information by artifi-
cially inflating its errors; we denote this case as “þrd”.
When we use a full Planck chain instead of the compressed
information, we adopt the notation “Planck (full)” and
specify what additional parameters (such as Alens, Neff , or
tensor-to-scalar ratio r) are being varied in the chain.
If one assumes a flat universe, a cosmological constant

(w ¼ −1), standard relativistic background (Neff ¼ 3.046),
and minimal neutrino mass (

P
mν ¼ 0.06 eV), then the

CMB data summarized by Eqs. (18)–(20) also provide a
precise constraint on the Hubble parameter h, and thus on
Ωcb, Ωb, and ΩΛ. At various points in the paper we refer to
a “fiducial” Planck ΛCDM model for which we adopt
Ωbh2 ¼ 0.022032, Ωm ¼ 0.3183, and h ¼ 0.6704, which
are the best fit parameters for “PlanckþWP” combination
as cited in the Table 2 of [29]. The CMB constraints on h
and Ωm become much weaker if one allows w ≠ −1 or
Ωk ≠ 0, so for more general models BAO data or other
constraints are needed to restore high precision on cosmo-
logical parameters.

D. Supernova data

A comprehensive set of relative luminosity distances of
740 SNIa was presented in [30], based on a joint calibration
and training set of the SDSS-II Supernova Survey [33] and
the Supernova Legacy Survey (SNLS) 3-year data set [31].
The 374 supernovae from SDSS-II and 239 from
SNLS were combined with 118 nearby supernovae
from [6,61–65] and nine high-redshift supernovae discov-
ered and studied by HST [66]. We use this set, dubbed Joint
Light-curve Analysis (JLA), rather than the Union 2.1
compilation of [67] because of the demonstrated improve-
ment in calibration and corresponding reduction in sys-
tematic uncertainties presented in [30].
While [30] also provide a full COSMOMC module and a

covariance matrix in relevant parameters, we here instead
use their compressed representation of relative distance

constraints due to conceptual simplicity and a drastic
increase in computational speed when combining with
other cosmology probes. The compressed information
consists of a piece-wise linear function fit over 30 bins
(leading to 31 nodes) spaced evenly in log z (to minimum
z ∼ 0.01) with a 31 × 31 covariance matrix that includes all
of the systematics from the original analysis. SNIa constrain
relative distances, so the remaining marginalization
required to use this compressed representation in a cos-
mological analysis is over the fiducial absolute magnitude
of a SNIa, MB. In Sec. IV we also utilize a similar
compression of the Union 2.1 SN data set, which we have
constructed in analogous fashion.

E. Visualizing the BAO constraints

Figure 1 shows the “Hubble diagram” (distance vs
redshift) from a variety of recent BAO measurements of
DV=rd, DM=rd, or zDH=rd; these three quantities converge
at low redshift. In addition to the data listed in Table II, we
show measurements from the DR7 data set of SDSS-II by
[15] and from the WiggleZ survey by [19], which are not
included in our cosmological analysis because they are not
independent of the (more precise) BOSS measurements in
similar redshift ranges. Curves represent the predictions of
the fiducial Planck ΛCDM model, whose parameters are
determined independently of the BAO measurements but
depend on the assumptions of a flat universe and a

FIG. 1 (color online). The BAO “Hubble diagram” from a
world collection of detections. Blue, red, and green points show
BAOmeasurements ofDV=rd,DM=rd, and zDH=rd, respectively,
from the sources indicated in the legend. These can be compared
to the correspondingly colored lines, which represent predictions
of the fiducial Planck ΛCDM model (with Ωm ¼ 0.3183,
h ¼ 0.6704; see Sec. II C). The scaling by

ffiffiffi
z

p
is arbitrary,

chosen to compress the dynamic range sufficiently to make error
bars visible on the plot. Filled points represent BOSS data, which
yield the most precise BAOmeasurements at z < 0.7 and the only
measurements at z > 2. For visual clarity, the Lyα cross-
correlation points have been shifted slightly in redshift; auto-
correlation points are plotted at the correct effective redshift.
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chain, we can then compute the value of rd from Eq. (16).
Compared to the previous section, the addition of the
physical scale allows us to convert the measured value of
c=ðH0rdÞ into a measurement of the dimensional parameter
H0. In practice, we derive constraints in a separate MCMC
run where, instead of a flat prior on P, we have a flat prior
on h and the above prior on ωb. We also fix the curvature
parameter Ωk to zero. Results are presented in Fig. 4. The
red (galaxy BAO) and blue (LyaF BAO) contours in this
figure use no CMB information at all, but they do assume a
spatially flat universe in contrast to Fig. 3.
The point of this exercise is the following. The homo-

geneous part of the minimal ΛCDM model has just two
adjustable parameters, Ωm and h, which matches the 2
degrees of freedom offered by a measurement of aniso-
tropic BAO at a single redshift. (The weak BBN prior is
required to fix the magnitude of rd, but it does not affect the
expansion history.) One can therefore get meaningful
constraints from either galaxy BAO or LyaF BAO alone,
though this is no longer true if one allows nonzero
curvature and therefore introduces a third parameter.
There is substantial Ωm − h degeneracy for either meas-
urement individually, but both are generally compatible
with standard values of these parameters. The tension of the
LyaF BAO with the Planck ΛCDM model manifests itself
here as a best fit at relatively low matter density and high
Hubble parameter. Combining the galaxy and LyaF mea-
surements produces a precise measurement of both Ωm and
the Hubble parameter coming from BAO alone, indepen-
dent of CMB data. In combination, we find h ¼ 0.67$
0.013 and Ωm ¼ 0.29$ 0.02 (68% confidence). The small
black ellipse in Fig. 4 shows the Planck constraints for
ΛCDM, computed from full Planck chains, which are in

FIG. 4 (color online). Constraints on Ωm and h in a flat ΛCDM
model from galaxy BAO (red), LyaF BAO (blue), and the
combination of the two (green), using a BBN prior on ωb and
standard physics to compute the sound horizon rd but incorpo-
rating no CMB information. Contours are plotted at 68%, 95%,
and 99.7% confidence (the interior white region of the green
“donut” is 68%). Black contours show the entirely independent
constraints on Ωm and h in ΛCDM from full Planck CMB chains.

FIG. 3 (color online). Constraints from BAO on the parameters
of oΛCDM models, treating the BAO scale as a redshift-
independent standard ruler of unknown length. Green curves/
contours in each panel show the combined constraints from
galaxy and LyaF BAO, with no CMB information. Black curves/
contours include the measurement of DMð1090Þ=rd from the
CMB acoustic scale, again with no assumption about the value of
rd except that it is the same scale as the lower redshift
measurements. This combination of BAO measurements yields
precise constraints on ΩΛ (top panel) and the dimensionless
quantity c=ðH0rdÞ (bottom panel), and it requires a low density
(Ωm ≈ 0.29), nearly flat universe (middle panel). Blue and red
curves in the top and bottom panels show the result of combining
the CMB BAO measurement with either the galaxy or LyaF BAO
measurement separately. The dotted line in the middle panel
marks Ωm þΩΛ ¼ 1.
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arises for SNþ CMB alone; we find w ¼ −0.98# 0.06
and Ωk ¼ −0.002# 0.003. Substituting WMAP9 for
Planck again produces only slight shifts to central values
and a minor increase of error bars.
Even with these powerful BAO, SN, and CMB data sets,

constraining the evolution of w is difficult. The constraint
on the evolution parameter from BAOþ SNþ Planck is
wa ¼ −0.2# 0.4 in w0waCDM and weakens to wa ¼
−0.6# 0.6 in ow0waCDM. Both results are consistent

with constant w, but they allow order unity changes of
w at z < 1. This data combination still provides a good
constraint on the value of w at a “pivot” redshift zp ¼ 0.266
where it is uncorrelated with wa (determined specifically
for w0waCDM for BAOþ SNþ Planck combiations):
wð0.266Þ ¼ −0.97# 0.05 in w0waCDM and −0.99#
0.06 in ow0waCDM.
We note that the degradation of our ability to constrain

the evolution of the equation of state is not accompanied

FIG. 8 (color online). Constraints on interesting parameter combinations in a variety of dark energy models: ΛCDM (upper left),
oΛCDM (upper right), wCDM (middle left), owCDM (middle right), w0waCDM (bottom left), and ow0waCDM (bottom right). Curves
show 68%, 95%, and 99.7% confidence contours for the data combinations indicated in the legend. In the top panels the red contours are
almost fully obscured by the green contours because the BAOþ Planck combination is already as constraining as the BAOþ SNþ
Planck combination, but for models with freedom in dark energy the SN and BAO constraints are complementary. The bottom panels,
with evolving wðzÞ, display the value of w at z ¼ 0.266, the “pivot” redshift where w is best constrained by BAO þ SNþ Planck in the
w0waCDM model. For our BAOþ SNþ Planck contours, the white zone interior to the dark green annulus marks the 68% confidence
region, and the outer edge of the dark annulus is 95%.
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Cosmological constraints from BAO
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less than 0.5σ differences in best-fit parameter values
between using compressed and full chains. The residual
differences are driven by the fact that our compressed
likelihood attempts to extract purely geometric information
from the CMB data (for example, values of ωb and ωm are
different at roughly the same level between chains that
marginalize over lensing potential and those that do not).
For BAO-only data combinations the results are completely
consistent.
Throughout the paper, we refer to the constraints

represented by Eqs. (18)–(20) simply as “Planck” (although
they also include information from WMAP polarization
measurements). In Sec. III we treat the CMB as a BAO
experiment measuring DMð1090Þ=rd, but we eliminate its
calibration of the absolute BAO scale by artificially blow-
ing up the errors on ωb and ωcb; we denote this case as
“þPlanck DM”. Conversely, in Sec. IV we use the CMB
information on ωb and ωcb to set the size of our standard
ruler rd but omit the DMð1090Þ=rd information by artifi-
cially inflating its errors; we denote this case as “þrd”.
When we use a full Planck chain instead of the compressed
information, we adopt the notation “Planck (full)” and
specify what additional parameters (such as Alens, Neff , or
tensor-to-scalar ratio r) are being varied in the chain.
If one assumes a flat universe, a cosmological constant

(w ¼ −1), standard relativistic background (Neff ¼ 3.046),
and minimal neutrino mass (

P
mν ¼ 0.06 eV), then the

CMB data summarized by Eqs. (18)–(20) also provide a
precise constraint on the Hubble parameter h, and thus on
Ωcb, Ωb, and ΩΛ. At various points in the paper we refer to
a “fiducial” Planck ΛCDM model for which we adopt
Ωbh2 ¼ 0.022032, Ωm ¼ 0.3183, and h ¼ 0.6704, which
are the best fit parameters for “PlanckþWP” combination
as cited in the Table 2 of [29]. The CMB constraints on h
and Ωm become much weaker if one allows w ≠ −1 or
Ωk ≠ 0, so for more general models BAO data or other
constraints are needed to restore high precision on cosmo-
logical parameters.

D. Supernova data

A comprehensive set of relative luminosity distances of
740 SNIa was presented in [30], based on a joint calibration
and training set of the SDSS-II Supernova Survey [33] and
the Supernova Legacy Survey (SNLS) 3-year data set [31].
The 374 supernovae from SDSS-II and 239 from
SNLS were combined with 118 nearby supernovae
from [6,61–65] and nine high-redshift supernovae discov-
ered and studied by HST [66]. We use this set, dubbed Joint
Light-curve Analysis (JLA), rather than the Union 2.1
compilation of [67] because of the demonstrated improve-
ment in calibration and corresponding reduction in sys-
tematic uncertainties presented in [30].
While [30] also provide a full COSMOMC module and a

covariance matrix in relevant parameters, we here instead
use their compressed representation of relative distance

constraints due to conceptual simplicity and a drastic
increase in computational speed when combining with
other cosmology probes. The compressed information
consists of a piece-wise linear function fit over 30 bins
(leading to 31 nodes) spaced evenly in log z (to minimum
z ∼ 0.01) with a 31 × 31 covariance matrix that includes all
of the systematics from the original analysis. SNIa constrain
relative distances, so the remaining marginalization
required to use this compressed representation in a cos-
mological analysis is over the fiducial absolute magnitude
of a SNIa, MB. In Sec. IV we also utilize a similar
compression of the Union 2.1 SN data set, which we have
constructed in analogous fashion.

E. Visualizing the BAO constraints

Figure 1 shows the “Hubble diagram” (distance vs
redshift) from a variety of recent BAO measurements of
DV=rd, DM=rd, or zDH=rd; these three quantities converge
at low redshift. In addition to the data listed in Table II, we
show measurements from the DR7 data set of SDSS-II by
[15] and from the WiggleZ survey by [19], which are not
included in our cosmological analysis because they are not
independent of the (more precise) BOSS measurements in
similar redshift ranges. Curves represent the predictions of
the fiducial Planck ΛCDM model, whose parameters are
determined independently of the BAO measurements but
depend on the assumptions of a flat universe and a

FIG. 1 (color online). The BAO “Hubble diagram” from a
world collection of detections. Blue, red, and green points show
BAOmeasurements ofDV=rd,DM=rd, and zDH=rd, respectively,
from the sources indicated in the legend. These can be compared
to the correspondingly colored lines, which represent predictions
of the fiducial Planck ΛCDM model (with Ωm ¼ 0.3183,
h ¼ 0.6704; see Sec. II C). The scaling by

ffiffiffi
z

p
is arbitrary,

chosen to compress the dynamic range sufficiently to make error
bars visible on the plot. Filled points represent BOSS data, which
yield the most precise BAOmeasurements at z < 0.7 and the only
measurements at z > 2. For visual clarity, the Lyα cross-
correlation points have been shifted slightly in redshift; auto-
correlation points are plotted at the correct effective redshift.
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chain, we can then compute the value of rd from Eq. (16).
Compared to the previous section, the addition of the
physical scale allows us to convert the measured value of
c=ðH0rdÞ into a measurement of the dimensional parameter
H0. In practice, we derive constraints in a separate MCMC
run where, instead of a flat prior on P, we have a flat prior
on h and the above prior on ωb. We also fix the curvature
parameter Ωk to zero. Results are presented in Fig. 4. The
red (galaxy BAO) and blue (LyaF BAO) contours in this
figure use no CMB information at all, but they do assume a
spatially flat universe in contrast to Fig. 3.
The point of this exercise is the following. The homo-

geneous part of the minimal ΛCDM model has just two
adjustable parameters, Ωm and h, which matches the 2
degrees of freedom offered by a measurement of aniso-
tropic BAO at a single redshift. (The weak BBN prior is
required to fix the magnitude of rd, but it does not affect the
expansion history.) One can therefore get meaningful
constraints from either galaxy BAO or LyaF BAO alone,
though this is no longer true if one allows nonzero
curvature and therefore introduces a third parameter.
There is substantial Ωm − h degeneracy for either meas-
urement individually, but both are generally compatible
with standard values of these parameters. The tension of the
LyaF BAO with the Planck ΛCDM model manifests itself
here as a best fit at relatively low matter density and high
Hubble parameter. Combining the galaxy and LyaF mea-
surements produces a precise measurement of both Ωm and
the Hubble parameter coming from BAO alone, indepen-
dent of CMB data. In combination, we find h ¼ 0.67$
0.013 and Ωm ¼ 0.29$ 0.02 (68% confidence). The small
black ellipse in Fig. 4 shows the Planck constraints for
ΛCDM, computed from full Planck chains, which are in

FIG. 4 (color online). Constraints on Ωm and h in a flat ΛCDM
model from galaxy BAO (red), LyaF BAO (blue), and the
combination of the two (green), using a BBN prior on ωb and
standard physics to compute the sound horizon rd but incorpo-
rating no CMB information. Contours are plotted at 68%, 95%,
and 99.7% confidence (the interior white region of the green
“donut” is 68%). Black contours show the entirely independent
constraints on Ωm and h in ΛCDM from full Planck CMB chains.

FIG. 3 (color online). Constraints from BAO on the parameters
of oΛCDM models, treating the BAO scale as a redshift-
independent standard ruler of unknown length. Green curves/
contours in each panel show the combined constraints from
galaxy and LyaF BAO, with no CMB information. Black curves/
contours include the measurement of DMð1090Þ=rd from the
CMB acoustic scale, again with no assumption about the value of
rd except that it is the same scale as the lower redshift
measurements. This combination of BAO measurements yields
precise constraints on ΩΛ (top panel) and the dimensionless
quantity c=ðH0rdÞ (bottom panel), and it requires a low density
(Ωm ≈ 0.29), nearly flat universe (middle panel). Blue and red
curves in the top and bottom panels show the result of combining
the CMB BAO measurement with either the galaxy or LyaF BAO
measurement separately. The dotted line in the middle panel
marks Ωm þΩΛ ¼ 1.
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arises for SNþ CMB alone; we find w ¼ −0.98# 0.06
and Ωk ¼ −0.002# 0.003. Substituting WMAP9 for
Planck again produces only slight shifts to central values
and a minor increase of error bars.
Even with these powerful BAO, SN, and CMB data sets,

constraining the evolution of w is difficult. The constraint
on the evolution parameter from BAOþ SNþ Planck is
wa ¼ −0.2# 0.4 in w0waCDM and weakens to wa ¼
−0.6# 0.6 in ow0waCDM. Both results are consistent

with constant w, but they allow order unity changes of
w at z < 1. This data combination still provides a good
constraint on the value of w at a “pivot” redshift zp ¼ 0.266
where it is uncorrelated with wa (determined specifically
for w0waCDM for BAOþ SNþ Planck combiations):
wð0.266Þ ¼ −0.97# 0.05 in w0waCDM and −0.99#
0.06 in ow0waCDM.
We note that the degradation of our ability to constrain

the evolution of the equation of state is not accompanied

FIG. 8 (color online). Constraints on interesting parameter combinations in a variety of dark energy models: ΛCDM (upper left),
oΛCDM (upper right), wCDM (middle left), owCDM (middle right), w0waCDM (bottom left), and ow0waCDM (bottom right). Curves
show 68%, 95%, and 99.7% confidence contours for the data combinations indicated in the legend. In the top panels the red contours are
almost fully obscured by the green contours because the BAOþ Planck combination is already as constraining as the BAOþ SNþ
Planck combination, but for models with freedom in dark energy the SN and BAO constraints are complementary. The bottom panels,
with evolving wðzÞ, display the value of w at z ¼ 0.266, the “pivot” redshift where w is best constrained by BAO þ SNþ Planck in the
w0waCDM model. For our BAOþ SNþ Planck contours, the white zone interior to the dark green annulus marks the 68% confidence
region, and the outer edge of the dark annulus is 95%.
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Two-point correlation function

BOSS anisotropic clustering 3

et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies

c� 0000 RAS, MNRAS 000, 1–15

observer’s line-of-
sight direction

Samushia et al.(’14)

BOSS DR11, CMASS samples
700,000gals @ 0.43<z<0.7

Baryon acoustic 
oscillation 

(ridge)

galaxy

galaxy

r�

r�

Observer’s line-of-sight 

Transverse separation

Li
ne

-o
f-s

ig
ht

 s
ep

ar
at

io
n



RSD as a probe of gravity
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how the nature of gravity affects the growth of structure
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;
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probe of gravity (general relativity) on cosmological scales

�(S)(k) = (1 + f µ2
k) �(k) f ⌘ d lnD+

d ln a

•Untested hypothesis in ΛCDM model

•Hint for cosmic acceleration

(Kaiser ’87)



Testing gravity needs a nonlinear RSD model assuming underlying 
theory of gravity

Consistency test of GR

(See also Beutler, Seo, Saito et al. 
’16 for latest BOSS DR12)No strong evidence of deviation from GR

Redshift

Based on perturbation 
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Oka, Saito, Nishimichi, 
AT & Yamamoto (’14)

Planck Collaboration: Cosmological parameters

with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Figure 15. Left-hand panel: Comparison of f�8(z) measurements across previous BOSS measurements in DR11 (Alam et al. 2015b; Beutler et al. 2014a;
Samushia et al. 2014; Sánchez et al. 2014) and DR12 (Gil-Marı́n et al. 2016b,c; Chuang et al. 2016) samples. Right-hand panel: The f�8(z) results from this
work compared with the measurements of the 2dfGRS (Percival et al. 2004b) and 6dFGS (Beutler et al. 2012), the GAMA (Blake et al. 2013), the WiggleZ
(Blake et al. 2012), the VVDS (Guzzo et al. 2008), and the VIPERS (de la Torre et al. 2013) surveys, as well as the measurements from the SDSS-I and
-II main galaxy sample (Howlett et al. 2015, MGS) and the SDSS-II LRG sample (Oka et al. 2014, DR7). We have plotted conditional constraints on f�8

assuming a Planck ⇤CDM background cosmology. This is one of the best evidence of how growth rate measurements from BOSS again reaffirm the validity
of General Relativity in large scales.

9 COSMOLOGICAL PARAMETERS

9.1 Data sets

We now turn to cosmological interpretation of our results. We will
use the consensus measurements, including our estimated system-
atic error contribution to the covariance matrix, from the BAO-only
and BAO+FS columns of Table 3. In our subsequent figures and ta-
bles, the former case is simply labeled “BAO.”

Following Aubourg et al. (2015), we include the 6dFGS and
SDSS MGS BAO measurements and the BOSS DR11 Ly↵ forest
BAO measurements (see Fig. 14 and §8.3). These are largely in-
dependent and have utilized similar methodologies. We opt not to
include other BAO measurements, notably those from photomet-
ric clustering and from the WiggleZ survey (Blake et al. 2011a,
2012), as the volumes partially overlap BOSS and the errors are
sufficiently large that a proper inclusion would not substantially
affect the results. As shown in Aubourg et al. (2015), these mea-
surements are in good agreement with those from BOSS. We note
in particular the good match to the WiggleZ results, as this was a
sample of strongly star-forming galaxies in marked contrast to the
red massive galaxies used in BOSS. The dual-tracer opportunity
was studied extensively with a joint analysis of the overlap region
of WiggleZ and BOSS (Beutler et al. 2016a).

We further opt not to include other RSD measurements be-
yond BOSS, as they come from a variety of analysis and modelling
approaches. One can see from Figure 15 that the measurements
from other surveys are consistent with those from BOSS within
their quoted errors, and the error bars in all cases are large enough
that there are potential gains from combining multiple measure-
ments. However, in contrast to BAO measurements, systematic er-
rors associated with non-linear clustering and galaxy bias are a ma-
jor component of the error budget in any RSD analysis, and these
systematics may well be covariant from one analysis to another in
a way that is difficult to quantify. Because of systematic error con-
tributions, we do not consider it feasible to carry out a robust joint
RSD analysis with other measurements.

In all cases, we combine with CMB anisotropy data from the

Planck 2015 release (Planck Collaboration XIII 2015). We use the
power spectra for both temperature and polarization; in detail, we
use the likelihoods plik dx11dr2 HM v18 TTTEEE and lowTEB
for the high and low multipoles, respectively. We do not include
the information from the lensing of the CMB in the 4-point corre-
lations of the CMB temperature anisotropies. We will discuss the
impact of the recent (Planck Collaboration XLVI 2016) large-angle
polarization results in §9.4.

We note that there is some mild tension between the Planck
2015 results and those from combining WMAP, SPT, and ACT
(Calabrese et al. 2013; Spergel et al. 2015; Bennett et al. 2016).
The Planck data set yields a mildly higher matter density ⌦mh2,
which for ⇤CDM implies a higher ⌦m and �8 and a lower H0.
As in the DR11 results, our BOSS results for ⇤CDM fall in be-
tween these two and therefore do not prefer either CMB option.
We have presented non-Planck results in Anderson et al. (2014b)
and Aubourg et al. (2015) and do not repeat that here, as the sense
of the differences has not changed.

Finally, for some cases, we utilize measurements of the
distance-redshift relation from Type Ia supernovae (SNe) from the
Joint Lightcurve Analysis (JLA, Betoule et al. 2014), which com-
bined SNe from the SDSS-II Supernova Survey (Sako et al. 2014)
and the Supernova Legacy Survey 3-year data set (Conley et al.
2011) together with local and high-z data sets. The combination
of SN measurements with BAO is particularly powerful for con-
straining the low-redshift distance scale (e.g., Mehta et al. 2012;
Anderson et al. 2014b). The SNe provide a higher precision mea-
surement of relative distance at lower redshift where the BAO is
limited by cosmic volume, but the BAO provides an absolute scale
that connects to higher redshift and particularly to the CMB acous-
tic scale at z = 1000. The combination of BAO and SN data also
allows an “inverse distance ladder” measurement of H0 that uses
the CMB-based calibration of rd but is almost entirely insensitive
to the dark energy model and space curvature over the range al-
lowed by observations (Aubourg et al. 2015).

c
� 2016 RAS, MNRAS 000, 1–38
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Figure 6. Pixel signal-to-noise (S/N) kE/s(kE ) maps (top) and kB/s(kB) maps (bottom) constructed from the METACALIBRATION catalog for galaxies in
the redshift range of 0.2 < z < 1.3, smoothed by a Gaussian filter of sG = 30 arcminutes. s(kE ) and s(kB) are estimated by Eq. (16).

6 DES Y1 WEAK LENSING MAPS

6.1 Convergence maps

Now we present the main goal of the paper. In Fig. 6 we show
the signal-to-noise (S/N) maps associated with the E-mode and B-
mode convergence generated from the METACALIBRATION cata-
log for galaxies in the redshift range 0.2 < z < 1.3 and smoothed
with sG =30 arcminutes. The S/N in these maps apply both to the
positive (peaks) and negative (voids) values — extreme positive
and negative values are significant, while values close to zero are
more likely to be consistent with noise. In Fig. 7, maps for the four
tomographic bins are shown. The IM3SHAPE convergence maps
in all the redshift bins are shown in Appendix B for comparison,
together with maps generated using the Science Verification data
(Vikram et al. 2015; Chang et al. 2015).

We first look at the E-mode maps. Fig. 6 includes the full red-
shift range (0.2 < z < 1.3) and thus has much higher signal-to-noise
compared to the tomographic maps in Fig. 7, as expected from the
higher number density of source galaxies. The visual impression of
the map is very similar to the maps generated from the mock galaxy

catalogs shown in Fig. 3, where there is an imprint of large-scale
structure stretched over tens of degrees. The area close to RA⇠ 0�

suffers from a more complicated mask structure as well as shal-
lower depth, which results in a lower S/N in the map in that region.
In Fig. 7, we find that the redshift bin 0.63 < z < 0.9 has the highest
S/N, which is due to both the higher signal at higher redshift and
the lower noise coming from the higher number density of source
galaxies. Structures that show up in a given map are likely to also
show up in the neighbouring redshift bins, since the mass that is
contributing to the lensing in one map is likely to also lens galaxies
in neighbouring redshift bins. This is apparent in e.g. the structures
at (RA, Dec)=(35�, -48�) and (58�, -55�). Next, we compare the
E-mode maps with their B-mode counterpart in Fig. 6 and Fig. 7.
In general, the B-mode maps have lower overall amplitudes. The
mean absolute S/N of the E-mode map is ⇠1.5 times larger than
the B-mode map at this smoothing scale. For a smoothing scale of
sG =80 arcminutes, this ratio increases to ⇠ 2. Comparing the four
tomographic B-mode maps in Fig. 7, there is no obvious correlation
between the structures in one map with maps of neighboring red-
shift bins. We find that the Pearson correlation coefficient between
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Figure 7. Same as Fig. 6 but for the four tomographic maps. The kE/s(kE ) maps are shown on the left and the kB/s(kB) maps are shown on the right.

the second and third (third and fourth) redshift bins for the B-mode
maps is 8 (5.5) times lower than that for the E-mode maps. The E
and B-mode maps for the lowest redshift bin 0.2 < z < 0.43 have
similar levels of S/N, which is expected since the lensing signal at
low redshift is weak and the noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the

simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-
ulations. This, however, should be a second-order effect, since we
do not expect the galaxy properties to correlate with the true con-
vergence. Second, the number density and n(z) in the simulations
only approximately match the data as we discussed in Sec. 3.3.
This is also a second-order effect since lensing is mainly sensitive
to the mean redshift of the lensing kernel. The detailed shape of
the n(z) will not significantly alter the convergence maps. Finally,
the simulations assume a certain cosmology that may not be the
true one. As hk2i µ s2

8 W1.5
m and hk3i/hk2i2 µ s�0.8

8 (Bernardeau
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Figure 7. Same as Fig. 6 but for the four tomographic maps. The kE/s(kE ) maps are shown on the left and the kB/s(kB) maps are shown on the right.

the second and third (third and fourth) redshift bins for the B-mode
maps is 8 (5.5) times lower than that for the E-mode maps. The E
and B-mode maps for the lowest redshift bin 0.2 < z < 0.43 have
similar levels of S/N, which is expected since the lensing signal at
low redshift is weak and the noise level is high.

We now examine the second and third moments of the kE
maps similar to the tests in Sec. 5.2. For direct comparison with
simulations, the measurements are done using the map with the full
redshift range 0.2 < z < 1.3 and in the region of 0� <RA< 100�.
Our results are shown in the right panels of Fig. 4, where the mean
and standard deviation of the 12 noisy simulation results are also
overlaid.

We note that we do not expect perfect agreement between the

simulation and data for several reasons: first, the detailed shape
noise incorporated in the simulations is only an approximation to
the METACALIBRATION shape noise. In particular, there is no cor-
relation of the shape noise with other galaxy properties in our sim-
ulations. This, however, should be a second-order effect, since we
do not expect the galaxy properties to correlate with the true con-
vergence. Second, the number density and n(z) in the simulations
only approximately match the data as we discussed in Sec. 3.3.
This is also a second-order effect since lensing is mainly sensitive
to the mean redshift of the lensing kernel. The detailed shape of
the n(z) will not significantly alter the convergence maps. Finally,
the simulations assume a certain cosmology that may not be the
true one. As hk2i µ s2

8 W1.5
m and hk3i/hk2i2 µ s�0.8

8 (Bernardeau
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FIG. 4. The measured shear correlation function ⇠+ (top triangle) and ⇠� (bottom triangle) for the DES Y1 METACALIBRATION catalog.
Results are scaled by the angular separation (✓) to emphasize features and differences relative to the best-fit model. The correlation functions
are measured in four tomographic bins spanning the redshift ranges listed in Table I, with labels for each bin combination in the upper left
corner of each panel. The assignment of galaxies to tomographic bins is discussed in Sec. II B. Scales which are not used in the fiducial
analysis are shaded (see Sec. VII A). The best-fit ⇤CDM theory line from the full tomographic analysis is also plotted as the solid line. We
find a �2 of 268 for 211 degrees of freedom in the non-shaded regions, which is discussed in Sec. VIII A.

We also test the level of shape noise in the covariance ma-
trix by comparing halo model covariance predictions for ⇠�
on small scales (2.5 < ✓ < 10 arcmin), where shape noise
dominates, to jackknife estimates for both shape catalogs from
the data. We find very good agreement for METACALIBRA-
TION, but there is an indication that in two tomographic bins,
the shape noise of IM3SHAPE may be underestimated by up
to 20%. We believe this is due to an unresolved issue with the
empirically derived weights as a function of redshift. Since we
use IM3SHAPE only to validate that our shape measurement
and calibration is robust, this would only result in a slight in-
flation of the significance of this test in Sec. IX B.

VI. BLINDING

For the DES Y1 analysis, we have maintained a catalog-
level blinding scheme similar to the DES SV analyses, but
rescaling |⌘| = 2 arctanh |e| by a factor between 0.9 and 1.1
(see [92] for a review of blinding in general). This catalog

blinding 16 was preserved until the catalogs and primary DES
Y1 cosmological analyses and papers (this work and [51])
completed a first round of the DES internal review process.
All calculations were then repeated with the unblinded cata-
logs for the final version of this paper.

In addition to this catalog-level blinding, no comparison
to theory at the two-point level (⇠±) or of cosmological con-
tours was made, nor were central values of any cosmological

16 During the internal review process for [54], it was discovered that separate,
but equivalent, oversights in the shear calibration of the two catalogs led
to a substantial fraction (e.g., the linear part in e) of the blinding factor
being calibrated. This was undiscovered until the catalogs were finalized,
and thus had no impact on catalog-level choices. It is valid to question
whether this invalidated our blinding strategy at the parameter estimation
level. It did not, for two reasons: 1) only a few people in the collaboration
were aware of the potential issue until after we unblinded the cosmolog-
ical parameters, minimizing any impact, and 2) The secondary blinding
enforced at the two-point and parameter level ensured that even had we
become aware of this oversight much sooner, it could not have led to ex-
perimenter bias in our analyses.

Troxel et al. (’17)
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FIG. 8. Constraints on the three cosmological parameters �8, ⌦m, and w in wCDM from DES Y1 after marginalizing over four other
cosmological parameters and ten (cosmic shear only) or 20 (other sets of probes) nuisance parameters. The constraints from cosmic shear only
(green); w(✓) + �t(✓) (red); and all three two-point functions (blue) are shown. Here and below, outlying panels show the marginalized 1D
posteriors and the corresponding 68% confidence regions.

their Figure 18.
The two-dimensional constraints shown in Figure 10 visu-

ally hint at tension between the Planck ⇤CDM prediction for
RMS mass fluctuations and the matter density of the present-
day Universe and the direct determination by DES. The 1D
marginal constraints differ by more than 1� in both S

8

and
⌦m, as shown in Figure 6. The KiDS survey [34, 62] also
reports lower S

8

than Planck at marginal significance.
However, a more quantitative measure of consistency in

the full 26-parameter space is the Bayes factor defined in
Eq. (V.3). As mentioned above, a Bayes factor below 0.1 sug-
gests strong inconsistency and one above 10 suggests strong
evidence for consistency. The Bayes factor here is R = 4.2,
indicating “substantial” evidence for consistency on the Jef-
freys scale, so any inconsistency apparent in Figure 10 is not
statistically significant according to this metric. In order to

test the sensitivity of this conclusion to the priors used in our
analysis, we halve the width of the prior ranges on all cos-
mological parameters (the parameters in the first section of
Table I). For this case we find R = 1.6, demonstrating that
our conclusion that there is no evidence for inconsistency is
robust even to a dramatic change in the prior volume. The
Bayes factor in Eq. (V.3) compares the hypothesis that two
datasets can be fit by the same set of N model parameters (the
null hypothesis), to the hypothesis that they are each allowed
an independent set of the N model parameters (the alternative
hypothesis). The alternative hypothesis is naturally penalized
in the Bayes factor since the model requires an extra N pa-
rameters. We also test an alternative hypothesis where only
⌦m and As are allowed to be constrained independently by
the two datasets; in this case we are introducing only two ex-
tra parameters with respect to the null hypothesis. For this

20

FIG. 9. 68% confidence levels on three cosmological parameters from the joint DES Y1 probes and other experiments for wCDM.

FIG. 10. ⇤CDM constraints from the three combined probes in DES
Y1 (blue), Planck with no lensing (green), and their combination
(red). The agreement between DES and Planck can be quantified via
the Bayes factor, which indicates that in the full, multi-dimensional
parameter space, the two data sets are consistent (see text).

case, we find R = 2.4, which again indicates that there is no
evidence for inconsistency between the datasets.

We therefore combine the two data sets, resulting in the red
contours in Figure 10. This quantitative conclusion that the
high– and low– redshift data sets are consistent can even be
gleaned by viewing Figure 10 in a slightly different way: if
the true parameters lie within the red contours, it is not un-
likely for two independent experiments to return the blue and
green contour regions.

FIG. 11. ⇤CDM constraints from high redshift (Planck,
without lensing) and multiple low redshift experiments (DES
Y1+BAO+JLA), see text for references.

Figure 11 takes the high-z vs. low-z comparison a step fur-

DES 1yr (cosmic shear + galaxy clustering)
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FIG. 9. 68% confidence levels on three cosmological parameters from the joint DES Y1 probes and other experiments for wCDM.
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FIG. 10. ⇤CDM constraints from the three combined probes in DES
Y1 (blue), Planck with no lensing (green), and their combination
(red). The agreement between DES and Planck can be quantified via
the Bayes factor, which indicates that in the full, multi-dimensional
parameter space, the two data sets are consistent (see text).

case, we find R = 2.4, which again indicates that there is no
evidence for inconsistency between the datasets.

We therefore combine the two data sets, resulting in the red
contours in Figure 10. This quantitative conclusion that the
high– and low– redshift data sets are consistent can even be
gleaned by viewing Figure 10 in a slightly different way: if
the true parameters lie within the red contours, it is not un-
likely for two independent experiments to return the blue and
green contour regions.

FIG. 11. ⇤CDM constraints from high redshift (Planck,
without lensing) and multiple low redshift experiments (DES
Y1+BAO+JLA), see text for references.

Figure 11 takes the high-z vs. low-z comparison a step fur-
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LLS as precision cosmological tools

Accurate theoretical description for LSS needs to be developed
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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2.6� 105 galaxies5.8� 104 galaxies

Large data set will reveal statistical properties of LSS at an 
unprecedented precision level (→ precision cosmology)

107 � 109 galaxies

New opportunity & scientific synergy :

• Testing general relativity on cosmological scales

• Weighing total mass of neutrinos

• Clarifying nature of dark energy (cosmic acceleration)



Cosmological N-body simulation
z=18.3

z=5.7

z=1.4

http://www.mpa-garching.mpg.de/galform/millennium/

Formation of halos and 
filamentary structure

z=0

Self-gravitating many-body system 
in an expanding universe
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Nonlinear power spectrum
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Figure 9: The power spectrum of the dark matter distribution in the Millennium Simulation at various
epochs (blue lines). The gray lines show the power spectrum predicted for linear growth, while the dashed
line denotes the shot-noise limit expected if the simulation particles are a Poisson sampling from a smooth
underlying density field. In practice, the sampling is significantly sub-Poisson at early times and in low
density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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To what extent we can quantitatively understand statistical 
properties of large-scale structure?



Goal of this lecture
Understanding of large-scale structure (LSS) 

as cosmology probe

•Theoretical basis of formation & evolution of LSS

•Theoretical tools to confront with precision observations of LSS
(mainly focusing on galaxy surveys)

- Cosmological information imprinted in LSS

- Structure formation Standard model (ΛCDM)

- Perturbation theory of LSS



Plan

•Linear theory of structure formation

•Observational effects:

•Analytic approaches to nonlinear structure formation

•Summary of background cosmology

Redshift-space & geometric distortions

•Selected topics on statistics and dynamics of 
large-scale structure 



Note and supplements

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/lecture.html

Lecture note and supplemental materials (PDF files) are found in:


