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観測的宇宙論とは？
宇宙論
宇宙の成り立ち、進化を物理的に明らかにする学問
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ボトムアップ

物理の基礎理論にもとづき、理論的に整合性のとれた
宇宙創成・初期宇宙のモデル・シナリオを構築

観測データにもとづき宇宙の進化を記述する理論を構築
あるいは
観測データを説明する理論を構築し、宇宙を理解する



宇宙論の観測対象
The Astrophysical Journal, 784:90 (27pp), 2014 April 1 Okabe et al.

Figure 5. X-ray surface brightness distribution in the 0.1–2.4 keV band from
ROSAT X-ray satellite. The contours of the mass map are overlaid with
FWHM = 8.′3, taking into account the LSS lensing model. The contour level
starts at 1σ and increases in steps of 1σ .
(A color version of this figure is available in the online journal.)

the model does not perfectly describe the full LSS lensing
effect. Three other peaks associated with the known background
objects (Table 2) are detected with the above conditions. One is
the background object “I” and two peaks are around the object
“F” (see Figure 3). These objects are likely to be groups because
the lensing signals are stronger than what is expected from the
luminosity of a single galaxy. Furthermore, there is a possibility
that background groups are accidentally superimposed with
cluster subhalos, giving a systematic bias on mass estimates
of subhalos. This point is discussed in Section 3.4.1.

Next, we measure the model-independent projected masses
(Clowe et al. 2000, see also Appendix C) for shear-selected
subhalo candidates. This measurement has several important
advantages. First, a large number of background galaxies are
available, because a projected mass within a circular aperture
radius is computed by integrating source galaxies outside the
radius. The measured projected mass is a cumulative function
of radius. Thus, this approach suppresses the random noise
relevant to the intrinsic ellipticity, compared to a tangential
distortion profile, which averages the tangential component
of all background galaxies residing in radial bins. Second,
since the measurement subtracts the background mass density

surrounding subhalos, the contribution of the main cluster
mass distribution to subhalo masses is excluded. Third, the
mass density of subhalos is expected to be close to zero
outside of the tidal radius, and the measured aperture mass
corresponds to the subhalo mass itself. If the mass density
profile follows the universal NFW profile (Navarro et al. 1996,
1997) without any truncation radii, the aperture mass is higher
than the spherical one (Okabe et al. 2010b). As expected from
tidal destruction, the radial profile of the projected mass is
saturated outside the truncation radii, rt. We measure projected
masses for all the candidates. Since the smoothing kernel for
the mass reconstructions gives rise to centroid uncertainties of
the candidates, we determine the central position by choosing
maximal lensing signals within a 8.′ × 8.′ box where the center
is aligned with the map peak position. For accurate mass
measurements of subhalos with a variety of sizes, it is important
to explore truncation radii where the projected mass profile is
saturated. We systematically compute projected mass profiles
by changing the background annulus and then statistically
determining the truncation radii. Here, the inner radius changes
from 0.′7 to 14.′5 in steps of 0.′2 and the width is fixed at 3.′. The
projected mass M2D is computed from saturated values, taking
into account the error covariance matrix. The measurement
method is detailed in Appendix C. The same analysis was
repeated for different background widths which showed that the
result does not significantly change. Mass measurements used a
considerably large number of source galaxies (4×103–2×104).
The number is comparable or less than that for main clusters at
z ∼ 0.2 (e.g., Okabe et al. 2010b) for which the background
number densities are ng ∼ 5–20 (arcmin−2). Less massive
subhalos which are detected inside more massive ones should
be excluded in order to avoid double-counting these subhalos.
We count the ith subhalo using two conditions of the radius
rt,i > rt,j and the subhalo mass M2D,i > M2D,j (i ̸= j ). The
number of candidates is then reduced from 49 to 39 using this
procedure. As mentioned above, the LSS model fails to fully
explain the lensing signals of background systems, especially on
group scales. Furthermore, since there is a possibility to detect
mass structures behind the cluster, we conservatively select the
candidates hosting spectroscopically identified member galaxies
within their truncation radii as the cluster subhalos. Having
applied these limitations, 32 peaks are identified as dark matter
subhalos. Three candidates are associated with the background
systems (Table 2). Four candidates have no optical counter:
they are located around ∼70.′ in the south-east direction and the
north-west direction, respectively.

These 32 subhalos are labeled by integers, in the order of
right ascension. The resulting subhalo masses, M2D, range
from ∼2 × 1012 h−1 M⊙ to ∼5 × 1013 h−1 M⊙ (Table 3).
As shown in Figure 6, the radial profiles of the projected mass
clearly show saturation at some outer radii. The subhalos are
widely distributed from the northeast to the southwest in the sky
(Figure 3). Interestingly, the direction connecting between the
Coma cluster and A1367 which are parts of the Coma superclus-
ter (Gregory & Thompson 1978) agrees roughly with the sub-
halo distributions. Several massive subhalos are associated with
well-known, spectroscopically identified groups in the cluster
(e.g., Mellier et al. 1988; Adami et al. 2005). Galaxies or groups
associated with subhalos are summarized with references in
Table 3. The cD galaxies, NGC 4874 and NGC 4889, are as-
sociated with subhalos “21” and “24,” respectively. The mean
mass ratio reported in this paper compared to the previous pa-
per for overlapping subhalos is ⟨Mnew/Mold⟩ = 1.02 ± 0.54.
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宇宙の大規模構造

•代表的な観測手段：銀河赤方偏移サーベイ

•豊富な宇宙論的情報を含む

(他のプローブ：重力レンズ、ライマンαの森, etc.)

•質量分布の階層的構造：
(天の川銀河のサイズは ~40キロパーセク)

銀河 銀河群・銀河団 超銀河団� �

原始密度ゆらぎ

宇宙膨張のダイナミクス
構造の形成

数ギガパーセクに渡って広がる質量分布の空間非一様性
3*10^9 光年
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大規模構造を観測する

Sloan Digital Sky Survey 
@ APO (New Mexico)
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Very Large Telescope (Chile)
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http://subarutelescope.org/Information/Download/DImage/index.html
http://www.sdss.org/instruments/

http://www.cfht.hawaii.edu/en/news/CFHT30/#wallpaper
http://www.darkenergysurvey.org/DECam/index.shtml

https://en.wikipedia.org/wiki/Very_Large_Telescope

望遠鏡を占有して銀河の地図を作成



赤方偏移

SDSS SkyServer

近傍銀河

遠方銀河

Ca H & K OIII HβNa Mg 

大規模構造の３次元構造を知る手がかり

遠方の銀河は近傍銀河に比べて「赤く」見える
宇宙膨張により
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http://www.mpa-garching.mpg.de/131601/hl201506

Yellow：SDSS-II main
Red：SDSS-II LRG

White：SDSS-III CMASS

A slice of galaxy catalog by 
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A section of 3D map

http://www.sdss.org/press-releases/astronomers-map-a-record-
breaking-1-2-million-galaxies-to-study-the-properties-of-dark-energy/

120,000 galaxies
redshift



3D Map of galaxies

Sloan Digital Sky Survey III
Baryon Oscillation Spectroscopic Survey https://www.sdss3.org/press/dr9.php



質量密度ゆらぎのパワースペクトル

3448 L. Anderson et al.

Figure 7. Histogram of (α − ⟨α⟩)/σα measured from ξ (r) of the post-
reconstruction mocks, where ⟨α⟩ is the mean. This quantity is a proxy
for the signal-to-noise ratio of our BAO measurement. We see that this
distribution is close to Gaussian as indicated by the near-zero K-S Dn. The
corresponding p-value indicates that we are 90 per cent certain our values
are drawn from a Gaussian distribution, indicating that the values of σα we
measure from the χ2 distribution are reasonable descriptors of the error on
α measured by fitting ξ (r).

also makes our distance estimates more robust to parameter choices
in our fitting algorithms and reduces the scatter between the distance
estimates from the the correlation function and the power spectrum.
We quantify these improvements further in the following sections.

We next compare the observed scatter in the best-fitting α in
the mocks to the σα estimated in each fit from the χ2(α) curve.
In Fig. 7, we plot a histogram of (α − ⟨α⟩)/σα from the mocks
and compare the result to the unit normal distribution. We find
excellent agreement; a Kolmogorov–Smirnov (K-S) test finds a
high likelihood that the observed distribution is drawn from a unit
normal. Hence the Gaussian probability distribution obtained from
the χ2 statistic is an appropriate characterization of the error on α.

6 TH E P OW E R SP E C T RU M

6.1 Measuring the power spectrum

The power spectra recovered from the CMASS DR9 data are shown
in Fig. 8 before (left) and after (right) reconstruction. The inset
shows the oscillations in these data, calculated by dividing by a
smooth model (see Section 6.2 for details). The effect of the re-
construction algorithm is clear – the large-scale power is decreased
corresponding to the removal of RSD effects, with the small-scale
power being further reduced by the reduction in non-linear power.
These data represent the most accurate measurement of a redshift-
space galaxy power spectrum ever obtained.

Power spectra were calculated using the Fourier method first de-
veloped by Feldman et al. (1994), as described in Percival et al.
(2007b) and Reid et al. (2010). We work in redshift-space as if ob-
served recession velocities solely arise from the Hubble expansion.
As we focus on measuring angle-averaged baryon acoustic oscilla-
tions, we do not convert from a galaxy density field to a halo density
field as in Reid et al. (2010), or apply corrections for Finger-of-God
effects. Given a weight wi for galaxy i at location r i , the overdensity
field can be written

F (r) = 1
N

[
∑

i

wiδD(r i − r) − ⟨w(r)n(r)⟩
]

, (31)

where N is a normalization constant

N ≡
{∫

d3r⟨w(r)n(r)⟩2
}1/2

, (32)

and ⟨w(r)n(r)⟩ is the expected weighted distribution of galaxies at
location r in the absence of clustering, and n(r) is the galaxy density.
The quantity δD is the standard Dirac-δ function. We do not apply
luminosity-dependent weights (as applied by Percival et al. 2007b
and Reid et al. 2010), as we are only interested in the BAO, and not
the overall shape of the power spectrum.

We chose to model the expected distribution of galaxies using a
random catalogue with points selected at the mean galaxy density

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fitting models overplotted. The vertical dotted lines
show the range of scales fitted (0.02 < k < 0.3 h Mpc−1), and the inset shows the BAO within this k-range, determined by dividing both model and data by
the best-fitting model calculated (including window function convolution) with no BAO. Error bars indicate

√
Cii for the power spectrum and the rms error

calculated from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

C⃝ 2012 The Authors, MNRAS 427, 3435–3467
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バリオン音響振動 (BAO)
• 原始バリオン-光子流体の音響振動スケール (~150Mpc)

(⇔ CMBの音響ピークのスケール)
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c
� 2011 RAS, MNRAS 000, 2–33
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Figure 15. As Figure 15, but for the DR11 LOWZ correlation function
transformed as defined by Eq. 46 with a = 0.39 and b = 0.04. As before,
these error bars are nearly independent, with a worst case of 12 per cent
and an r.m.s. of 3.4 per cent in the off-diagonal elements of the reduced
covariance matrix.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error-bars and the best-fit model is dis-
played with the curves. Both are divided by the best-fit smooth model. We
note that a finer binning was used in the DR9 analysis.

noted that transformations based on the symmetric square root of
the Fisher matrix had surprisingly compact support for their power
spectrum analysis. When we formed this matrix for the DR11
CMASS correlation function, we found that the first and second
off-diagonal terms are nearly constant and that subsequent off-
diagonals are small. This suggests that a basis transform of the pen-
tadiagonal form

X(si) =
xi � a (xi�1

+ xi+1

)� b (xi�2

+ xi+2

)

1� 2a� 2b
(46)

will approach a diagonal form. Here, xi = s2i ⇠0(si) and si is the

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fit model is displayed with the curve.
Both are divided by the best-fit smooth model.

bin center of measurement bin i. We introduce the 1 � 2a � 2b
factor so as to normalize X such that it returns X = x for constant
x. For the first two and last two bins, the terms beyond the end of
the range are omitted and the normalization adjusted accordingly.

We find that for DR11 CMASS after reconstruction, values
of a = 0.3 and b = 0.1 sharply reduce the covariances between
the bins. The reduced covariance matrices for ⇠(r) and X(r) are
shown in Figure 13. The bins near the edge of the range retain some
covariances, but the off-diagonal terms of the central 10⇥ 10 sub-
matrix of the reduced covariance matrix have a mean and r.m.s. of
0.008 ± 0.044, with a worst value of 0.11. For display purposes,
this is a good approximation to a diagonal covariance matrix, yet
the definition of X(s) is well localized and easy to state. For com-
parison, the reduced covariance matrix of s2⇠

0

has typical first off-
diagonals values of 0.8 and second off-diagonals values of 0.6.

We display this function in Figure 14. One must also trans-
form the theory to the new estimator: we show the best-fit BAO
models with and without broadband marginalization, as well as the
best-fit non-BAO model without broadband marginalization. The
presence of the BAO is clear, but now the error bars are representa-
tive. For example, the significance of the detection as measured by
the ��2 of the best-fit BAO model to the best-fit non-BAO model
is 69.5 using only the diagonal of the covariance matrix of X , as
opposed to 74 with the full covariance matrix. We do not use this
transformation when fitting models, but we offer it as a pedagogical
view.

The same result is shown for DR11 LOWZ post-
reconstruction in Figure 15. Here we use a = 0.39 and b = 0.04.
The level of the off-diagonal terms is similarly reduced, with an
r.m.s. of 3.4 per cent and a worst value of 12 per cent.

It is expected that the best values of a and b will depend on
the data set, since data with more shot noise will have covariance
matrices of the correlation function that are more diagonally dom-
inant. Similarly, the choice of a pentadiagonal form may depend

c� 2014 RAS, MNRAS 000, 2–38
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Cosmological constraints from BAO
Aubourg et al. ‘15

less than 0.5σ differences in best-fit parameter values
between using compressed and full chains. The residual
differences are driven by the fact that our compressed
likelihood attempts to extract purely geometric information
from the CMB data (for example, values of ωb and ωm are
different at roughly the same level between chains that
marginalize over lensing potential and those that do not).
For BAO-only data combinations the results are completely
consistent.
Throughout the paper, we refer to the constraints

represented by Eqs. (18)–(20) simply as “Planck” (although
they also include information from WMAP polarization
measurements). In Sec. III we treat the CMB as a BAO
experiment measuring DMð1090Þ=rd, but we eliminate its
calibration of the absolute BAO scale by artificially blow-
ing up the errors on ωb and ωcb; we denote this case as
“þPlanck DM”. Conversely, in Sec. IV we use the CMB
information on ωb and ωcb to set the size of our standard
ruler rd but omit the DMð1090Þ=rd information by artifi-
cially inflating its errors; we denote this case as “þrd”.
When we use a full Planck chain instead of the compressed
information, we adopt the notation “Planck (full)” and
specify what additional parameters (such as Alens, Neff , or
tensor-to-scalar ratio r) are being varied in the chain.
If one assumes a flat universe, a cosmological constant

(w ¼ −1), standard relativistic background (Neff ¼ 3.046),
and minimal neutrino mass (

P
mν ¼ 0.06 eV), then the

CMB data summarized by Eqs. (18)–(20) also provide a
precise constraint on the Hubble parameter h, and thus on
Ωcb, Ωb, and ΩΛ. At various points in the paper we refer to
a “fiducial” Planck ΛCDM model for which we adopt
Ωbh2 ¼ 0.022032, Ωm ¼ 0.3183, and h ¼ 0.6704, which
are the best fit parameters for “PlanckþWP” combination
as cited in the Table 2 of [29]. The CMB constraints on h
and Ωm become much weaker if one allows w ≠ −1 or
Ωk ≠ 0, so for more general models BAO data or other
constraints are needed to restore high precision on cosmo-
logical parameters.

D. Supernova data

A comprehensive set of relative luminosity distances of
740 SNIa was presented in [30], based on a joint calibration
and training set of the SDSS-II Supernova Survey [33] and
the Supernova Legacy Survey (SNLS) 3-year data set [31].
The 374 supernovae from SDSS-II and 239 from
SNLS were combined with 118 nearby supernovae
from [6,61–65] and nine high-redshift supernovae discov-
ered and studied by HST [66]. We use this set, dubbed Joint
Light-curve Analysis (JLA), rather than the Union 2.1
compilation of [67] because of the demonstrated improve-
ment in calibration and corresponding reduction in sys-
tematic uncertainties presented in [30].
While [30] also provide a full COSMOMC module and a

covariance matrix in relevant parameters, we here instead
use their compressed representation of relative distance

constraints due to conceptual simplicity and a drastic
increase in computational speed when combining with
other cosmology probes. The compressed information
consists of a piece-wise linear function fit over 30 bins
(leading to 31 nodes) spaced evenly in log z (to minimum
z ∼ 0.01) with a 31 × 31 covariance matrix that includes all
of the systematics from the original analysis. SNIa constrain
relative distances, so the remaining marginalization
required to use this compressed representation in a cos-
mological analysis is over the fiducial absolute magnitude
of a SNIa, MB. In Sec. IV we also utilize a similar
compression of the Union 2.1 SN data set, which we have
constructed in analogous fashion.

E. Visualizing the BAO constraints

Figure 1 shows the “Hubble diagram” (distance vs
redshift) from a variety of recent BAO measurements of
DV=rd, DM=rd, or zDH=rd; these three quantities converge
at low redshift. In addition to the data listed in Table II, we
show measurements from the DR7 data set of SDSS-II by
[15] and from the WiggleZ survey by [19], which are not
included in our cosmological analysis because they are not
independent of the (more precise) BOSS measurements in
similar redshift ranges. Curves represent the predictions of
the fiducial Planck ΛCDM model, whose parameters are
determined independently of the BAO measurements but
depend on the assumptions of a flat universe and a

FIG. 1 (color online). The BAO “Hubble diagram” from a
world collection of detections. Blue, red, and green points show
BAOmeasurements ofDV=rd,DM=rd, and zDH=rd, respectively,
from the sources indicated in the legend. These can be compared
to the correspondingly colored lines, which represent predictions
of the fiducial Planck ΛCDM model (with Ωm ¼ 0.3183,
h ¼ 0.6704; see Sec. II C). The scaling by

ffiffiffi
z

p
is arbitrary,

chosen to compress the dynamic range sufficiently to make error
bars visible on the plot. Filled points represent BOSS data, which
yield the most precise BAOmeasurements at z < 0.7 and the only
measurements at z > 2. For visual clarity, the Lyα cross-
correlation points have been shifted slightly in redshift; auto-
correlation points are plotted at the correct effective redshift.
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chain, we can then compute the value of rd from Eq. (16).
Compared to the previous section, the addition of the
physical scale allows us to convert the measured value of
c=ðH0rdÞ into a measurement of the dimensional parameter
H0. In practice, we derive constraints in a separate MCMC
run where, instead of a flat prior on P, we have a flat prior
on h and the above prior on ωb. We also fix the curvature
parameter Ωk to zero. Results are presented in Fig. 4. The
red (galaxy BAO) and blue (LyaF BAO) contours in this
figure use no CMB information at all, but they do assume a
spatially flat universe in contrast to Fig. 3.
The point of this exercise is the following. The homo-

geneous part of the minimal ΛCDM model has just two
adjustable parameters, Ωm and h, which matches the 2
degrees of freedom offered by a measurement of aniso-
tropic BAO at a single redshift. (The weak BBN prior is
required to fix the magnitude of rd, but it does not affect the
expansion history.) One can therefore get meaningful
constraints from either galaxy BAO or LyaF BAO alone,
though this is no longer true if one allows nonzero
curvature and therefore introduces a third parameter.
There is substantial Ωm − h degeneracy for either meas-
urement individually, but both are generally compatible
with standard values of these parameters. The tension of the
LyaF BAO with the Planck ΛCDM model manifests itself
here as a best fit at relatively low matter density and high
Hubble parameter. Combining the galaxy and LyaF mea-
surements produces a precise measurement of both Ωm and
the Hubble parameter coming from BAO alone, indepen-
dent of CMB data. In combination, we find h ¼ 0.67$
0.013 and Ωm ¼ 0.29$ 0.02 (68% confidence). The small
black ellipse in Fig. 4 shows the Planck constraints for
ΛCDM, computed from full Planck chains, which are in

FIG. 4 (color online). Constraints on Ωm and h in a flat ΛCDM
model from galaxy BAO (red), LyaF BAO (blue), and the
combination of the two (green), using a BBN prior on ωb and
standard physics to compute the sound horizon rd but incorpo-
rating no CMB information. Contours are plotted at 68%, 95%,
and 99.7% confidence (the interior white region of the green
“donut” is 68%). Black contours show the entirely independent
constraints on Ωm and h in ΛCDM from full Planck CMB chains.

FIG. 3 (color online). Constraints from BAO on the parameters
of oΛCDM models, treating the BAO scale as a redshift-
independent standard ruler of unknown length. Green curves/
contours in each panel show the combined constraints from
galaxy and LyaF BAO, with no CMB information. Black curves/
contours include the measurement of DMð1090Þ=rd from the
CMB acoustic scale, again with no assumption about the value of
rd except that it is the same scale as the lower redshift
measurements. This combination of BAO measurements yields
precise constraints on ΩΛ (top panel) and the dimensionless
quantity c=ðH0rdÞ (bottom panel), and it requires a low density
(Ωm ≈ 0.29), nearly flat universe (middle panel). Blue and red
curves in the top and bottom panels show the result of combining
the CMB BAO measurement with either the galaxy or LyaF BAO
measurement separately. The dotted line in the middle panel
marks Ωm þΩΛ ¼ 1.
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arises for SNþ CMB alone; we find w ¼ −0.98# 0.06
and Ωk ¼ −0.002# 0.003. Substituting WMAP9 for
Planck again produces only slight shifts to central values
and a minor increase of error bars.
Even with these powerful BAO, SN, and CMB data sets,

constraining the evolution of w is difficult. The constraint
on the evolution parameter from BAOþ SNþ Planck is
wa ¼ −0.2# 0.4 in w0waCDM and weakens to wa ¼
−0.6# 0.6 in ow0waCDM. Both results are consistent

with constant w, but they allow order unity changes of
w at z < 1. This data combination still provides a good
constraint on the value of w at a “pivot” redshift zp ¼ 0.266
where it is uncorrelated with wa (determined specifically
for w0waCDM for BAOþ SNþ Planck combiations):
wð0.266Þ ¼ −0.97# 0.05 in w0waCDM and −0.99#
0.06 in ow0waCDM.
We note that the degradation of our ability to constrain

the evolution of the equation of state is not accompanied

FIG. 8 (color online). Constraints on interesting parameter combinations in a variety of dark energy models: ΛCDM (upper left),
oΛCDM (upper right), wCDM (middle left), owCDM (middle right), w0waCDM (bottom left), and ow0waCDM (bottom right). Curves
show 68%, 95%, and 99.7% confidence contours for the data combinations indicated in the legend. In the top panels the red contours are
almost fully obscured by the green contours because the BAOþ Planck combination is already as constraining as the BAOþ SNþ
Planck combination, but for models with freedom in dark energy the SN and BAO constraints are complementary. The bottom panels,
with evolving wðzÞ, display the value of w at z ¼ 0.266, the “pivot” redshift where w is best constrained by BAO þ SNþ Planck in the
w0waCDM model. For our BAOþ SNþ Planck contours, the white zone interior to the dark green annulus marks the 68% confidence
region, and the outer edge of the dark annulus is 95%.

ÉRIC AUBOURG et al. PHYSICAL REVIEW D 92, 123516 (2015)

123516-18

C
ur

va
tu

re
 p

ar
am

et
er

 
of

 t
he

 U
ni

ve
rs

e 
(Ω

K
)

Dark energy EoS parameter (w)

D
ar

k 
en

er
gy

 d
en

si
ty

 
pa

ra
m

et
er

 (
Ω
Λ)

Mass density parameter (Ωm)

Distance-redshift relation from 
BAO measurement 

Combining CMB 
measurement by Planck

(standard cosmological model)ΛCDM model
flat universe filled with mysterious energy/matter components :

(In ΛCDM model,  dark energy=cosmological constant, Λ)

Origin & nature of these components are 
largely unknown. Need further observations !!

• dark energy → late-time cosmic acceleration
•dark matter → structure formation

Dark Energy
69.1%

26.1%
4.8%

Dark 
Matter

baryon



Two-point correlation function

BOSS anisotropic clustering 3

et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies
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with HST. As a result, the MW solutions for H0 are unstable
(see Appendix A of E14). The LMC solution is sensitive to the
metallicity dependence of the Cepheid period-luminosity rela-
tion which is poorly constrained by the R11 data. Furthermore,
the estimate in Eq. (30) is based on a di↵erential measurement
comparing HST photometry of Cepheids in NGC 4258 with
those in SNe host galaxies. It is therefore less prone to pho-
tometric systematics, such as crowding corrections, than is the
LMC+MW estimate of Eq. (31). It is for these reasons that we
have adopted the prior of Eq. (30) in preference to using the
LMC and MW distance anchors.19

Direct measurements of the Hubble constant have a long and
sometimes contentious history (see e.g., Tammann et al. 2008).
The controversy continues to this day and one can find “high”
values (e.g., H0 = (74.3 ± 2.6) km s�1Mpc�1, Freedman et al.
2012) and “low” values (e.g., H0 = (63.7 ± 2.3) km s�1Mpc�1,
Tammann & Reindl 2013) in the literature. The key point that we
wish to make is that the Planck only estimates of Eqs. (21) and
(27), and the Planck+BAO estimate of Eq. (28) all have small
errors and are consistent. If a persuasive case can be made that
a direct measurement of H0 conflicts with these estimates, then
this will be strong evidence for additional physics beyond the
base ⇤CDM model.

Finally, we note that in a recent analysis Bennett et al. (2014)
derive a “concordance” value of H0 = (69.6±0.7) km s�1Mpc�1

for base ⇤CDM by combining WMAP9+SPT+ACT+BAO
with a slightly revised version of the R11 H0 value (73.0 ±
2.4 km s�1Mpc�1). The Bennett et al. (2014) central value for
H0 di↵ers from the Planck value of Eq. (28) by nearly 3 % (or
2.5�). The reason for this di↵erence is that the Planck data are
in tension with the Story et al. (2013) SPT data (as discussed in
Appendix B of PCP13; note that the tension is increased with the
Planck full mission data) and with the revised R11 H0 determi-
nation. Both tensions drive the Bennett et al. (2014) value of H0
away from the Planck solution.

5.5. Additional data

5.5.1. Redshift space distortions

Transverse versus line-of-sight anisotropies in the redshift-space
clustering of galaxies induced by peculiar motions can, poten-
tially, provide a powerful way of constraining the growth rate
of structure. A number of studies of redshift space distortions
(RSD) have been conducted to measure the parameter combina-
tion f�8(z), where for models with scale-independent growth

f (z) =
d ln D
d ln a

, (32)

and D is the linear growth rate of matter fluctuations. Note that
the parameter combination f�8 is insensitive to di↵erences be-
tween the clustering of galaxies and dark matter, i.e., to galaxy
bias (Song & Percival 2009). In the base ⇤CDM cosmology, the
growth factor f (z) is well approximated as f (z) = ⌦m(z)0.545.

19As this paper was nearing completion, results from the Nearby
Supernova Factory have been presented that indicate a correlation be-
tween the peak brightness of Type Ia SNe and the local star-formation
rate (Rigault et al. 2014). These authors argue that this correlation in-
troduces a systematic bias of ⇠ 1.8 km s�1Mpc�1 in the SNe/Cepheid
distance scale measurement of H0 . For example, according to these
authors, the estimate of Eq. 30 should be lowered to H0 = (68.8 ±
3.3) km s�1Mpc�1, a downward shift of ⇠ 0.5�. Clearly, further work
needs to be done to assess the important of such a bias on the distance
scale. It is ignored in the rest of this paper.
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Fig. 16. Constraints on the growth rate of fluctuations from
various redshift surveys in the base ⇤CDM model: green star
(6dFGRS, Beutler et al. 2012); purple square (SDSS MGS,
Howlett et al. 2014); cyan cross (SDSS LRG, Oka et al. 2014);
red triangle (BOSS LOWZ survey, Chuang et al. 2013); large red
circle (BOSS CMASS, as analysed by Samushia et al. 2014);
blue circles (WiggleZ, Blake et al. 2012); and green diamond
(VIPERS, de la Torre et al. 2013). The points with dashed red
error bars (o↵set for clarity) correspond to alternative analy-
ses of BOSS CMASS from Beutler et al. (2014b, small circle)
and Chuang et al. (2013, small square). The BOSS CMASS
points are based on the same data set and are therefore not in-
dependent. The grey bands show the range allowed by Planck
TT+lowP+lensing in the base ⇤CDM model. Where available
(for SDSS MGS and BOSS CMASS), we have plotted condi-
tional constraints on f�8 assuming a Planck⇤CDM background
cosmology. The WiggleZ points are plotted conditional on the
mean Planck cosmology prediction for FAP (evaluated using the
covariance between f�8 and FAP given in Blake et al. (2012)).
The 6dFGS point is at su�ciently low redshift that it is insensi-
tive to the cosmology.

More directly, in linear theory the quadrupole of the redshift-
space clustering anisotropy actually probes the density-velocity
correlation power spectrum, and we therefore define

f�8(z) ⌘
h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (33)

as an approximate proxy for the quantity actually being mea-
sured. Here �(vd)

8 measures the smoothed density-velocity corre-
lation and is defined analogously to�8 ⌘ �(dd)

8 , but using the cor-
relation power spectrum Pvd(k), where v = �r · vN/H and vN is
the Newtonian-gauge (peculiar) velocity of the baryons and dark
matter, and d is the total matter density perturbation. This defi-
nition assumes that the observed galaxies follow the flow of the
cold matter, not including massive neutrino velocity e↵ects. For
models close to ⇤CDM, where the growth is nearly scale inde-
pendent, it is equivalent to defining f�8 in terms of the growth of
the baryon+CDM density perturbations (excluding neutrinos).

The use of RSD as a measure of the growth of structure is
still under active development and is considerably more di�cult
than measuring the positions of BAO features. Firstly, adopt-
ing the wrong fiducial cosmology can induce an anisotropy in
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Figure 15. Left-hand panel: Comparison of f�8(z) measurements across previous BOSS measurements in DR11 (Alam et al. 2015b; Beutler et al. 2014a;
Samushia et al. 2014; Sánchez et al. 2014) and DR12 (Gil-Marı́n et al. 2016b,c; Chuang et al. 2016) samples. Right-hand panel: The f�8(z) results from this
work compared with the measurements of the 2dfGRS (Percival et al. 2004b) and 6dFGS (Beutler et al. 2012), the GAMA (Blake et al. 2013), the WiggleZ
(Blake et al. 2012), the VVDS (Guzzo et al. 2008), and the VIPERS (de la Torre et al. 2013) surveys, as well as the measurements from the SDSS-I and
-II main galaxy sample (Howlett et al. 2015, MGS) and the SDSS-II LRG sample (Oka et al. 2014, DR7). We have plotted conditional constraints on f�8

assuming a Planck ⇤CDM background cosmology. This is one of the best evidence of how growth rate measurements from BOSS again reaffirm the validity
of General Relativity in large scales.

9 COSMOLOGICAL PARAMETERS

9.1 Data sets

We now turn to cosmological interpretation of our results. We will
use the consensus measurements, including our estimated system-
atic error contribution to the covariance matrix, from the BAO-only
and BAO+FS columns of Table 3. In our subsequent figures and ta-
bles, the former case is simply labeled “BAO.”

Following Aubourg et al. (2015), we include the 6dFGS and
SDSS MGS BAO measurements and the BOSS DR11 Ly↵ forest
BAO measurements (see Fig. 14 and §8.3). These are largely in-
dependent and have utilized similar methodologies. We opt not to
include other BAO measurements, notably those from photomet-
ric clustering and from the WiggleZ survey (Blake et al. 2011a,
2012), as the volumes partially overlap BOSS and the errors are
sufficiently large that a proper inclusion would not substantially
affect the results. As shown in Aubourg et al. (2015), these mea-
surements are in good agreement with those from BOSS. We note
in particular the good match to the WiggleZ results, as this was a
sample of strongly star-forming galaxies in marked contrast to the
red massive galaxies used in BOSS. The dual-tracer opportunity
was studied extensively with a joint analysis of the overlap region
of WiggleZ and BOSS (Beutler et al. 2016a).

We further opt not to include other RSD measurements be-
yond BOSS, as they come from a variety of analysis and modelling
approaches. One can see from Figure 15 that the measurements
from other surveys are consistent with those from BOSS within
their quoted errors, and the error bars in all cases are large enough
that there are potential gains from combining multiple measure-
ments. However, in contrast to BAO measurements, systematic er-
rors associated with non-linear clustering and galaxy bias are a ma-
jor component of the error budget in any RSD analysis, and these
systematics may well be covariant from one analysis to another in
a way that is difficult to quantify. Because of systematic error con-
tributions, we do not consider it feasible to carry out a robust joint
RSD analysis with other measurements.

In all cases, we combine with CMB anisotropy data from the

Planck 2015 release (Planck Collaboration XIII 2015). We use the
power spectra for both temperature and polarization; in detail, we
use the likelihoods plik dx11dr2 HM v18 TTTEEE and lowTEB
for the high and low multipoles, respectively. We do not include
the information from the lensing of the CMB in the 4-point corre-
lations of the CMB temperature anisotropies. We will discuss the
impact of the recent (Planck Collaboration XLVI 2016) large-angle
polarization results in §9.4.

We note that there is some mild tension between the Planck
2015 results and those from combining WMAP, SPT, and ACT
(Calabrese et al. 2013; Spergel et al. 2015; Bennett et al. 2016).
The Planck data set yields a mildly higher matter density ⌦mh2,
which for ⇤CDM implies a higher ⌦m and �8 and a lower H0.
As in the DR11 results, our BOSS results for ⇤CDM fall in be-
tween these two and therefore do not prefer either CMB option.
We have presented non-Planck results in Anderson et al. (2014b)
and Aubourg et al. (2015) and do not repeat that here, as the sense
of the differences has not changed.

Finally, for some cases, we utilize measurements of the
distance-redshift relation from Type Ia supernovae (SNe) from the
Joint Lightcurve Analysis (JLA, Betoule et al. 2014), which com-
bined SNe from the SDSS-II Supernova Survey (Sako et al. 2014)
and the Supernova Legacy Survey 3-year data set (Conley et al.
2011) together with local and high-z data sets. The combination
of SN measurements with BAO is particularly powerful for con-
straining the low-redshift distance scale (e.g., Mehta et al. 2012;
Anderson et al. 2014b). The SNe provide a higher precision mea-
surement of relative distance at lower redshift where the BAO is
limited by cosmic volume, but the BAO provides an absolute scale
that connects to higher redshift and particularly to the CMB acous-
tic scale at z = 1000. The combination of BAO and SN data also
allows an “inverse distance ladder” measurement of H0 that uses
the CMB-based calibration of rd but is almost entirely insensitive
to the dark energy model and space curvature over the range al-
lowed by observations (Aubourg et al. 2015).
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state and non-zero neutrino mass.

This paper is organized as follows. In Section 2, we briefly
describe the HSC first-year shear catalog that is used in our cos-
mic shear analysis. In Section 3, we describe and validate the
pseudo-C` method to estimate unbiased cosmic shear spectra
from finite-sky non-uniform data. In Section 4, we also show
our measurements of tomographic cosmic shear spectra using
the HSC first-year shear catalog. Section 5 summarizes model
ingredients for our cosmological analysis, including predictions
of cosmic shear signals and covariance and our methods to take
account of various systematics in cosmic shear analysis. Our
cosmological constraints and their robustness to different sys-
tematics are presented in Section 6. Finally we give our conclu-
sions in Section 7.

Since the cosmological likelihoods for the final Planck data
release (Planck Collaboration et al. 2018) are not yet available
at the time of writing this paper, throughout this paper we use
Planck 2015 CMB results (Planck Collaboration et al. 2016) for
the comparison and the joint analysis with our HSC first-year
cosmic shear measurement. We use the joint TT, EE, BB, and
TE likelihoods for ` between 2 and 29 and the TT likelihood
for ` between 30 and 2508, commonly referred to as Planck
TT + lowP (Planck Collaboration et al. 2016). We do not use
CMB lensing results, which contain information on the growth
of structure and the expansion history of the Universe at late
stages, except when we combine our joint analysis result with
distance measurements using baryonic acoustic oscillations and
Type Ia supernovae (Section 6.4).

Throughout this paper we quote 68% credible intervals for
parameter uncertainties unless otherwise stated.

2 HSC first-year shear catalog

Hyper Suprime-Cam (HSC) is a wide-field imaging camera
with 1.5 deg diameter field-of-view mounted on the prime focus
of the 8.2-meter Subaru telescope (Miyazaki et al. 2012, 2015,
2018). The HSC survey is using 300 nights of Subaru time over
6 years to conduct a multi-band wide-field imaging survey with
HSC. The HSC survey consists of three layers; Wide, Deep and
UltraDeep. The Wide layer, which is specifically designed for
weak lensing cosmology, aims at covering 1400 square degrees
of the sky with five broadbands, grizy, with a 5� point-source
depth of r ⇡ 26 (Aihara et al. 2018b). Since i-band images are
used for galaxy shape measurements for weak lensing analysis,
i-band images are preferentially taken when the seeing is better.
As a result, we achieve a median PSF FWHM of ⇠ 0.0058 for the
i-band images used to construct the HSC first-year shear cata-
log. The details of the software pipeline used to reduce the data
are given in Bosch et al. (2018), and particulars about the ac-
curacy of the photometry and the performance of the deblender
are characterized using a synthetic imaging pipeline in Huang

et al. (2018) and Murata et al. (in prep.), respectively. The
HSC Subaru Strategic Program (SSP) Data Release 1 (DR1),
based on data taken using 61.5 nights between March 2014 and
November 2015, has been made public (Aihara et al. 2018a).

The HSC first-year shear catalog (Mandelbaum et al. 2018)
is based on about 90 nights of HSC Wide data taken from
March 2014 to April 2016, which is larger than the public HSC
DR1 data. We apply a number of cuts to construct a shape
catalog for weak lensing analysis which satisfies the require-
ments for carrying out first year key science (see Mandelbaum
et al. 2018, for more details). For instance, we restrict our
analysis to the regions of sky with approximately full depth
in all 5 filters to ensure the homogeneity of the sample. We
also adopt a cmodel magnitude cut of i < 24.5 (see Bosch
et al. 2018 for definition of cmodel magnitude in the con-
text of HSC), which is conservative given that the magnitude
limit of the HSC is i ⇠ 26.4 (5� for point sources; Aihara
et al. 2018a). We remove galaxies with PSF modeling fail-
ures and those located in disconnected regions. Regions of
sky around bright stars (⇠ 16% of the total area) are masked
(Mandelbaum et al. 2018). As a result, the final weak lens-
ing shear catalog covers 136.9 deg2 that consists of 6 dis-
joint patches: XMM, GAMA09H, GAMA15H, HECTOMAP,
VVDS, and WIDE12H. Mandelbaum et al. (2018) and Oguri
et al. (2018) performed extensive null tests of the shear cata-
log to show that the shear catalog satisfies the requirements of
HSC first-year science for both cosmic shear and galaxy-galaxy
lensing.

The shapes of galaxies are estimated on the i-band coad-
ded images using the re-Gaussianization PSF correction method
(Hirata & Seljak 2003). An advantage of this method is that it
has been applied extensively to Sloan Digital Sky Survey data,
and thus the systematics of the method are well understood
(Mandelbaum et al. 2005, 2013). In this method, the shape of a
galaxy image is defined as

e= (e1, e2) =
1� (b/a)2

1+ (b/a)2
(cos2�,sin2�), (1)

where b/a is the observed minor-to-major axis ratio and � is
the position angle of the major axis with respect to the equa-
torial coordinate system. The shear of each galaxy, �(obs), is
estimated from the measured ellipticity e as follows:

�(obs) =
1

1+ hmi

⇣
e
2R � c

⌘
, (2)

where R represents the responsivity that describes the response
of our ellipticity definition to a small shear (Kaiser et al. 1995;
Bernstein & Jarvis 2002) and is given by

R= 1�he2rmsi . (3)

Here erms is the intrinsic root mean square (RMS) ellipticity per
component. The symbols h···i denote a weighted average where
each galaxy carries a weight w defined as the inverse variance

Ellipticity of each object :
b

a ϕ



Cosmic shear power spectrum
Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0 19

Fig. 4. Comparison of the measured tomographic shear power spectra with our theoretical model with best-fit values for the fiducial ⇤CDM model. Best-fit
IA power spectra of C

GG

(dotted), �C

GI

(short dashed), and C

II

(long dashed) as well as power spectra arising from PSF leakage and PSF model error
[equation (11)] (dash-dotted) are also plotted. The redshift range of z

best

in each tomographic bin is =[0.3,0.6], [0.6,0.9], [0.9,1.2], and [1.2,1.5] from 1
to 4. The right-bottom panel shows the measured non-tomographic cosmic shear power spectrum and the model spectra with the best-fit values from the
tomographic analysis. The C

II

term is so small that it is absent from all panels except for 11.

parameters account for parameters that are dominated by the
parameters whose posteriors are driven by data rather than the
priors. We find that Ne↵ is 3.1, which results in DOF of 56.9.
The difference between Ne↵ and the total number of parame-
ters in our model reflects the fact that a number of our model
parameters are prior-dominated.

We find that our model well reproduces the observed power
spectra quite well. Our maximum-likelihood case in the fiducial
⇤CDM model has a minimum �2 of 45.4 for 56.9 DOF (p-value
is 0.86), which is a very acceptable fit5. Using the covariance

5 Our choice of using N

eff

to compute the degrees of freedom is different
from the choice of using the total number of parameters made by contem-
porary weak lensing analyses (Troxel et al. 2017). Regardless of which
definition we use, it does not change our conclusion about the goodness of
fit. For instance, even if we conservatively include all parameters without

assuming Planck cosmology, the total signal-to-noise ratio in
the four bin tomographic lensing spectra is 15.6 in the fiducial
range of multipoles. The signal-to-noise ratios of the cosmic
shear auto spectra in individual redshift bins are 4.9, 9.2, 12.3,
and 11.5 from the lowest to the highest redshift bins, respec-
tively. Although the number of source galaxies in the higher
redshift bins is less than in the lower redshift bins, the signal-
to-noise ratios of the measurements are higher due to the higher
amplitudes of the cosmic shear power spectra.

We derive marginalized posterior contours in the ⌦m-�8

plane from our tomographic cosmic shear power spectrum anal-
ysis in the fiducial ⇤CDM model. Constraints from cosmic
shear are known to be degenerate in the ⌦m-�8 plane. Cosmic

the Gaussian priors to N

eff

, we have 53 DOF and the resulting p-value is
0.76, which is also a very acceptable fit.

6 Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0

Table 1. Summary of properties of individual tomographic bins.⇤

bin number z range zmed Ng ng [arcmin�2] ng,e↵ [arcmin�2] he2rmsi1/2

1 0.3 – 0.6 0.446 2842635 5.9 5.4 0.394
2 0.6 – 0.9 0.724 2848777 5.9 5.3 0.395
3 0.9 – 1.2 1.010 2103995 4.3 3.8 0.404
4 1.2 – 1.5 1.300 1185335 2.4 2.0 0.409

All 0.3 – 1.5 0.809 8980742 18.5 16.5 0.398

⇤We show redshift ranges (z range), median redshifts (z
med

), total numbers of source galaxies (N
g

), raw number densities (n
g

), effective number densities (Chang et al.
2013) (n

g,eff ) and the mean intrinsic RMS ellipticity per component (he2
rms

i1/2), which is related to shear by equation (2), in our tomographic samples. Source galaxies
are assigned into four tomographic bins using photo-z best estimates, z

best

, derived by the Ephor AB photo-z code (see text for details). Both z

med

and he2
rms

i are a
weighted average [equation (4)]

Table 2. Comparison of lensing catalog properties of KiDS-450 (Hildebrandt et al. 2017), DES Y1 (Troxel et al. 2017), and HSC Y1 (this
paper) used for cosmic shear analyses.⇤

survey catalog area [deg2] No. of galaxies ng,e↵ [arcmin�2] z range tomography
KiDS-450 450 14.6M 6.85 0.1 – 0.9 4 bins
DES Y1 1321 26M 5.14 0.2 – 1.3 4 bins
HSC Y1 137 9.0M 16.5 0.3 – 1.5 4 bins

⇤We compare the survey area, the number of galaxies after cuts for cosmic shear analysis, the effective number density, the redshift range, and the number of bins in
tomographic analysis.

from bright star masks, survey boundaries, non-uniform survey
depths, and non-uniform galaxy shape weights. The observed
shear field is given by the weighted sum of shear values over
galaxies in each sky pixel as

�(obs)(✓) =W (✓)�(true)(✓), (5)

where W (✓) represents the survey window defined as the sum
of shear weights in each pixel. When a sky position ✓ is outside
the survey area or masked due to a bright star, W (✓) is set to
zero. We define a rectangular-shape region enclosing each of
the six HSC patches and then perform the Fourier transforma-
tion of the observed shear field, �obs, with typical pixel scale
of about 0.88 arcmin, which is much smaller than the scales we
use in our cosmological analysis. The power spectrum obtained
simply from the amplitude of the Fourier-transformed shear
field is biased due to the convolution with the mask field W .
We apply the pseudo-C` method to obtain unbiased estimates
of the cosmic shear power spectrum by correcting for the con-
volution with the survey window (Hikage et al. 2011; Kitching
et al. 2012; Hikage & Oguri 2016; Asgari et al. 2018). This
method has also been commonly used in CMB analyses (Kogut
et al. 2003; Brown et al. 2005). The details of the method may
be found in Appendix 1. In short, the dimensionless binned
lensing power spectrum C(true)

b corrected for the masking effect
is given by

C(true)
b =M�1

bb0

|`|2`0
bX

`

Pb0`(C
(obs)
` �hN`iMC), (6)

where Mbb0 is the mode coupling matrix of binned spectra,

which is related to the survey window W by equation (A7),
C(obs)

` is the pseudo-spectrum (masked spectrum) that we can
directly measure from the Fourier transform of �obs, and Pb` =

`2/2⇡ is a conversion factor to the dimensionless power spec-
trum. The sum is over all Fourier modes in the given ` bin (`0b).
In order to remove the shot noise, we randomly rotate orien-
tations of individual galaxies to estimate the shot noise power
spectrum N`, and subtract it from C(obs)

` . Specifically, we use
10000 Monte Carlo simulations with random galaxy orienta-
tions to estimate the convolved noise spectrum hN`iMC. We
use 15 logarithmically equal bins in the range 60  `  6500,
although we restrict ourselves to a narrower range for our cos-
mological inferences.

While the validity and accuracy of our pseudo-C` method
have been studied in depth in previous work (Hikage et al.
2011; Hikage & Oguri 2016), we explicitly check the accuracy
of the pseudo-C` method for the HSC first-year shear catalog
by applying the method to the HSC mock shear catalogs pre-
sented in Oguri et al. (2018). The mock shear catalogs have
the same survey geometry and spatial inhomogeneity as the real
HSC first-year data, and include random realizations of cos-
mic shear from the all-sky ray-tracing simulation presented in
Takahashi et al. (2017). These realistic mock catalogs allow
us to check the accuracy of the pseudo-C` method in correct-
ing for the masking effect, as well as the accuracy of our an-
alytic estimate of the covariance matrix as we will discuss be-
low. The results of the test with the HSC mock shear catalogs
are also presented in Appendix 1. We find that our pseudo-C`

method recovers the input cosmic shear power spectrum within

(lensing tomography)

Auto- & cross power 
spectrum between multiple 

photo-z bins

Multipole Multipole(ℓ ∼ π/θ)

Cℓ =
1

2ℓ + 1

ℓ

∑
m=−ℓ

|eℓm |2

e( ⃗θ ) = ∑
ℓ,m

eℓm Yℓm( ⃗θ )

Hikage et al. (arXiv:1809.09148)
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Fig. 5. Marginalized posterior contours in the ⌦

m

-�
8

plane (left) and in the ⌦

m

-S
8

(↵ = 0.45) plane (right), where S

8

(↵) ⌘ �

8

(⌦

m

/0.3)

↵, in the fiducial
⇤CDM model. Both 68% and 95% credible levels are shown. For comparison, we plot cosmic shear results from KiDS-450 with correlation function (CF)
estimators (Hildebrandt et al. 2017) and with quadratic estimators (QE) (Köhlinger et al. 2017) and DES Y1 (Troxel et al. 2018) with the same set of cosmological
parameters and priors as adopted in this paper, as well as WMAP9 (Hinshaw et al. 2013) (yellow) and Planck 2015 CMB constraints without CMB lensing (Planck
Collaboration et al. 2016) (purple).

Fig. 6. The 68% credible interval on S

8

(↵ = 0.5) from the HSC first-year data in the ⇤CDM model as well as from several literature.

shear can tightly constrain a combination of cosmological pa-
rameters S8(↵) ⌘ �8(⌦m/0.3)↵, which we adopt to quantify
cosmological constraints from the HSC first year data. By car-
rying out a linear fit of the logarithm of the posterior samples
of ⌦m and �8, we find that the tightest constraints for S8 are
obtained with ↵ = 0.45. However, the previous studies by
DES (Troxel et al. 2017) and KiDS (Hildebrandt et al. 2017;
Köhlinger et al. 2017) have presented constraints on S8 with
↵ = 0.5. To present best constraints as well as constraints that
can be directly compared with these previous cosmic shear re-
sults, in this paper we present our results of S8 both for ↵=0.45

and ↵= 0.5.

In Figure 5, we show our marginalized constraints in ⌦m-
�8 and ⌦m-S8(↵ = 0.45) planes. As expected, there is no
strong correlation between ⌦m and S8. We find S8(↵=0.45)=

0.800+0.029
�0.028 and ⌦m = 0.162+0.086

�0.044. Our HSC first-year cos-
mic shear analysis places a 3.6% fractional constraint on S8,

which is comparable to the results of DES (Troxel et al. 2017)
and KiDS (Hildebrandt et al. 2017). For comparison, we find a
slightly degraded constraint on S8(↵ = 0.5) = 0.780+0.030

�0.033 for
↵ = 0.5. We compare our constraints in the ⌦m-�8 and ⌦m-
S8(↵ = 0.5) planes with cosmic shear results from DES Y1
(Troxel et al. 2018) and also from KiDS-450 with two differ-
ent methods, correlation functions (CF; Hildebrandt et al. 2017)
and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018). Figure 6 compares the values of S8(↵ = 0.5) and
their 1-� errors among recent cosmic shear studies. We find
that there is no significant difference between the S8 values ob-
tained by these independent studies. Our result for S8 is smaller
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the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018). Figure 6 compares the values of S8(↵ = 0.5) and
their 1-� errors among recent cosmic shear studies. We find
that there is no significant difference between the S8 values ob-
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現在稼働中・今後の観測
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精密宇宙論時代の大規模構造

観測の精度とともに理論の精度向上も要求されている

7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
ii

for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k

i

:

P (k
i

)fit =

X

n

W (k
i

, k
n

)P (k
n

)m �W (k
i

, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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2.6� 105 galaxies5.8� 104 galaxies

より系統的な大規模観測によりこれまで以上の
統計精度で大規模構造の性質が明らかに

107 � 109 galaxies

• 宇宙論的大スケールにおける重力理論の検証
• ニュートリノ質量の検出・測定

• ダークエネルギーの性質の解明 (加速膨張の起源)
広がる可能性と理論・観測とのシナジー :



宇宙論的N体シミュレーション
z=18.3

z=5.7

z=1.4

http://www.mpa-garching.mpg.de/galform/millennium/

ハローの形成とフィ
ラメント構造の発展

z=0

膨張宇宙における自己重力多体系
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Figure 9: The power spectrum of the dark matter distribution in the Millennium Simulation at various
epochs (blue lines). The gray lines show the power spectrum predicted for linear growth, while the dashed
line denotes the shot-noise limit expected if the simulation particles are a Poisson sampling from a smooth
underlying density field. In practice, the sampling is significantly sub-Poisson at early times and in low
density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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どこまで正確に大規模構造の統計的性質を定量化できるか？



講義の内容
構造形成の理論を通して、宇宙論のプローブとして
の宇宙の大規模構造の成り立ち・進化を理解する

１・オーバービュー

２・フリードマン宇宙モデル

３・重力不安定性

４・ゆらぎの相対論的進化

５・非線形構造形成



講義資料など

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/Lecture2018_YITP/lecture2018_yitp.html

以下のサイトを参照


