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Conents
宇宙論のプローブとしての暗黒物質ハロー、

位相空間からみた特徴と性質

標準宇宙モデルと冷たい暗黒物質

冷たい暗黒物質ハロー、その位相空間構造

展望とまとめ



暗黒物質優勢宇宙の構造形成
構造形成の理論を通して、宇宙論のプローブとしての
宇宙の大規模構造の成り立ち・進化について

１・オーバービュー
２・フリードマン宇宙モデル
３・構造形成の線形理論

４・非一様宇宙の観測

５・非線形構造形成 ←この辺は明日の講義で

集中講義：

ΛCDMモデルにもとづく構造形成を概観



ΛCDM model
現在の宇宙論の標準モデル
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FIG. 2.È(a) Hubble diagram for 42 high-redshift type Ia supernovae from the Supernova Cosmology Project and 18 low-redshift type Ia supernovae from
the Supernova Survey, plotted on a linear redshift scale to display details at high redshift. The symbols and curves are as in Fig. 1.Cala! n/Tololo
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the physically allowed part of parameter space. Note that
throughout the previous cosmology literature, completely
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Type Ia supernovae

Perlmutter et al. (’99)

Figure 2 The redshift-space correlation function for the 2dFGRS, ξ(σ, π),
plotted as a function of transverse (σ) and radial (π) pair separation. The func-
tion was estimated by counting pairs in boxes of side 0.2 h−1 Mpc (assuming an
Ω = 1 geometry), and then smoothing with a Gaussian of rms width 0.5 h−1 Mpc.
To illustrate deviations from circular symmetry, the data from the first quadrant
are repeated with reflection in both axes. This plot clearly displays redshift
distortions, with ‘fingers of God’ elongations at small scales and the coherent
Kaiser flattening at large radii. The overplotted contours show model predic-
tions with flattening parameter β ≡ Ω0.6/b = 0.4 and a pairwise dispersion of
σp = 400 km s−1. Contours are plotted at ξ = 10, 5, 2, 1, 0.5, 0.2, 0.1.

The model predictions assume that the redshift-space power spectrum
(Ps) may be expressed as a product of the linear Kaiser distortion and a radial
convolution14: Ps(k) = Pr(k) (1 + βµ2)2 (1 + k2σ2

pµ2/2H2
0 )−1, where µ = k̂ · r̂,

and σp is the rms pairwise dispersion of the random component of the galaxy ve-
locity field. This model gives a very accurate fit to exact nonlinear simulations15.
For the real-space power spectrum, Pr(k), we take the estimate obtained by de-
projecting the angular clustering in the APM survey13,16. This agrees very well
with estimates that can be made directly from the 2dFGRS, as will be discussed
elsewhere. We use this model only to estimate the scale dependence of the
quadrupole-to-monopole ratio (although Fig. 2 shows that it does match the full
ξ(σ, π) data very well).

The presence of bias is an inevitable consequence of the nonlinear nature of galaxy for-
mation, and the relation between mass and galaxy tracers is complex18,19,20. However,
there are good theoretical reasons to expect that b can indeed be treated as a constant
on large scales, where the density fluctuations are linear21,22. Redshift-space distortions
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Fig. 6. The Planck CMB sky. The top panel shows the 2018, SMICA temperature map. The middle panel shows the polarization field
as rods of varying length, superimposed on the temperature map, when both are smoothed at the 5� scale. This smoothing is done
for visibility purposes, but the enlarged region presented in Fig. 7 shows that the Planck polarization map is dominated by signal at
much smaller scales. Both these CMB maps have been masked and inpainted in regions where residuals from foreground emission
are expected to be substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full resolution
temperature map. The bottom panel shows the Planck lensing map (derived from r�, i.e., the E mode of the lensing deflection
angle), specifically a minimum variance, Wiener filtered, map obtained from both temperature and polarization information; the
unmasked area covers 80.7 % of the sky, which is larger than that used for cosmology.
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Fig. 9. Planck CMB power spectra. These are foreground-subtracted, frequency-averaged, cross-half-mission angular power spectra
for temperature (top), the temperature-polarization cross-spectrum (middle), the E mode of polarization (bottom left) and the lensing
potential (bottom right). Within ⇤CDM these spectra contain the majority of the cosmological information available from Planck,
and the blue lines show the best-fitting model. The uncertainties of the TT spectrum are dominated by sampling variance, rather than
by noise or foreground residuals, at all scales below about ` = 1800 – a scale at which the CMB information is essentially exhausted
within the framework of the ⇤CDM model. The T E spectrum is about as constraining as the TT one, while the EE spectrum still
has a sizeable contribution from noise. The lensing spectrum represents the highest signal-to-noise ratio detection of CMB lensing
to date, exceeding 40�. The anisotropy power spectra use a standard binning scheme (which changes abruptly at ` = 30), but are
plotted here with a multipole axis that goes smoothly from logarithmic at low ` to linear at high `.
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Fig. 6. The Planck CMB sky. The top panel shows the 2018, SMICA temperature map. The middle panel shows the polarization field
as rods of varying length, superimposed on the temperature map, when both are smoothed at the 5� scale. This smoothing is done
for visibility purposes, but the enlarged region presented in Fig. 7 shows that the Planck polarization map is dominated by signal at
much smaller scales. Both these CMB maps have been masked and inpainted in regions where residuals from foreground emission
are expected to be substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full resolution
temperature map. The bottom panel shows the Planck lensing map (derived from r�, i.e., the E mode of the lensing deflection
angle), specifically a minimum variance, Wiener filtered, map obtained from both temperature and polarization information; the
unmasked area covers 80.7 % of the sky, which is larger than that used for cosmology.
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and joint temperature- and polarization-based convergence maps
plus the simulations, response functions, and masks necessary to
use them for cosmological science. We also release the joint CIB
map, the likelihood, and parameter chains.

3. The ⇤CDM model

Probably the most striking characteristic to emerge from the last
few decades of cosmological research is the almost unreason-
able e↵ectiveness of the minimal 6-parameter ⇤CDM model in
accounting for cosmological observations over many decades
in length scale and across more than 10 Gyr of cosmic time.
Though many of the ingredients of the model remain highly
mysterious from a fundamental physics point of view, ⇤CDM
is one of our most successful phenomenological models. As we
will discuss later, it provides a stunning fit to an ensemble of
cosmological observations on scales ranging from Mpc to the
Hubble scale, and from the present day to the epoch of last scat-
tering.

The ⇤CDM model rests upon a number of assumptions,
many of which can be directly tested with Planck data. With the
model tested and the basic framework established, Planck pro-
vides the strongest constraints on the six parameters that specify
the model (Tables 6 and 7). Indeed of these six parameters all
but one – the optical depth – is now known to sub-percent preci-
sion.15

Table 6. The 6-parameter ⇤CDM model that best fits the com-
bination of data from Planck CMB temperature and polarization
power spectra (including lensing reconstruction), with and with-
out BAO data (see text). A number of convenient derived param-
eters are also given in the lower part of the table. Note that these
best fits can di↵er by small amounts from the central values of
the confidence limits in Table 7.

Parameter Planck alone Planck + BAO

⌦bh
2 . . . . . . . . . . . . . 0.022383 0.022447

⌦ch
2 . . . . . . . . . . . . . 0.12011 0.11923

100✓MC . . . . . . . . . . . 1.040909 1.041010
⌧ . . . . . . . . . . . . . . . . 0.0543 0.0568
ln(1010

As) . . . . . . . . . 3.0448 3.0480
ns . . . . . . . . . . . . . . . 0.96605 0.96824

H0 [km s�1Mpc�1] . . . 67.32 67.70
⌦⇤ . . . . . . . . . . . . . . 0.6842 0.6894
⌦m . . . . . . . . . . . . . . 0.3158 0.3106
⌦mh

2 . . . . . . . . . . . . . 0.1431 0.1424
⌦mh

3 . . . . . . . . . . . . . 0.0964 0.0964
�8 . . . . . . . . . . . . . . . 0.8120 0.8110
�8(⌦m/0.3)0.5 . . . . . . 0.8331 0.8253
zre . . . . . . . . . . . . . . . 7.68 7.90
Age [Gyr] . . . . . . . . . 13.7971 13.7839

15For ns this claim depends upon the conventional choice that ns = 1
represents scale-invariance.

Table 7. Parameter confidence limits from Planck CMB tem-
perature, polarization and lensing power spectra, and with the
inclusion of BAO data. The first set of rows gives 68 % limits for
the base-⇤CDM model, while the second set gives 68 % con-
straints on a number of derived parameters (as obtained from the
constraints on the parameters used to specify the base-⇤CDM
model). The third set below the double line gives 95 % limits for
some 1-parameter extensions to the ⇤CDM model. More details
can be found in Planck Collaboration VI (2018).

Parameter Planck alone Planck + BAO

⌦bh
2 . . . . . . . . . . 0.02237 ± 0.00015 0.02242 ± 0.00014

⌦ch
2 . . . . . . . . . . 0.1200 ± 0.0012 0.11933 ± 0.00091

100✓MC . . . . . . . . 1.04092 ± 0.00031 1.04101 ± 0.00029
⌧ . . . . . . . . . . . . . 0.0544 ± 0.0073 0.0561 ± 0.0071
ln(1010

As) . . . . . . 3.044 ± 0.014 3.047 ± 0.014
ns . . . . . . . . . . . . 0.9649 ± 0.0042 0.9665 ± 0.0038

H0 . . . . . . . . . . . 67.36 ± 0.54 67.66 ± 0.42
⌦⇤ . . . . . . . . . . . 0.6847 ± 0.0073 0.6889 ± 0.0056
⌦m . . . . . . . . . . . 0.3153 ± 0.0073 0.3111 ± 0.0056
⌦mh

2 . . . . . . . . . . 0.1430 ± 0.0011 0.14240 ± 0.00087
⌦mh

3 . . . . . . . . . . 0.09633 ± 0.00030 0.09635 ± 0.00030
�8 . . . . . . . . . . . . 0.8111 ± 0.0060 0.8102 ± 0.0060
�8(⌦m/0.3)0.5 . . . 0.832 ± 0.013 0.825 ± 0.011
zre . . . . . . . . . . . . 7.67 ± 0.73 7.82 ± 0.71
Age[Gyr] . . . . . . 13.797 ± 0.023 13.787 ± 0.020
r⇤[Mpc] . . . . . . . . 144.43 ± 0.26 144.57 ± 0.22
100✓⇤ . . . . . . . . . 1.04110 ± 0.00031 1.04119 ± 0.00029
rdrag[Mpc] . . . . . . 147.09 ± 0.26 147.57 ± 0.22
zeq . . . . . . . . . . . . 3402 ± 26 3387 ± 21

keq[Mpc�1] . . . . . . 0.010384 ± 0.000081 0.010339 ± 0.000063

⌦K . . . . . . . . . . . �0.0096 ± 0.0061 0.0007 ± 0.0019
⌃m⌫ [eV] . . . . . . . < 0.241 < 0.120
Ne↵ . . . . . . . . . . . 2.89+0.36

�0.38 2.99+0.34
�0.33

r0.002 . . . . . . . . . . < 0.101 < 0.106

3.1. Assumptions underlying ⇤CDM

A complete list of the assumptions underlying the⇤CDM model
is not the goal of this section, but below we list several of the
major assumptions.

A1 Physics is the same throughout the observable Universe.
A2 General Relativity (GR) is an adequate description of grav-

ity.
A3 On large scales the Universe is statistically the same ev-

erywhere (initially an assumption, or “principle,” but now
strongly implied by the near isotropy of the CMB).

A4 The Universe was once much hotter and denser and has been
expanding since early times.

A5 There are five basic cosmological constituents:
(a) Dark energy that behaves just like the energy density of

the vacuum.
(b) Dark matter that is pressureless (for the purposes of

forming structure), stable and interacts with normal mat-
ter only gravitationally.
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Fig. 20. Constraints on the growth rate of fluctuations, f�8, as a
function of redshift, compared to the predictions of the ⇤CDM
model constrained by Planck (from Planck Collaboration VI
2018). The f�8 measurements are: dark cyan, 6dFGS and
velocities from SNe Ia (Huterer et al. 2017); green, 6dFGRS
(Beutler et al. 2012); purple square, SDSS MGS (Howlett et al.
2015); cyan cross, SDSS LRG (Oka et al. 2014); dark red,
GAMA (Blake et al. 2013); red, BOSS DR12 (Alam et al.
2017); blue, WiggleZ (Blake et al. 2012); olive, VIPERS
(Pezzotta et al. 2017); dark blue, FastSound (Okumura et al.
2016); and orange, BOSS DR14 quasars (Zarrouk et al. 2018).
The agreement between the low-z measures and the ⇤CDM pre-
diction is very good, indicating that the model (constrained by
observations in the high-z Universe) correctly predicts the rate of
growth of large-scale structure observed in the nearby Universe.

4.3. Discord

While there are many measurements that are consistent with the
predictions of the ⇤CDM model fitted to Planck, there are also
some areas of discordance.

Within the Planck data themselves we find a preference
for a larger smoothing of the power spectrum at small scales
than the ⇤CDM model predicts (Planck Collaboration XVI
2014; Planck Collaboration XIII 2016; Planck Collaboration VI
2018). While at face value it might seem like this smoothing
is the sign of an excess amplitude of gravitational lensing, it
is also possible to fit these features through non-lensing related
e↵ects (see Planck Collaboration Int. LI 2017, for discussion).
The preference for these features is driven almost entirely by
the CMB spectra and not by the lensing reconstruction, which
is consistent with theoretical expectations. The peak smoothing
features are not statistically very significant (2–3�) and could
just be statistical fluctuations in the data. Further, the level of
significance depends upon choices made about the calibration
of the polarization channels, the sky fraction, and other analysis
choices, as discussed further in Planck Collaboration VI (2018).
This discrepancy may indicate that the best-fit parameters from
the primary CMB have fluctuated from their true values by a few
�, in which case the combination a↵orded by multiple probes
may be a more faithful measure.

We will discuss distance measurements using BAO in
Sect. 6.3. There we will see (Fig. 27) that the inferred an-
gular diameter distance to z' 2 from the auto- and cross-

Fig. 21. A compilation of measurements of H0 since 2000,
based on the historical data assembled by J. Huchra for
the NASA/HST Key Project on the Extragalactic Distance
Scale. The additional points since 2010 are from Riess et al.
(2011), Freedman et al. (2012), Rathna Kumar et al. (2015),
Riess et al. (2016), Bonvin et al. (2017), Dhawan et al. (2018),
and Riess et al. (2018a,b). The blue circles show “traditional”
measures of H0, while the cyan and red squares show H0 in-
ferred from fits to CMB data from WMAP (Bennett et al. 2011;
Hinshaw et al. 2013) and Planck. The (magenta) diamond shows
the standard siren measurement from Abbott et al. (2017a).
Inferences from the inverse distance ladder are discussed in the
text and Fig. 22. Note the tremendous increase in precision with
time, driven by improvements in methods and in data, and the
narrowing of the di↵erence between “high” and ‘’low” values of
H0.

correlation of Ly↵ measurements by the Baryon Oscillation
Spectroscopic Survey (BOSS) is discrepant with the ⇤CDM
predictions fit to Planck at about 2.3� (Bautista et al. 2017;
du Mas des Bourboux et al. 2017). Within the ⇤CDM family,
parameter changes that would improve agreement with the Ly↵
distances are highly disfavoured by Planck and the more ac-
curate, lower-redshift BAO measurements. Even within an ex-
tended class of models, it is very di�cult to fit the combina-
tion of comoving angular diameter distance, DM, and Hubble
distance, DH, inferred from the Ly↵ data (Aubourg et al. 2015).
This mild tension could be the result of either a statistical fluctu-
ation or as yet unrealized systematics in the Ly↵ measurements.
However the size of the discrepancy highlights the importance
of future measurements at these redshifts.

At lower redshift, some measures of the amplitude of clus-
tering prefer lower values than ⇤CDM normalized to Planck.
In particular the Köhlinger et al. (2017) analysis of the KiDS
cosmic-shear-only results constrains S 8 ⌘ �8(⌦m/0.3)0.5 to be
0.651 ± 0.058 (which was shifted upwards to 0.772 ± 0.034 in
an alternative analysis by Troxel et al. 2018). When combined
with galaxy data the results are 0.742 ± 0.035 or 0.800 ± 0.028
(Joudaki et al. 2018; van Uitert et al. 2018). The preferred value
from Planck plus BAO is 0.8102 ± 0.0060, which is 2.7�
higher, 1.1� higher, 1.9� higher, or basically consistent with
these results. The recent DES results (DES Collaboration et al.
2017) are consistent with both Planck and the earlier lensing re-
sults: S 8 = 0.782 ± 0.024 when analysed with the same fixed
neutrino mass assumption as Planck (Planck Collaboration VI
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Table 3. Minimum �2 values fitting the SPTpol spectra to the best-fit Planck and SPTpol ⇤CDM cosmologies (as described in
the text). Nb gives the number of band powers in each spectrum. The deviation of �2

min from the expectation h�2
mini = Ndof is given

by the columns labelled N�, where N� = (�2
min � Ndof)/

p
2Ndof , and Ndof = Nb � 8. The last two columns give �2

p for parameter
di↵erences (Eq. 25) and the associated PTEs.

Planck cosmology SPT cosmology

SPTpol spectrum Nb �2
min N� �2

min N� �2
p

PTE

T E + EE . . . . . . . . . . . . . . . . . . . . 112 146.1 2.91 137.4 2.31 9.85 0.08
T E . . . . . . . . . . . . . . . . . . . . . . . . . 56 71.4 2.38 70.3 2.27 3.38 0.64
EE . . . . . . . . . . . . . . . . . . . . . . . . . 56 67.3 1.96 61.4 1.37 8.21 0.15

where Cp is the covariance matrix for SPTpol parameters (we
neglect the errors in the Planck parameters, which are much
smaller). Values for �2

p
are given in Table 3 together with prob-

abilities to exceed (PTEs) computed from a �2 distribution with
five degrees of freedom. We find no evidence for any statisti-
cally significant inconsistency between the two sets of parame-
ters, even for the combined T E+EE SPTpol likelihood. We also
note that the parameter Ase

�2⌧ makes quite a large contribution to
�2

p
for the T E + EE and EE spectra, but is sensitive to possible

systematic errors in the SPTpol polarization e�ciency calibra-
tion (Henning et al. 2017, which, as discussed, is not well under-
stood). Varying the maximum multipole used in the SPTpol like-
lihood (`max), we find that the parameters of the SPTpol T E+EE

cosmology converge by `max = 2500; higher multipoles do not
contribute significantly to the SPTpol base-⇤CDM solution.

Henning et al. (2017) reported a trend for the parameters
of the base-⇤CDM cosmology to change as the SPTpol like-
lihood is extended to higher multipoles, which they suggested
may be an indication of new physics. However, this e↵ect is not
of high statistical significance and cannot be tested by the Planck

spectra, which become less sensitive than the SPTpol spectra
at multipoles >⇠ 1500. The consistency of the base-⇤CDM cos-
mology at high multipoles in polarization should become clearer
in the near future as more polarization data are accumulated by
ACTPol and SPTpol.

5. Comparison with other astrophysical data sets

5.1. Baryon acoustic oscillations

As in PCP13 and PCP15 baryon acoustic oscillation (BAO)
measurements from galaxy redshift surveys are used as the pri-
mary non-CMB astrophysical data set in this paper. The acous-
tic scale measured by BAOs, at around 147 Mpc, is much larger
than the scale of virialized structures. This separation of scales
makes BAO measurements insensitive to nonlinear physics, pro-
viding a robust geometrical test of cosmology. It is for this rea-
son that BAO measurements are given high weight compared
to other non-CMB data in this and in previous Planck papers.
BAO features in the galaxy power spectrum were first detected
by Cole et al. (2005) and Eisenstein et al. (2005). Since their dis-
covery, BAO measurements have improved in accuracy via a
number of ambitious galaxy surveys. As demonstrated in PCP13
and PCP15 BAO results from galaxy surveys have been consis-
tently in excellent agreement with the best-fit base-⇤CDM cos-
mology inferred from Planck. More recently, the redshift reach
of BAO measurements has been increased using quasar redshift
surveys and Lyman-↵ absorption lines detected in quasar spec-
tra.
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Fig. 11. Acoustic-scale distance measurements divided by the
corresponding mean distance ratio from Planck TT,TE,EE
+lowE+lensing in the base-⇤CDM model. The points, with
their 1� error bars are as follows: green star, 6dFGS
(Beutler et al. 2011); magenta square, SDSS MGS (Ross et al.
2015); red triangles, BOSS DR12 (Alam et al. 2017); small
blue circles, WiggleZ (as analysed by Kazin et al. 2014);
large dark blue triangle, DES (DES Collaboration 2017c); cyan
cross, DR14 LRG (Bautista et al. 2017b); red circle, SDSS
quasars (Ata et al. 2017); and orange hexagon, BOSS Lyman-
↵ (du Mas des Bourboux et al. 2017). The green point with ma-
genta dashed line is the 6dFGS and MGS joint analysis result
of Carter et al. (2018). All ratios are for the averaged distance
DV(z), except for DES and BOSS Lyman-↵, where the ratio plot-
ted is DM (results for H(z) are shown separately in Fig. 16). The
grey bands show the 68 % and 95 % confidence ranges allowed
for the ratio DV(z)/rdrag by Planck TT,TE,EE+lowE+lensing
(bands for DM/rdrag are very similar).

Figure 11 summarizes the latest BAO results, updating fig-
ure 14 of PCP15. This plot shows the acoustic-scale distance
ratio DV(z)/rdrag measured from surveys with e↵ective redshift
z, divided by the mean acoustic-scale ratio in the base-⇤CDM
cosmology using Planck TT,TE,EE+lowE+lensing. Here rdrag is
the comoving sound horizon at the end of the baryon drag epoch
and DV is a combination of the comoving angular diameter dis-
tance DM(z) and Hubble parameter H(z):

DV(z) =
"
D

2
M(z)

cz

H(z)

#1/3
. (26)
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Fig. 13. Changes in the CMB TT spectrum and foreground
spectra, between the best-fitting AL model and the best-fitting
base ⇤CDM model to the Planck TT+lowP data. Blue lines
show the di↵erence between the AL model and ⇤CDM (solid),
and the same, but with AL set to unity (dashed) to show the
changes in the spectrum arising from di↵erences in the other
cosmological parameters. Also shown are the changes in the
best-fitting foreground contributions to the four frequency cross-
spectra between the AL model and the ⇤CDM model. The data
points (with ±1� errors) are the di↵erences between the high-
` maximum-likelihood frequency-averaged CMB spectrum and
the best-fitting ⇤CDM model to the Planck TT+lowP data (as
in Fig. 1). Note that the changes in the CMB spectrum and the
foregrounds should be added when comparing to the residuals in
the data points.

for base ⇤CDM is AL = 1. The results of such an analysis for
models with variable AL is shown in Fig. 12. The marginalized
constraint on AL is

AL = 1.22 ± 0.10 (68%,Planck TT+lowP) . (22)

This is very similar to the result from the 2013 Planck data re-
ported in PCP13. The persistent preference for AL > 1 is dis-
cussed in detail there. For the 2015 data, we find that ��2 = �6.4
between the best-fitting ⇤CDM+AL model and the best-fitting
base ⇤CDM model. There is roughly equal preference for high
AL from intermediate and high multipoles (i.e., the Plik likeli-
hood; ��2 = �2.6) and from the low-` likelihood (��2 = �3.1),
with a further small change coming from the priors.

Increases in AL are accompanied by changes in all other pa-
rameters, with the general e↵ect being to reduce the predicted
CMB power on large scales, and in the region of the second
acoustic peak, and to increase CMB power on small scales (see
Fig. 13). A reduction in the high-` foreground power compen-
sates the CMB increase on small scales. Specifically, ns is in-
creased by 1 % relative to the best-fitting base model and As is
reduced by 4 %, both of which lower the large-scale power to
provide a better fit to the measured spectra around ` = 20 (see
Fig. 1). The densities !b and !c respond to the change in ns, fol-
lowing the usual ⇤CDM acoustic degeneracy, and Ase�2⌧ falls
by 1 %, attempting to reduce power in the damping tail due to
the increase in ns and reduction in the di↵usion angle ✓D (which
follows from the reduction in !m). The changes in As and Ase�2⌧

lead to a reduction in ⌧ from 0.078 to 0.060. With these cos-
mological parameters, the lensing power is lower than in the

base model, which additionally increases the CMB power in the
acoustic peaks and reduces it in the troughs. This provides a poor
fit to the measured spectra around the fourth and fifth peaks, but
this can be mitigated by increasing AL to give more smoothing
from lensing than in the base model. However, AL further in-
creases power in the damping tail, but this is partly o↵set by
reduction in the power in the high-` foregrounds.

The trends in the TT spectrum that favour high AL have a
similar pull on parameters such as curvature (Sect. 6.2.4) and
the dark energy equation of state (Sect. 6.3) in extended models.
These parameters a↵ect the late-time geometry and clustering
and so alter the lensing power, but their e↵ect on the primary
CMB fluctuations is degenerate with changes in the Hubble con-
stant (to preserve ✓⇤). The same parameter changes as those in
AL models are found in these extended models, but with, for ex-
ample, the increase in AL replaced by a reduction in ⌦K . Adding
external data, however, such as the Planck lensing data or BAO
(Sect. 5.2), pull these extended models back to base ⇤CDM.

Finally, we note that lensing is also detected at lower signif-
icance in the polarization power spectra (see Fig. 12):

AL = 0.98+0.21
�0.24 (68%,Planck TE+lowP) ; (23a)

AL = 1.54+0.28
�0.33 (68%,Planck EE+lowP) . (23b)

These results use only polarization at low multipoles, i.e. with
no temperature data at multipoles ` < 30. These are the first de-
tections of lensing in the CMB polarization spectra, and reach
almost 5� in T E. We caution the reader that the AL constraints
from EE and low-` polarization are rather unstable between
high-` likelihoods, because of di↵erences in the treatment of the
polarization data (see Fig. 12, which compares constraints from
the Plik and CamSpec polarization likelihoods). The result of
replacing Plik with the CamSpec likelihood is AL = 1.19+0.20

�0.24,
i.e., around 1� lower than the result from Plik reported in
Eq. (23b). If we additionally include the low-` temperature data,
AL from T E increases:

AL = 1.13 ± 0.2 (68%,Planck TE+lowT,P) . (24)

The pull to higher AL in this case is due to the reduction in TT
power in these models on large scales (as discussed above).

5.2. Baryon acoustic oscillations

Baryon acoustic oscillation (BAO) measurements are geometric
and largely una↵ected by uncertainties in the nonlinear evolu-
tion of the matter density field and other systematic errors that
may a↵ect other types of astrophysical data. As in PCP13, we
therefore use BAO as a primary astrophysical dataset to break
parameter degeneracies from CMB measurements.

Figure 14 shows an updated version of figure 15 from
PCP13. The plot shows the acoustic-scale distance ratio
DV(z)/rdrag measured from a number of large-scale struc-
ture surveys with e↵ective redshift z, divided by the mean
acoustic-scale ratio in the base ⇤CDM cosmology using Planck
TT+lowP+lensing. Here rdrag is the comoving sound horizon at
the end of the baryon drag epoch and DV is a combination of the
angular diameter distance DA(z) and Hubble parameter H(z),

DV(z) =
"
(1 + z)2D2

A(z)
cz

H(z)

#1/3
. (25)

The grey bands in the figure show the ±1� and ±2� ranges
allowed by Planck in the base ⇤CDM cosmology.
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Fig. 14. Constraints on the growth rate of fluctuations from
various redshift surveys in the base-⇤CDM model: dark
cyan, 6dFGS and velocities fron SNe Ia (Huterer et al. 2017);
green, 6dFGRS (Beutler et al. 2012); purple square, SDSS
MGS (Howlett et al. 2015); cyan cross, SDSS LRG (Oka et al.
2014); dark red, GAMA (Blake et al. 2013); red, BOSS
DR12 (Alam et al. 2017); blue, WiggleZ (Blake et al. 2012);
olive, VIPERS (Pezzotta et al. 2017); dark blue, FastSound
(Okumura et al. 2016); and orange, BOSS DR14 quasars
(Zarrouk et al. 2018). Where measurements are reported in cor-
relation with other variables, we here show the marginalized pos-
terior means and errors. Grey bands show the 68 % and 95 %
confidence ranges allowed by Planck TT,TE,EE+lowE+lensing.

d ln D/d ln a. For ⇤CDM, d ln D/d ln a ⇡ ⌦0.55
m (z). We follow

PCP15, defining

f �8 ⌘

h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (29)

where �(vd)
8 is the density-velocity correlation in spheres of ra-

dius 8 h
�1Mpc in linear theory.

Measuring f �8 requires modelling nonlinearities and scale-
dependent bias and is considerably more complicated than es-
timating the BAO scale from galaxy surveys. One key problem
is deciding on the precise range of scales that can be used in
an RSD analysis, since there is a need to balance potential sys-
tematic errors associated with modelling nonlinearities against
reducing statistical errors by extending to smaller scales. In addi-
tion, there is a partial degeneracy between distortions caused by
peculiar motions and the Alcock-Paczynski e↵ect. Nevertheless,
there have been substantial improvements in modelling RSDs in
the last few years, including extensive tests of systematic errors
using numerical simulations. Di↵erent techniques for measur-
ing f �8 are now consistent to within a few percent (Alam et al.
2017).

Figure 14, showing f �8 as a function of redshift, is an up-
date of figure 16 from PCP15. The most significant changes from
PCP15 are the new high precision measurements from BOSS
DR12, shown as the red points. These points are the “consen-
sus” BOSS D12 results from Alam et al. (2017), which aver-
ages the results from four di↵erent ways of analysing the DR12
data (Beutler et al. 2017; Grieb et al. 2017; Sánchez et al. 2017;
Satpathy et al. 2017). These results are in excellent agreement

with the Planck base ⇤CDM cosmology (see also Fig. 15) and
provide the tightest constraints to date on the growth rate of fluc-
tuations. We have updated the VIPERS constraints to those of
the second public data release (Pezzotta et al. 2017) and added
a data point from the Galaxy and Mass Assembly (GAMA) red-
shift survey (Blake et al. 2012). Two new surveys have extended
the reach of RSD measurements (albeit with large errors) to
redshifts greater than unity: the deep FASTSOUND emission
line redshift survey (Okumura et al. 2016); and the BOSS DR14
quasar survey (Zarrouk et al. 2018). We have also added a new
low redshift estimate of f �8 from Huterer et al. (2017) at an ef-
fective redshift of ze↵ = 0.023, which is based on correlating
deviations from the mean magnitude-redshift relation of SNe in
the Pantheon sample with estimates of the nearby peculiar veloc-
ity field determined from the 6dF Galaxy Survey (Springob et al.
2014). As can be seen from Fig. 14, these growth rate measure-
ments are consistent with the Planck base-⇤CDM cosmology
over the entire redshift range 0.023 < ze↵ < 1.52.

Since the BOSS-DR12 estimates provide the strongest con-
straints on RSDs, it is worth comparing these results with Planck

in greater detail. Here we use the “full-shape consensus” re-
sults17 on DV , f �8, and FAP for each of the three redshift bins
from Alam et al. (2017) and the associated 9⇥ 9 covariance ma-
trix, where FAP is the Alcock-Paczinski parameter

FAP(z) = DM(z)
H(z)

c
. (30)

Figure 15 shows the constraints from BOSS-DR12 on f �8 and
FAP marginalized over DV . Planck base-⇤CDM constraints are
shown by the red and green contours. For each redshift bin,
the Planck best-fit values of f �8 and FAP lie within the 68 %
contours from BOSS-DR12. Figure 15 highlights the impres-
sive consistency of the base-⇤CDM cosmology from the high
redshifts probed by the CMB to the low redshifts sampled by
BOSS.

5.4. The Hubble constant

Perhaps the most controversial tension between the Planck

⇤CDM model and astrophysical data is the discrepancy with
direct measurements of the Hubble constant H0. PCP13 re-
ported a value of H0 = (67.3 ± 1.2) km s�1Mpc�1 for the
base-⇤CDM cosmology, substantially lower that the distance-
ladder estimate of H0 = (73.8 ± 2.4) km s�1Mpc�1 from
the SH0ES18 project (Riess et al. 2011) and other H0 stud-
ies (e.g., Freedman et al. 2001, 2012). Since then, additional
data acquired as part of the SH0ES project (Riess et al. 2016;
Riess et al. 2018a, hereafter R18) has exacerbated the tension.
R18 conclude that H0 = (73.48± 1.66) km s�1Mpc�1, compared
to our Planck TT,TE,EE+lowE+lensing estimate from Table 1
of H0 = (67.27 ± 0.60) km s�1Mpc�1. Using Gaia parallaxes
Riess et al. (2018b) recently slightly tightened their measure-
ment19 to H0 = (73.52 ± 1.62) km s�1Mpc�1. Interestingly, the
central values of the SH0ES and Planck estimates have hardly

17When using RSDs to constraint dark energy in Sect. 7.4, we use the
alternative DM, H, and f �8 parameterization from Alam et al. (2017)
for consistency with the DR12 BAO-only likelihood that we use else-
where.

18SN, H0, for the Equation of State of dark energy.
19By default in this paper (and in the PLA) we use the Riess et al.

(2018a) number (available at the time we ran our parameter chains)
unless otherwise stated; using the updated number would make no sig-
nificant di↵erence to our conclusions.
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Fig. 14. Constraints on the growth rate of fluctuations from
various redshift surveys in the base-⇤CDM model: dark
cyan, 6dFGS and velocities fron SNe Ia (Huterer et al. 2017);
green, 6dFGRS (Beutler et al. 2012); purple square, SDSS
MGS (Howlett et al. 2015); cyan cross, SDSS LRG (Oka et al.
2014); dark red, GAMA (Blake et al. 2013); red, BOSS
DR12 (Alam et al. 2017); blue, WiggleZ (Blake et al. 2012);
olive, VIPERS (Pezzotta et al. 2017); dark blue, FastSound
(Okumura et al. 2016); and orange, BOSS DR14 quasars
(Zarrouk et al. 2018). Where measurements are reported in cor-
relation with other variables, we here show the marginalized pos-
terior means and errors. Grey bands show the 68 % and 95 %
confidence ranges allowed by Planck TT,TE,EE+lowE+lensing.
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where �(vd)
8 is the density-velocity correlation in spheres of ra-

dius 8 h
�1Mpc in linear theory.

Measuring f �8 requires modelling nonlinearities and scale-
dependent bias and is considerably more complicated than es-
timating the BAO scale from galaxy surveys. One key problem
is deciding on the precise range of scales that can be used in
an RSD analysis, since there is a need to balance potential sys-
tematic errors associated with modelling nonlinearities against
reducing statistical errors by extending to smaller scales. In addi-
tion, there is a partial degeneracy between distortions caused by
peculiar motions and the Alcock-Paczynski e↵ect. Nevertheless,
there have been substantial improvements in modelling RSDs in
the last few years, including extensive tests of systematic errors
using numerical simulations. Di↵erent techniques for measur-
ing f �8 are now consistent to within a few percent (Alam et al.
2017).

Figure 14, showing f �8 as a function of redshift, is an up-
date of figure 16 from PCP15. The most significant changes from
PCP15 are the new high precision measurements from BOSS
DR12, shown as the red points. These points are the “consen-
sus” BOSS D12 results from Alam et al. (2017), which aver-
ages the results from four di↵erent ways of analysing the DR12
data (Beutler et al. 2017; Grieb et al. 2017; Sánchez et al. 2017;
Satpathy et al. 2017). These results are in excellent agreement

with the Planck base ⇤CDM cosmology (see also Fig. 15) and
provide the tightest constraints to date on the growth rate of fluc-
tuations. We have updated the VIPERS constraints to those of
the second public data release (Pezzotta et al. 2017) and added
a data point from the Galaxy and Mass Assembly (GAMA) red-
shift survey (Blake et al. 2012). Two new surveys have extended
the reach of RSD measurements (albeit with large errors) to
redshifts greater than unity: the deep FASTSOUND emission
line redshift survey (Okumura et al. 2016); and the BOSS DR14
quasar survey (Zarrouk et al. 2018). We have also added a new
low redshift estimate of f �8 from Huterer et al. (2017) at an ef-
fective redshift of ze↵ = 0.023, which is based on correlating
deviations from the mean magnitude-redshift relation of SNe in
the Pantheon sample with estimates of the nearby peculiar veloc-
ity field determined from the 6dF Galaxy Survey (Springob et al.
2014). As can be seen from Fig. 14, these growth rate measure-
ments are consistent with the Planck base-⇤CDM cosmology
over the entire redshift range 0.023 < ze↵ < 1.52.

Since the BOSS-DR12 estimates provide the strongest con-
straints on RSDs, it is worth comparing these results with Planck

in greater detail. Here we use the “full-shape consensus” re-
sults17 on DV , f �8, and FAP for each of the three redshift bins
from Alam et al. (2017) and the associated 9⇥ 9 covariance ma-
trix, where FAP is the Alcock-Paczinski parameter

FAP(z) = DM(z)
H(z)

c
. (30)

Figure 15 shows the constraints from BOSS-DR12 on f �8 and
FAP marginalized over DV . Planck base-⇤CDM constraints are
shown by the red and green contours. For each redshift bin,
the Planck best-fit values of f �8 and FAP lie within the 68 %
contours from BOSS-DR12. Figure 15 highlights the impres-
sive consistency of the base-⇤CDM cosmology from the high
redshifts probed by the CMB to the low redshifts sampled by
BOSS.

5.4. The Hubble constant

Perhaps the most controversial tension between the Planck

⇤CDM model and astrophysical data is the discrepancy with
direct measurements of the Hubble constant H0. PCP13 re-
ported a value of H0 = (67.3 ± 1.2) km s�1Mpc�1 for the
base-⇤CDM cosmology, substantially lower that the distance-
ladder estimate of H0 = (73.8 ± 2.4) km s�1Mpc�1 from
the SH0ES18 project (Riess et al. 2011) and other H0 stud-
ies (e.g., Freedman et al. 2001, 2012). Since then, additional
data acquired as part of the SH0ES project (Riess et al. 2016;
Riess et al. 2018a, hereafter R18) has exacerbated the tension.
R18 conclude that H0 = (73.48± 1.66) km s�1Mpc�1, compared
to our Planck TT,TE,EE+lowE+lensing estimate from Table 1
of H0 = (67.27 ± 0.60) km s�1Mpc�1. Using Gaia parallaxes
Riess et al. (2018b) recently slightly tightened their measure-
ment19 to H0 = (73.52 ± 1.62) km s�1Mpc�1. Interestingly, the
central values of the SH0ES and Planck estimates have hardly

17When using RSDs to constraint dark energy in Sect. 7.4, we use the
alternative DM, H, and f �8 parameterization from Alam et al. (2017)
for consistency with the DR12 BAO-only likelihood that we use else-
where.

18SN, H0, for the Equation of State of dark energy.
19By default in this paper (and in the PLA) we use the Riess et al.

(2018a) number (available at the time we ran our parameter chains)
unless otherwise stated; using the updated number would make no sig-
nificant di↵erence to our conclusions.
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Fig. 5. Marginalized posterior contours in the ⌦m-�8 plane (left) and in the ⌦m-S8(↵ = 0.45) plane (right), where S8(↵) ⌘ �8(⌦m/0.3)↵, in the fiducial
⇤CDM model. Both 68% and 95% credible levels are shown. For comparison, we plot cosmic shear results from KiDS-450 with correlation function (CF)
estimators (Hildebrandt et al. 2017) and with quadratic estimators (QE) (Köhlinger et al. 2017) and DES Y1 (Troxel et al. 2018b) with the same set of
cosmological parameters and priors as adopted in this paper, as well as WMAP9 (Hinshaw et al. 2013) (yellow) and Planck 2015 CMB constraints without CMB
lensing (Planck Collaboration et al. 2016) (purple).

Fig. 6. The 68% credible interval on S8(↵ = 0.5) from the HSC first-year data in the ⇤CDM model as well as from several literature.

shear are known to be degenerate in the ⌦m-�8 plane. Cosmic
shear can tightly constrain a combination of cosmological pa-
rameters S8(↵) ⌘ �8(⌦m/0.3)

↵, which we adopt to quantify
cosmological constraints from the HSC first year data. By car-
rying out a linear fit of the logarithm of the posterior samples
of ⌦m and �8, we find that the tightest constraints for S8 are
obtained with ↵ = 0.45. However, the previous studies by
DES (Troxel et al. 2018a) and KiDS (Hildebrandt et al. 2017;
Köhlinger et al. 2017) have presented constraints on S8 with
↵ = 0.5. To present best constraints as well as constraints that
can be directly compared with these previous cosmic shear re-
sults, in this paper we present our results of S8 both for ↵=0.45

and ↵ = 0.5.

In Figure 5, we show our marginalized constraints in ⌦m-
�8 and ⌦m-S8(↵ = 0.45) planes. As expected, there is no
strong correlation between ⌦m and S8. We find S8(↵=0.45)=

0.800
+0.029
�0.028 and ⌦m = 0.162

+0.086
�0.044. Our HSC first-year cos-

mic shear analysis places a 3.6% fractional constraint on S8,
which is comparable to the results of DES (Troxel et al. 2018a)
and KiDS (Hildebrandt et al. 2017). For comparison, we find a
slightly degraded constraint on S8(↵ = 0.5) = 0.780

+0.030
�0.033 for

↵ = 0.5. We compare our constraints in the ⌦m-�8 and ⌦m-
S8(↵ = 0.5) planes with cosmic shear results from DES Y1
(Troxel et al. 2018b) and also from KiDS-450 with two differ-
ent methods, correlation functions (CF; Hildebrandt et al. 2017)
and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018b).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018b). We also note that there are also some differences
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rying out a linear fit of the logarithm of the posterior samples
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and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018b).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018b). We also note that there are also some differences
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ΛCDM model ~summary~
Minimum model
＝Many simplification &  assumptions

•  曲率ゼロの平坦宇宙 ＋ 宇宙項（暗黒エネルギー）
（物質成分としては暗黒物質、バリオンのみ）

•  インフレーションと無矛盾な断熱ゆらぎ

•  ゆらぎの初期条件はガウス統計に従う
•  一般相対論にもとづく宇宙の大域的進化

•  宇宙原理が成り立つ（宇宙は大域的に一様・等方）
単純化とはいえ、これだけ仮定を積み重ねているので、

観測と多少の不整合性があることは当然？

（ベキ型パワースペクトル）

（宇宙膨張＋密度ゆらぎ）



CDM paradigm
標準モデル確立前から暗黒物質には１つのコンセンサスがあった

宇宙には “冷たい”暗黒物質が必要

重力相互作用しかせず、十分過去から非相対論的粒子
e.g., Peebles (’82), Blumenthal et al. (’82), Bond et al. (’82), …

速度分散が十分小さい

c.f.  ニュートリノは最近になって非相対論的になった

“熱い” 暗黒物質znr ≃ 190 ( mν

0.1 eV )

(cold dark matter, CDM)

(mDM ≫ TDM)



CDM paradigm

•バリオンの追いつき現象

•ボトムアップ型の階層的
クラスタリング

•宇宙背景放射の非等方性

構造形成において、
Planck Collaboration: The cosmological legacy of Planck

Fig. 9. Planck CMB power spectra. These are foreground-subtracted, frequency-averaged, cross-half-mission angular power spectra
for temperature (top), the temperature-polarization cross-spectrum (middle), the E mode of polarization (bottom left) and the lensing
potential (bottom right). Within ⇤CDM these spectra contain the majority of the cosmological information available from Planck,
and the blue lines show the best-fitting model. The uncertainties of the TT spectrum are dominated by sampling variance, rather than
by noise or foreground residuals, at all scales below about ` = 1800 – a scale at which the CMB information is essentially exhausted
within the framework of the ⇤CDM model. The T E spectrum is about as constraining as the TT one, while the EE spectrum still
has a sizeable contribution from noise. The lensing spectrum represents the highest signal-to-noise ratio detection of CMB lensing
to date, exceeding 40�. The anisotropy power spectra use a standard binning scheme (which changes abruptly at ` = 30), but are
plotted here with a multipole axis that goes smoothly from logarithmic at low ` to linear at high `.
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温度ゆらぎの
パワースペクトル

バリオン

光子
ニュートリノ

CDM

340 J. Lesgourgues, S. Pastor / Physics Reports 429 (2006) 307 – 379
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Fig. 11. Evolution of the metric and density perturbations as a function of the scale factor (normalized to a0 = 1 today), in the longitudinal gauge,
for modes 10−3h Mpc−1 < k < 1h Mpc−1 (from top to bottom), and for two cosmological models: !CDM (left) and !MDM (right), both with
"m = 0.147 and #! = 0.7. The integration has been performed with the code CMBFAST starting from the initial condition k3/2$ = −10−5. The
!MDM model has three degenerate neutrinos with m% = 0.46 eV, corresponding to f% = 0.1.

（質量ゼロの）

ゆらぎの進化（星・銀河形成の条件）

大スケールの観測と大きな矛盾はない



Origin of cold dark matter
WIMP (Weakly Interacting Massive Particles)

素粒子標準モデル粒子とほとんど相互作用しない熱的残存粒子
超対称性粒子が有力候補だが…

mDM ∼GeV −TeV

https://home.cern/resources/image/accelerators/lhc-images-gallery

No sign of supersymmetry

LHC



Variant of cold dark matter model

• Self-interacting dark matter (SIDM)

• Warm dark matter (WDM)

• Baryon-scattering dark matter (BSDM)

• Axion-like particles (ALP) 

• Fuzzy dark matter (FDM)

• Primordial black holes (PBH)

CDMと似たような性質を示す暗黒物質モデル

小スケールの構造形成でCDMとの違いが顕著になりうる

→ 天文観測は格好の暗黒物質のプローブ



Structure formation with fuzzy DM

CDMFuzzy DM

Schive, Chiueh & Broadhurst (’14)
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Figure 4 | Modelling the Fornax dSph galaxy with the soliton profile.
a, Star counts of the intermediate metallicity subpopulation25 at di�erent
radial bins (symbols with 1-� error bars) and the best-fit soliton solution
(red solid line) with mB =8.0⇥ 10�23 eV, rc =0.93kpc and �k = 11.3km s�1,
together with the 1-� variation (red shaded). Star counts are normalized to
the total number of sample stars within ⇠2.1 kpc. Also shown are the
best-fit empirical formula of Burkert35 (green dashed line) and the NFW
profile (blue dot-dashed line) representing standard CDM. The scale radius
of NFW is restricted to be no larger than 3.0 kpc during the fit to exclude
unreasonably small concentration parameters. b, 1-� contours of the total
enclosed mass estimated from each of the three subpopulations5 (ovals),
overplotted with the model curves using the same best-fit parameters
adopted in a. Clearly, in both panels the soliton profile of  DM provides an
accurate fit, matched only by the empirical fitting function of the Burkert
profile, whereas NFW is not favoured by the data.

reproduce well the radial distribution of the stars25 (Fig. 4a)
and their velocity dispersion with negligible velocity anisotropy,
with mB =(8.0+1.8

�2.0)⇥10�23 eV and a core radius rc = 0.93+0.19
�0.12 kpc

(Supplementary Fig. 5). The corresponding core mass M(r  rc)
is ' 9.2 ⇥ 107 M�, which is hosted by a halo with virial mass
' 4⇥ 109M� in the simulations. These results are similar to other
estimates for Fornax5,26,27 (Fig. 4b) and consistent with other dSph
galaxies derived by a variety of means4,26,28 (see Supplementary
Section 3 for details).

For more massive galaxies, the solitons we predict are denser and
more massive, scaling approximately asMs /⇠M 1/3

vir . So for the Milky
Way, adopting a total mass ofMvir =1012 M�, we expect a soliton of

Ms ' 2⇥109 M�, with a core radius ' 180 pc and a potential depth
corresponding to a line-of-sight velocity dispersion �k ' 115 km s�1

for test particles satisfying the virial condition with the soliton
potential. At face value this seems consistent with the Milky Way
bulge velocity dispersion, where a distinctive flat peak is observed
at a level of �k ' 110 km s�1 within a projected radius ⇠200 pc
(refs 29,30). Such cores clearly have implications for the creation of
spheroids, acting as an essential seed for the prompt attraction of gas
within a deepened potential. Indeed, bulge stars with [Fe/H]>�1.0
are firmly established as a uniformly old population that formed
rapidly30,31, a conclusion that standard 3CDM struggles to explain
through extended accretion and merging30. The implications for
early spheroid formation and compact nuclear objects in general
can be explored self-consistently with the addition of baryons to
the  DM code, to model the interplay among stars, gas and  DM,
which will provide model rotation curves for an important test of
this model.

At high redshift, the earliest galaxies formed from  DM are
delayed relative to standard CDM, limited by the small amplitude
of the Jeans mass at radiation–matter equality, after which the first
structures grow. This is demonstrated with a  DM simulation of
a 30 h�1 Mpc box where we adopt mB = 8.0 ⇥ 10�23 eV derived
above. The first bound object collapses at z ' 13, with a clear
solitonic core of mass ' 109 M� and radius ' 300pc, whereas under
3CDM the first objects should form at z ' 50 with masses of only
104–105 M� (ref. 32). The highest redshift galaxy at present at
z ' 10.7 is multiply lensed, seeming smooth and spherical, with a
stellar radius' 100pc (ref. 33), similar to local dSph galaxies. Deeper
cluster lensing data from the Hubble ‘Frontier Fields’ programme
will soon meaningfully explore the mass limits of galaxy formation
to higher redshift, allowing us to better distinguish between particle
and wavelike cold dark matter.

Received 31 August 2013; accepted 15 May 2014;
published online 22 June 2014
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Cold dark matter (CDM) halo

•階層的構造形成の屋台骨

重力による非線形構造形成の終着点

自己重力で束縛された暗黒物質の“かたまり”

（e.g., 高温ガスのX線、SZ効果、重力レンズ効果）

•バリオンが取り込まれている → 星・銀河の形成サイト

•格好の観測ターゲット

Fritz Zwicky



Cold dark matter (CDM) halo
位相空間において顕著な特徴が見られる

自己相似解

Adhukari et al. (’14)

Bertschinger (’85)
Filmore & Goldreich (’84)

•マルチストリーム構造
•密度のシャープな発散

Lithwick & Dalal (’11)

JCAP11(2014)019
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Figure 3. Caustics for self-similar halos [2, 7] with accretion rate s = 3. The top panel shows the
phase space diagram for spherically symmetric collapse (solid black curve) and for 3D collapse with
e = 0.05 (colormap), while the bottom panel shows the density vs. radius. The vertical line in the
bottom panel indicates the splashback radius predicted by the spherical collapse model for this value
of s. As the density profiles demonstrate, the caustic location depends mainly on accretion rate, with
little if any dependence on the initial ellipticity e. However, the caustic width does depend on e,
apparently because the shape of the splashback surface is related to the initial ellipticity.

the similarity solution for s = 3. Note that for ΩM = 1, the 1-D simulation does not exactly
match the similarity solution. This is because the dynamics, even in spherical symmetry, are
subject to a slew of instabilities that are not present in the similarity solution [15, 19, 20].
To suppress these instabilities, we follow Vogelsberger et al. [15] and soften the force law in
eq. (2.1) near r = 0. As figure 4 shows, the halo profile for ΩM = 1 is similar to the similarity
solution. The level of agreement or disagreement between the two curves illustrates the
extent to which the 1-D N-body simulations may be trusted. Note in particular that the
location of the splashback radius is similar in the two cases. The figure also shows results
for ΩM = 0.3, in the solid red curve. For comparison, the vertical dotted lines show the toy
model’s predictions for the splashback radius for these values of ΩM . Overall, we find good
agreement, demonstrating that the location of splashback does indeed depend on cosmology
and redshift.
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Splashback radius
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Figure 1. Top: the phase space diagram for halos from the MDR1 simulation in the mass range
M = 1− 4× 1014h−1M⊙. The colorbar shows the number of particles within each phase space pixel.
The pixel spacing is linear in both r and v, so the number is proportional to r2ρ. Bottom: the
local slope of the density of all particles (red) and particles with |vr| < 0.4 vcirc (blue), as a function
of radius r. The location of the feature in the local slope coincides with the outer caustic at the
splashback radius.

Figure 1 illustrates that the local steepening discussed by [9] coincides with the splashback
radius. The figure plots the phase space structure of the particles near dark matter halos
taken from the publicly available MultiDark Simulation [17], along with the radial depen-
dence of the local logarithmic slope of the density d(log ρ)/d(log r). The location where
d(log ρ)/d(log r) < −3 coincides with splashback, the outermost radius attained by particles
following their collapse into halos. As the phase-space diagram illustrates, the splashback ra-
dius is near the location of a radial caustic, where the slope of the phase space sheet becomes
vertical. To further illustrate this point, the figure plots the density slope of only the par-
ticles near splashback, i.e. those with |vr| < 0.4 vcirc. Among the particles near splashback,
the steepening of the density slope becomes even more pronounced.

The steepening feature in the outer profile is therefore determined by the splashback
radius of recently accreted material. Since splashback occurs only half an orbit after collapse,
a relatively simple treatment of the orbital dynamics should suffice to capture the physics
setting the splashback radius. In this paper, we show that this is indeed the case. We
construct an extremely simple model for splashback, based largely on the spherical collapse
model of [1]. We then compare the predictions of our model with N-body simulations, and
show that it accurately predicts the location of the steepening feature for a variety of halos
with different mass, redshift, and accretion rate.
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ビリアル半径と違う場所に現れる

位相空間

密度スロープ

外縁部の密度構造に着目すると、
NFWプロファイル

からの顕著なずれ

�halo(r) �
1

(r/rs)(1 + r/rs)2
⟶ r−3

(Navarro et al.  ’97)

r → ∞

→ splashback radius



Splashback radius: theoretical aspects
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Figure 7. Dependence of the slope profiles on the mass accretion rate and
occurrence of a recent major merger. In both panels, the red line shows the
median density profile of all halos in the peak height range 1.5 < ν < 2 at
z = 0, previously shown in Figure 5. In the top panel, the sample is further
split by accretion rate, measured as the logarithmic change in halo mass,
Γ ≡ ∆ log(Mvir)/∆ log(a), with differences evaluated for the main progenitor
and descendant halo at z = 0.5 and z = 0. Halos with high mass accretion
rates exhibit very different median profiles compared to their slowly accreting
counterparts. The bottom panel shows the same samples, but with the additional
condition that the halos have not undergone a major merger since z = 0.5.
The profiles are very similar to those in the top panel, which demonstrates that
systematic deviations in the shape of the outer profile correlate with the overall
mass accretion rate rather than a sharp increase of mass due to a recent major
merger.
(A color version of this figure is available in the online journal.)

The figure shows a strikingly clear correlation between mass
accretion rate and the steepness of the median outer profile:
rapidly accreting halos exhibit the steepest slopes, as steep as
those observed in the highest-ν bin in Figure 5, whereas slowly
accreting halos reach slopes comparable to those of the median
profile of the overall ν sample. We can also see that the radius
at which the steepest slope is reached decreases with increasing
accretion rate, although the variation occurs in a rather narrow
range around R200m. These differences demonstrate that the
median profiles for a given range of ν are not representative
of all halos in that range. Instead, the outer profiles depend on

Figure 8. Mean mass accretion rate, Γ, as a function of peak height, ν. The
shaded contour indicates the uncertainty on the mean, whereas the dashed lines
show the 68% interval. The median Γ is slightly lower than the mean at all
ν. The dependence of Γ on ν explains why high-ν halo samples have similar
profiles as samples selected by a high accretion rate (Figures 5 and 7).
(A color version of this figure is available in the online journal.)

the mass accretion rate. The correlation of the profile shape
with ν is secondary and arises because higher-ν halos tend to
dominate their environment and thus generally have larger mass
accretion rates, as shown in Figure 8.

Furthermore, the bottom panel of Figure 7 shows the same
halo samples as the top panel but excluding halos that underwent
a major merger after z = 0.5. We have checked that only
excluding major mergers after z = 0.25 leads to very similar
results. A major merger here is defined as a merger of halos
with mass ratio larger than 0.3. It is clear that the profiles in the
two panels are very similar. In fact, the profiles of halos without
major mergers reach somewhat steeper slopes at r ≈ R200m,
which may be due to variations in the outer profiles produced
by mergers that smooth out features in the median profile.
The similarity of the samples with and without major mergers
implies that the primary factor in defining the shape of the outer
profiles is mass accretion rate, rather than major mergers. In an
additional experiment, we verified that selecting halos by the
time of their last major merger does not preferentially select
profiles with steep outer slopes.

These results highlight an important point: significant growth
of halos, in particular in observational analyses of groups
and clusters, is often identified with apparent disturbances,
such as asymmetries, substructure, deviations from hydrostatic
equilibrium, etc. However, real halos grow by a combination of
major mergers and the accretion of many low-mass halos. The
latter mode of accretion actually dominates at most epochs. An
object that appears quite relaxed in its inner regions can thus still
be in the process of accreting mass at a high rate because the
accretion of many small halos from different directions will not
produce strong disturbances typically associated with unrelaxed
clusters, for example.

Additional evidence for the connection between the mass
accretion rate and the shape of the outer density profiles is
provided by the infall velocity profiles of halos. The top panel of
Figure 9 shows the median radial velocity profiles of the same ν
bins as in Figure 5, rescaled by v200m ≡ (GM200m/R200m)1/2. As
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外部環境の依存性大、ハロー質量以外に
•質量降着率に強く依存

•暗黒エネルギーや重力理論にも依存

Γ ≡ Δ log(Mvir)
Δ log(a)

(Diemer & Kravstov ’14)
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FIG. 5. Left: Comparison of splashback radius in f(R) gravity with fR = 10−5 (F5; dashed curves) and GR (solid). As
indicated in the legend, results for the particles and subhalos with two mean masses are shown. The vertical lines correspond
to the splashback radius for subhalos with Mpeak > 8 × 1012M⊙h

−1 in F5 (dashed) and GR (solid). These subhalos are
affected by dynamical friction and respond differently in the two models. Right: Average radial velocity for subhalos of mass,
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FIG. 6. The effect of gravity theories on dynamical fric-
tion and splashback. The profile of subhalos with mass
Mpeak > 8 × 1012M⊙h

−1 around clusters is shown for four
different modified gravity models (vertical lines correspond
to the splashback radius as in earlier figures). The signature
is largest for the f(R) model shown in Figure 5.

attempted to quantify this signal. Future spectroscopic

surveys like DESI [88] will help constrain the relationship
between stellar mass and halo mass better, helping with
the interpretation of any trend of splashback with galaxy
magnitudes.
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FIG. 1. The logarithmic slope of the local density as a func-
tion of r/r200 for stacked N-body halos at z = 0 with virial
mass Mvir = 1− 4× 1014h−1M⊙ and accretion rate Γ = 1.5.
Different colors correspond to different values of the equation
of state parameter, w. Blue, red and green correspond to
w = −0.5,−1, and −2 respectively. The vertical dashed lines
show the expected position of splashback from the analytical
model of [46].

The overdensity at splashback increases with increas-
ing w. This behavior can be understood by considering
again the rate at which the universe expands between
turnaround and splashback. If ΩDE = 0.7 today and
−1 < w ≤ −1/3, then dark energy domination begins
at an earlier time than for a w = −1 universe. However
at the time of turn around ΩDE is higher than what it
would have been for a ΛCDM universe, and therefore the
background universe diluted faster than it would have
for a w = −1 universe between turnaround and splash-
back, making the overdensity larger at splashback. The
opposite is true for w < −1.

As is seen in Fig. 1, the splashback radius is sensi-
tive to the equation of state parameter. However, to
get differences in splashback larger than 10%, we need
large deviations from ΛCDM that are already ruled out
by observations. Percent level uncertainties on splash-
back measurement would be required to constrain dark
energy at a level competitive with current bounds. Sta-
tistical errors on the splashback radius using the galaxy
profile are already quite small, but systematic uncer-
tainties are regarded as being significantly larger due to
the cluster finder algorithm and other issues. Lensing
measurements and the use of cluster finders that trace
the mass distribution more closely are clear avenues for
progress, but for these approaches statistical uncertain-
ties will only reach the percent level in the next decade,
with upcoming galaxy surveys (from LSST [59], Euclid

[60] and WFIRST [61]) and CMB surveys (the Simons
Observatory [62] and CMB-S4 [63]).

III. SPLASHBACK IN MODIFIED GRAVITY
MODELS

Modified gravity models have been invoked as an al-
ternatives to dark energy to understand the large scale
accelerated expansion of the universe. In these models,
gravity is modified on large scales but on small scales, in
higher density environments, general relativity must be
restored to be consistent with the stringent observational
tests of GR in the solar system. Most theories of inter-
est therefore invoke screening mechanisms to suppress
these modifications in high density regions. Here we focus
on the Hu-Sawicki f(R) [36] and the Dvali-Gabadadze-
Porrati (DGP) model [64] that utilize two different classes
of screening mechanisms, chameleon screening and Vain-
shtein screening, and see how they affect the splashback
feature.

The modifications to GR can be parametrized by an
enhancement of the gravitational constant in the un-
screened region. The transition regions between the two
regimes, screened and unscreened, often provide inter-
esting scales for testing these theories. If the transition
region lies in the outskirts of a halo, then accreted objects
are in a region of enhanced gravity during the first infall
but they may subsequently enter the screened region of
the halo. We might expect that the varying gravitational
field during the orbit of a particle may induce significant
displacement of the splashback radius.

In the following sections we briefly discuss the two
main classes of model we choose to study the effect of
modifications to GR on splashback.

A. Chameleon screening f(R)

One viable and well-studied model of modified gravity
is the Hu-Sawicki f(R) model [36]. f(R) modifications
replace the Ricci curvature R in the Einstein-Hilbert ac-
tion with a generic function thereof:

S =

∫

d4x
√
−g

R+ f(R)

16πG
. (3)

This gives dynamics to a third scalar polarization of the
metric as well as the two tensor modes of GR. For this
reason, f(R) models can be recast as scalar-tensor theo-
ries with a fifth-force mediated by a scalar [65]. Screening
in these models is achieved by a nonlinear coupling be-
tween the scalar field and matter, making the mass of
the scalar field very high in dense regions thus reducing
its Compton wavelength. This mechanism is known as
chameleon screening. In terms of the f(R) formalism, the
additional degree of freedom is fR = df/dR. The Comp-
ton wavelength of the field is given by λ2

C = 3dfR/dR
and, in the absence of screening, the strength of gravity
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large deviations from ΛCDM that are already ruled out
by observations. Percent level uncertainties on splash-
back measurement would be required to constrain dark
energy at a level competitive with current bounds. Sta-
tistical errors on the splashback radius using the galaxy
profile are already quite small, but systematic uncer-
tainties are regarded as being significantly larger due to
the cluster finder algorithm and other issues. Lensing
measurements and the use of cluster finders that trace
the mass distribution more closely are clear avenues for
progress, but for these approaches statistical uncertain-
ties will only reach the percent level in the next decade,
with upcoming galaxy surveys (from LSST [59], Euclid

[60] and WFIRST [61]) and CMB surveys (the Simons
Observatory [62] and CMB-S4 [63]).

III. SPLASHBACK IN MODIFIED GRAVITY
MODELS

Modified gravity models have been invoked as an al-
ternatives to dark energy to understand the large scale
accelerated expansion of the universe. In these models,
gravity is modified on large scales but on small scales, in
higher density environments, general relativity must be
restored to be consistent with the stringent observational
tests of GR in the solar system. Most theories of inter-
est therefore invoke screening mechanisms to suppress
these modifications in high density regions. Here we focus
on the Hu-Sawicki f(R) [36] and the Dvali-Gabadadze-
Porrati (DGP) model [64] that utilize two different classes
of screening mechanisms, chameleon screening and Vain-
shtein screening, and see how they affect the splashback
feature.

The modifications to GR can be parametrized by an
enhancement of the gravitational constant in the un-
screened region. The transition regions between the two
regimes, screened and unscreened, often provide inter-
esting scales for testing these theories. If the transition
region lies in the outskirts of a halo, then accreted objects
are in a region of enhanced gravity during the first infall
but they may subsequently enter the screened region of
the halo. We might expect that the varying gravitational
field during the orbit of a particle may induce significant
displacement of the splashback radius.

In the following sections we briefly discuss the two
main classes of model we choose to study the effect of
modifications to GR on splashback.

A. Chameleon screening f(R)

One viable and well-studied model of modified gravity
is the Hu-Sawicki f(R) model [36]. f(R) modifications
replace the Ricci curvature R in the Einstein-Hilbert ac-
tion with a generic function thereof:

S =

∫

d4x
√
−g

R+ f(R)

16πG
. (3)

This gives dynamics to a third scalar polarization of the
metric as well as the two tensor modes of GR. For this
reason, f(R) models can be recast as scalar-tensor theo-
ries with a fifth-force mediated by a scalar [65]. Screening
in these models is achieved by a nonlinear coupling be-
tween the scalar field and matter, making the mass of
the scalar field very high in dense regions thus reducing
its Compton wavelength. This mechanism is known as
chameleon screening. In terms of the f(R) formalism, the
additional degree of freedom is fR = df/dR. The Comp-
ton wavelength of the field is given by λ2

C = 3dfR/dR
and, in the absence of screening, the strength of gravity

GR
f(R)

サブハロー

Adhikari et al. ’18
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steeper than an NFW profile of similar mass at rsp (as
we discuss in more detail below). This is consistent with
the expectation for a splashback feature.

An alternative is to look at the logarithmic slope of
the collapsed profile, which is also the approach taken by
B17. This approach includes our model for the profile of
the infalling material, which is assumed to be a power
law. In the bottom panel of Fig. 4 we show the loga-
rithmic slope of the collapsed profile inferred from the
galaxy density and lensing measurements. We find that
at rsp, the inferred collapsed profile from both galaxy
and lensing profiles exhibit rapid steepening, achieving
values much steeper than the slope of an NFW profile at
scales around rsp and beyond. This again is consistent
with the picture that a splashback feature exists at the
outskirts of these clusters.

The posterior distributions of rsp and the slope of the
total profile and the collapsed profile in Fig. 4 are shown
in Fig. 5. Here we clearly see that the galaxy and lens-
ing measurements of rsp and the slopes of the profiles
are consistent with each other, with the lensing mea-
surements having larger uncertainties. The measured
logarithmic slope of the total profile at rsp is �3.6 ± 0.3
and �3.5 ± 0.4 for the galaxy density and lensing pro-
files, respectively. The measured logarithmic slope of
the collapsed profile is �5.9± 0.7 and �5.3± 0.9 for the
galaxy density and lensing profiles, respectively. These
measured slopes can be compared to the expectation
for an NFW profile. For the NFW profile predicted by
the mass-richness relation of Melchior et al. (2016), the
logarithmic slope at rsp is ⇠ �2.7, while the maximum
possible slope is -3. The slope of the total profile is there-
fore steeper than NFW at roughly 3.0� for the galaxy
density measurements, and 2.0� for the lensing measure-
ments. However, the NFW profile does not fully capture
the contribution from infalling material near the clus-
ter, which generically makes the profile less steep at rsp.
Comparing the slope of only the collapsed component to
that of the NFW profile, we find that it is steeper than
NFW by 4.6� for the galaxy density profile and 2.9� for
the lensing profile. The values of rsp derived from the
MCMC, as well as the model parameters are listed in
Table 3.

As discussed in §4.3, the parameters � and � are
important for determining the behavior of the profile
around the splashback feature. These parameters are
degenerate, and the priors that we place on them are
informative. To test how relaxing these priors would af-
fect the splashback measurement from lensing, we com-
pletely relax the � priors, and examine the constraints
on the slope of the profiles. We find the slope of the total
(collapsed) profile at rsp to be �3.7±0.6 (�6.2±2.0) for

0.2

0.6

1.0

�c
ol

l (
r)

/�
(r

)

Galaxies

Lensing

�4

�3

�2

d
lo

g�
(r

)/
d
lo

gr

NFW

0.2 0.5 1 2 5 10

r [h�1Mpc]

�8

�6

�4

�2

d
lo

g�
co

ll
(r

)/
d
lo

gr

Figure 4. Comparison of model-fit results from galaxy den-

sity ⌃g (grey) and weak lensing �⌃ (red). Top: fraction of

the density profile for the collapsed material over the total

density profile. Middle: logarithmic derivative of the total

density profile compared to the logarithmic derivative of an

NFW profile (dashed curve). Bottom: logarithmic deriva-

tive of the profile for the collapsed material compared to

the logarithmic derivative of an NFW profile. The vertical

lines mark the mean rsp inferred from the model fits for both

galaxy and lensing measurements, while the horizontal bars

in the middle panel indicate the uncertainties on rsp.

the lensing measurement. This corresponds to a roughly
1.6� (1.8�) steeper profile compared to the NFW pro-
file at rsp. We also perform an additional check to see
whether the priors are wide enough to span a range of
profiles with and without a splashback feature “detec-
tion”. That is, we check that the priors are not driv-
ing us to falsely detect a splashback-like steepening. To
check this, we sample the priors of ↵, �, �, and rt (the
most relevant parameters for the splashback feature),
generate model profiles and measure the slope of the
profile at rsp. The resulting slope distribution is shown
in Fig. 6. Noting that the minimum logarithmic slope
achieved by an NFW profile is -3, we see that the pri-
ors allow profiles with slope both shallower and steeper
than NFW.

Chang et al. (’18)
• DES Y1 測光銀河 & 重力レンズ

More et al. (’16), Baxter et al. (’17)

• SDSS DR8 測光銀河カタログ

銀河団は、redMaPPer 

アルゴリズムで同定

• Planck SZ 銀河団
 + Pan-STARRS 測光銀河

Zurcher & More (’18)

Chang et al. (’18)
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steeper than an NFW profile of similar mass at rsp (as
we discuss in more detail below). This is consistent with
the expectation for a splashback feature.

An alternative is to look at the logarithmic slope of
the collapsed profile, which is also the approach taken by
B17. This approach includes our model for the profile of
the infalling material, which is assumed to be a power
law. In the bottom panel of Fig. 4 we show the loga-
rithmic slope of the collapsed profile inferred from the
galaxy density and lensing measurements. We find that
at rsp, the inferred collapsed profile from both galaxy
and lensing profiles exhibit rapid steepening, achieving
values much steeper than the slope of an NFW profile at
scales around rsp and beyond. This again is consistent
with the picture that a splashback feature exists at the
outskirts of these clusters.

The posterior distributions of rsp and the slope of the
total profile and the collapsed profile in Fig. 4 are shown
in Fig. 5. Here we clearly see that the galaxy and lens-
ing measurements of rsp and the slopes of the profiles
are consistent with each other, with the lensing mea-
surements having larger uncertainties. The measured
logarithmic slope of the total profile at rsp is �3.6 ± 0.3
and �3.5 ± 0.4 for the galaxy density and lensing pro-
files, respectively. The measured logarithmic slope of
the collapsed profile is �5.9± 0.7 and �5.3± 0.9 for the
galaxy density and lensing profiles, respectively. These
measured slopes can be compared to the expectation
for an NFW profile. For the NFW profile predicted by
the mass-richness relation of Melchior et al. (2016), the
logarithmic slope at rsp is ⇠ �2.7, while the maximum
possible slope is -3. The slope of the total profile is there-
fore steeper than NFW at roughly 3.0� for the galaxy
density measurements, and 2.0� for the lensing measure-
ments. However, the NFW profile does not fully capture
the contribution from infalling material near the clus-
ter, which generically makes the profile less steep at rsp.
Comparing the slope of only the collapsed component to
that of the NFW profile, we find that it is steeper than
NFW by 4.6� for the galaxy density profile and 2.9� for
the lensing profile. The values of rsp derived from the
MCMC, as well as the model parameters are listed in
Table 3.

As discussed in §4.3, the parameters � and � are
important for determining the behavior of the profile
around the splashback feature. These parameters are
degenerate, and the priors that we place on them are
informative. To test how relaxing these priors would af-
fect the splashback measurement from lensing, we com-
pletely relax the � priors, and examine the constraints
on the slope of the profiles. We find the slope of the total
(collapsed) profile at rsp to be �3.7±0.6 (�6.2±2.0) for
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the lensing measurement. This corresponds to a roughly
1.6� (1.8�) steeper profile compared to the NFW pro-
file at rsp. We also perform an additional check to see
whether the priors are wide enough to span a range of
profiles with and without a splashback feature “detec-
tion”. That is, we check that the priors are not driv-
ing us to falsely detect a splashback-like steepening. To
check this, we sample the priors of ↵, �, �, and rt (the
most relevant parameters for the splashback feature),
generate model profiles and measure the slope of the
profile at rsp. The resulting slope distribution is shown
in Fig. 6. Noting that the minimum logarithmic slope
achieved by an NFW profile is -3, we see that the pri-
ors allow profiles with slope both shallower and steeper
than NFW.



Going inside splashback radius
スプラッシュバック半径の中には、

マルチストリーム構造が広がっているはず

どうやれば見ることができるか？

CDMの検証、宇宙論のプローブ
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Tracing multi-stream flow with particle 
trajectories in N-body simulation

(Diemer’17; Diemer et al.’17)

= SPARTA algorithm + α

Keeping track of apocenter passage(s) for particle trajectories, 

• 60 snapshots at 0<z<1.43

• L=316Mpc/h, N=512^3

number of apocenter passages, p, is stored for each particle

N-body simulation

• Einstein-de Sitter universe

Tiling phase-space 
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(⌦m = 1,⌦⇤ = 0)
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Multi-stream flow in CDM halo
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classified by # of apocenter passage, p
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Comparing self-similar solution

•転回半径以下で、定常的に降着する
球殻の運動を記述

•トップハット球対称モデルの拡張
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Fillmore & Goldreich (’84)

パラメーターは３つ
•質量降着率：s

•半径と速度のスケー
リングパラメーター
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Comparing self-similar solution
遠点通過数 p=1~5 の粒子を使って自己相似解とフィット
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apocenter may be approximated by the original mass enclosed by the mass shell. In this case, the
mean density within a radius r can be written as

ρ(r) =
3M

4πr3(M)
, (5.33)

where r(M) ∝ rta(M), with rta(M) the turnaround radius of the mass shell M. The density profile
can then be obtained if we know how rta changes with M. As an example, consider a perturbation
δi ∝ r−3ε

i ∝ M−ε in an Einstein–de Sitter universe. In this case, rta ∝ ri/ δi ∝ M(ε+1/ 3), and the
density profile is

ρ(r) ∝ r−γ with γ = 9ε/ (1+3ε). (5.34)

For the special case in which the initial perturbation is associated with a point mass embedded
in an Einstein–de Sitter background, ε = 1 and ρ(r) ∝ r−9/ 4. This solution was first obtained by
Gunn & Gott (1972).

Unfortunately, the above treatment of shell crossing is not accurate. In general, the total mass
within a mass shell at apocenter includes not only the particles initially enclosed by the mass
shell, but also those shells which were initially outside it but have current radii smaller than its
apocentric radius. Because of this additional mass, the apocentric radius in general changes with
time, and so the density profile cannot be obtained simply by assuming the conservation of mass
within individual mass shells. In the following section we describe a more general model that
includes a more proper treatment of shell crossing.

5.2 Similarity Solutions for Spherical Collapse

5.2.1 Models with Radial Orbits

Consider an initial (spherical) density perturbation with density profile ρi(ri), where ri is the
radius to the center at some fiducial time ti. The initial mass within a mass shell with radius ri is

Mi(ri) = 4π
∫ ri

0
ρi(y)y2 dy. (5.35)

At a later time t > ti, the radius of the mass shell with initial radius ri [or with initial mass Mi(ri)]
becomes r(ri, t), and the mass enclosed by it becomes M(r, t). Assuming that all particles in the
mass shell have purely radial orbits, the equation of motion of the mass shell is given by

d2r
dt2 = −GM(r, t)

r2 . (5.36)

For simplicity we have assumed the cosmological constant to be zero. Before shell crossing,
M(r, t) = Mi(ri) is a constant, and the solution of this equation is the same as that discussed in
§5.1. In general, the solution to the above equation has to be obtained numerically by following
the time evolution of all individual mass shells. For a special set of problems where the collapse
proceeds in a self-similar way, simpler solutions can still be found (e.g. Fillmore & Goldreich,
1984; Bertschinger, 1985). Before presenting these solutions, we caution that none of them are
viable models for real halos since all are subject to strong non-radial instabilities which cause
evolution from these initial conditions to produce strongly prolate, rather than spherical, systems
(Carpintero & Muzzio, 1995; MacMillan et al., 2006). These similarity solutions nevertheless
give useful insight into how halos grow.

In order for a problem to admit self-similar solutions, the time, t, has to be the only independent
physical scale; all other characteristic scales are power laws of t. In such a case, the solution
looks the same when physical quantities are expressed in terms of their characteristic scales. For
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perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)
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Development of 6D Vlasov code

A test case: sine waves (phase space evolution)

Refined phase-space elements 15

b)

c) d)

a)

Figure 14. The initial conditions for the “ripple-wave” test problem
(cf. Sec. 4.2). Shown are the particle locations (panel a), the density
field using the tetrahedral phase space elements (panel b), using
tri-linear elements (panel c) and using tri-quadratic elements (panel
d). The linear elements are discontinuous at element boundaries,
while the quadratic is continuous.

tri-quadratic reconstructed from N-body 323

tri-quadratic 323 self-consistent

Figure 16. Comparison between a reconstruction of the tri-
quadratic density field from the 322 standard N-body run (top
half-panel) and the self-consistent evolution of the tri-quadratic
elements (bottom half-panel). One clearly sees that N -body particle
noise significantly perturbs the solution, in particular, caustics are
not persistent.

using refinement in Figure 17, comparing once more against
the 5123 particle high-res N -body solution at the same force
resolution. We only consider the tri-quadratic elements in this
case, although the linear elements also perform reasonably well.
We started with the same 323 initial conditions as in the fixed
resolution test shown in Figure 15, but now employed the force
refinement criterion with a threshold of 0.1 to dynamically
split elements if required (the results using velocity refinement
are however not significantly di↵erent). The solution allowing
for one additional level of refinement is shown in the top panel,
the one for two levels in the middle panel, and the reference
N -body solution at the bottom. Rather strikingly, the solutions
quickly converge to the reference solution in the exact shape
and position of caustics. Already with one additional level, the
central density of the clump is comparable to the reference
solution. We do not perform a more quantitative solution of

a. 323 + one level dynamic adaptive refinement

b. 323 + two level dynamic adaptive refinement

c. 5123 N-body

Figure 17. The ripple wave collapse test with dynamic adaptive
refinement. The 323 runs use the same initial conditions as in Fig. 15,
tri-quadratic elements and one (top, panel a), and two (middle, panel
b) of dynamic adaptive refinement. The bottom panel shows the
solution of a high-resolution N -body run using 5123 particles at the
same 2563 PM force resolution. On clearly sees how adding more
supporting points approaches the high-resolution N -body solution.
Still, the top two panels have significantly fewer degrees of freedom
than the N -body run.

these toy problems but let the images speak for themselves
and perform a quantitative convergence study of refinement
in the next section, where we apply the Lagrangian element
method to cosmological structure formation.

5 A FIRST APPLICATION: COSMOLOGICAL
SIMULATION OF A WARM DM UNIVERSE

We now apply our Lagrangian phase space element method to a
cosmological problem. We simulate the gravitational evolution
of a L=20 Mpc/h cube in a universe where dark matter is
made of warm particles of mass mdm = 250 eV, leading to a
small-scale cut-o↵ in the density perturbation spectrum.

The cosmological parameters we employ correspond to
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ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial
tessellation
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Abstract

Resolving numerically Vlasov-Poisson equations for initially cold systems can be reduced to following the evolution
of a three-dimensional sheet evolving in six-dimensional phase-space. We describe a public parallel numerical al-
gorithm consisting in representing the phase-space sheet with a conforming, self-adaptive simplicial tessellation of
which the vertices follow the Lagrangian equations of motion. The algorithm is implemented both in six- and four-
dimensional phase-space. Refinement of the tessellation mesh is performed using the bisection method and a local
representation of the phase-space sheet at second order relying on additional tracers created when needed at runtime.
In order to preserve in the best way the Hamiltonian nature of the system, refinement is anisotropic and constrained by
measurements of local Poincaré invariants. Resolution of Poisson equation is performed using the fast Fourier method
on a regular rectangular grid, similarly to particle in cells codes. To compute the density projected onto this grid, the
intersection of the tessellation and the grid is calculated using the method of Franklin and Kankanhalli [64, 65, 66]
generalised to linear order. As preliminary tests of the code, we study in four dimensional phase-space the evolution
of an initially small patch in a chaotic potential and the cosmological collapse of a fluctuation composed of two sinu-
soidal waves. We also perform a “warm” dark matter simulation in six-dimensional phase-space that we use to check
the parallel scaling of the code.

Keywords: Vlasov-Poisson, Tessellation, Simplicial mesh, refinement, Dark matter, Cosmology

1. Introduction

Stars in galaxies and dark matter in the Universe can be described as a smooth self-gravitating collisionless fluid
following Vlasov-Poisson equations,

@ f
@t
+ u.rr f � rr�.ru f = 0, (1)

�r� = 4⇡G⇢ = 4⇡G
Z

f (r,u, t) du, (2)

where f (r,u, t) represents the phase-space density at position r, velocity u and time t, � is the gravitational potential
and G is the gravitational constant.

In this article, we focus on the cold case, relevant to the dynamics of cold dark matter. In the concordant model of
large scale structure formation [121, 122], the matter content in Universe is indeed dynamically dominated by a cold
and collisionless component, designated by “dark” matter as it does not emit detectable light or radiation. The cold
nature of this component implies that the phase-space distribution function is initially concentrated on a phase-space
sheet: at the macroscopic level, the thickness of the this sheet is virtually null:

f (r,u, t = ti) = ⇢i(r) �D[u � ui(r)], (3)
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ABSTRACT
Dark matter numerical simulations and the N -body method are essential for understanding

how structure forms and evolves in the Universe. However, the discrete nature of N -body

simulations can a↵ect its accuracy when modelling collisionless systems.

We introduce a new approach to simulate the gravitational evolution of cold collisionless

fluids by solving the Vlasov-Poisson equations in terms of adaptively refineable “Lagrangian

phase space elements”. These geometrical elements are piecewise smooth maps between

three-dimensional Lagrangian space and six-dimensional Eulerian phase space and ap-

proximate the continuum structure of the distribution function. They allow for dynamical

adaptive splitting to accurately follow the evolution even in regions of very strong mixing.

The elements thus permit a deterministic non-linear description of self-gravitating cold

and collisionless fluids in the continuous limit.

We discuss in detail various one-, two- and three-dimensional test problems which demon-

strate the correctness and performance of our method. We show that our method has

several advantages compared to standard N -body algorithms by i) explicitly tracking the

fine-grained distribution function, ii) naturally representing caustics, iii) providing an

arbitrarily regular density field that is defined everywhere in space, iv) giving directly a

smooth and regular gravitational potential field, thus eliminating the need for any type of

ad-hoc force softening.

Finally, we illustrate the feasibility of using our method for cosmological studies by

simulating structure formation in a warm dark matter cosmology. We show that spurious

collisionality and large-scale discreteness noise of N -body methods are both strongly

suppressed, which eliminates artificial fragmentation of filaments while providing access to

the full deterministic evolution of the fluid in phase space.

Therefore, we argue that our new approach improves on the N -body method when

simulating self-gravitating cold and collisionless fluids, and is the first method that allows

to explicitly follow the fine-grained evolution in six-dimensional phase space.

Key words: cosmology: dark matter – cosmology: large-scale structure of the Universe –

cosmology: theory – galaxies: kinematics and dynamics – methods: numerical

1 INTRODUCTION

Numerical simulations lie at the very heart of contemporary
cosmology. They are the only method that can accurately follow
the growth of small primordial density fluctuations into the
highly nonlinear objects that populate the low-redshift Universe
(e.g. Davis et al. 1985; Efstathiou et al. 1985; Bertschinger 1998;
Springel et al. 2005; Angulo et al. 2012). As such, they have
proven an indispensable tool in the formulation of our theory
of cosmological structure formation and in the validation of
the ⇤CDM model.

Since most of the mass in the Universe appears to be in

? Email: hahn@phys.ethz.ch
† Email: rangulo@cefca.es

the form of dark matter (DM; a fundamental particle with a
negligible non-gravitational interaction cross-section with both
itself and baryonic matter), numerical simulations that only fol-
low gravitational forces were the natural first tool employed by
pioneer cosmologists. Since the 1970s, these simulations have
progressively increased their scope and accuracy, nowadays
spanning a huge dynamic range. State-of-the-art simulations
employ trillions of bodies to describe volumes comparable to
the observable Universe, while resolving the collapsed DM
structures that could host the faintest galaxies (see e.g. Heit-
mann et al. 2014; Skillman et al. 2014; Ishiyama et al. 2014,
for recent examples).

A milestone in the history of gravity-only simulations was
the establishment of a universal form for the density profile
of collapsed dark matter haloes (Navarro et al. 1996, 1997).
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ABSTRACT

We present a scheme for numerical simulations of collisionless self-gravitating systems which directly integrates the
Vlasov–Poisson equations in six-dimensional phase space. Using the results from a suite of large-scale numerical
simulations, we demonstrate that the present scheme can simulate collisionless self-gravitating systems properly.
The integration scheme is based on the positive flux conservation method recently developed in plasma physics.
We test the accuracy of our code by performing several test calculations, including the stability of King spheres, the
gravitational instability, and the Landau damping. We show that the mass and the energy are accurately conserved for
all the test cases we study. The results are in good agreement with linear theory predictions and/or analytic solutions.
The distribution function keeps the property of positivity and remains non-oscillatory. The largest simulations are
run on 646 grids. The computation speed scales well with the number of processors, and thus our code performs
efficiently on massively parallel supercomputers.
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1. INTRODUCTION

Gravitational interaction is one of the most important physical
processes in the dynamics and the formation of astrophys-
ical objects, such as star clusters, galaxies, and the large-
scale structure of the universe. Stars and dark matter in these
self-gravitating systems are essentially collisionless, except for
a few cases, such as globular clusters and stars around supermas-
sive black holes. The dynamics of the collisionless systems is
described by the collisionless Boltzmann equation or the Vlasov
equation.

Conventionally, gravitational N-body simulations are used to
follow the evolution of collisionless systems. In such simu-
lations, particles represent sampled points of the distribution
function in the phase space. The particles—point masses—
interact gravitationally with other particles, through which their
orbits are determined. They are actually superparticles of stars
or dark matter particles. The gravitational potential field repro-
duced in an N-body simulation is therefore intrinsically grainy
rather than what it should be in the real physical system. It is
well known that two-body encounters can alter the distribution
function in a way that violates the collisionless feature of the
systems, and undesired artificial two-body relaxation is often
seen in N-body simulations. There is another inherent problem
in N-body simulations. Gravitational softening needs to be intro-
duced to avoid artificial large-angle scattering of particles caused
by close encounters. Physical quantities such as mass density
and velocity field are subject to intrinsic random noise owing to
the finite number of particles especially in low-density regions.

To overcome these shortcomings of the N-body simulations,
several alternative approaches have been explored. For example,
the self-consistent field (SCF) method (Hernquist & Ostriker
1992; Hozumi 1997) integrates orbits of particles under the
gravitational field calculated by expanding the density and the
gravitational potential into a set of basis functions. In the SCF
method, the particles do not directly interact with one another but

move on the smooth gravitational potential calculated from the
overall distribution of the particles. Despite of these attractive
features, the major disadvantage of the SCF method is its
inflexibility that the basis set must be chosen so that the lowest
order terms reproduce the global structure of the systems under
investigation (Weinberg 1999). In other words, the SCF method
can be applied only to the symmetric gravitational collapse or
the secular evolution of the collisionless systems.

The ultimate approach for numerical simulations of the
collisionless self-gravitating systems would be direct inte-
gration of the collisionless Boltzmann equation, or Vlasov
equation, combined with the Poisson equation. The advan-
tage of the Vlasov–Poisson simulations was previously shown
by Janin (1971) and Cuperman et al. (1971), who studied
one-dimensional violent relaxation problems using the water-
bag method (Hohl & Feix 1967; Roberts & Berk 1967).
Fujiwara (1981, 1983), for the first time, successfully solved
the Vlasov–Poisson equations for one-dimensional and spheri-
cally symmetric systems using the finite volume method. Other
grid-based approaches include the seminal splitting method of
Cheng & Knorr (1976), more generally the semi-Lagrangean
methods (Sonnendrücker 1998), a finite element method (Zaki
et al. 1988), a finite volume method (Filbet et al. 2001), the
spectral method (Klimas 1987; Klimas & Farrell 1994), and a
more recent multi-moment method (Minoshima et al. 2011).
A comparison study of some of these methods is presented in
Filbet & Sonnendrücker (2003).

So far, such direct integration of the Vlasov equation has been
applied only to problems in one or two spatial dimensions. Solv-
ing the Vlasov equation in six-dimensional phase space requires
an extremely large memory and computational time. However,
the rapid development of massively parallel supercomputers has
made it possible to simulate collisionless self-gravitating sys-
tems in the full six-dimensional phase space by numerically
integrating the Vlasov–Poisson equations with a scientifically
meaningful resolution.
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Fig. 22. Phase-space structure of a halo at the end of the WDM64 simulation. The image on the bottom of each picture represents a 1 voxel thick slice 
perpendicular to the z axis and going through the centre of the halo of the projected density field used in the simulation. The halo itself is represented 
in the (x, y, vx) sub-space, as the projection of a wire corresponding to a uniform grid in Lagrangian space (top panel) and Lagrangian subsets initially 
cubical (bottom panel). In the later case, each subset was originally tessellated into 6 tetrahedra in the initial conditions, before refinement occurs. In both 
panels, only elements for which the projected density contrast is higher than 0.3 are shown. Note also that the simplices in the Lagrangian cubes have 
been shrunk down to 80% of their actual size for illustration purpose. The colour scale on the panels corresponds to the projected density contribution of 
the phase-space sheet over the wire (upper panel) or the Lagrangian cube (lower panel). It is given in units of 1010M⊙h2Mpc−3, where M⊙ is the mass of 
the sun. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

6. Parallel scaling

6.1. Multi-threading with OpenMP

In order to assess the pure OpenMP multi-threading performances of the code, we performed a WDMOMP simulation 
with the same parameters as WDMCFL64, but using a single MPI process and 64 OpenMP threads. The simulation was ran 
over the 64 cores of a dedicated shared memory computer featuring 8 Intel Xeon E7-8837 2.67 GHz octo-core processors 
with 24 Mb of L3 cache memory and it took 28 hours to reach time step 300. We then restarted the simulation from step 
300 and measured the timings of the different sub-tasks during a single time-step using a number of threads ranging from 
1 to 64. The results are reported in Fig. 25 .

On the left panel, the duration of a time-step appears to be dominated by the phase-space sheet projection, which 
occupies from up to 90% of the time-step in the single threaded case down to 60% in the 64 threads case. This decrease is 
explained by the near-perfect scaling of the projection algorithm (see section 3) compared to most other tasks, as can be 
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Figure 2. Snapshots of phase-space structure (upper inset) and density profile (lower inset) for the single-cluster formation in Einstein-
de Sitter universe. For the initial density contrast given in Eq. (68), results of N -body simulations are depicted as red lines, while the
analytic results with Zel’dovich solution are shown in green dotted lines. The blue solid lines are the prediction with basic post-collapse
PT treatment.

Figure 3. Same as in Fig. 2, but the variants of the post-collapse PT calculation including the higher-order corrections are compared
with N -body simulations (red): higher-order continuous (cyan dot-dashed), higher-order (black dotted), and higher-order spline (dashed
magenta).
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観測へフィードバック → 暗黒物質の性質・正体

Future prospects
ヴラソフ-ポアソン系の取り扱いから期待されること

•より定量的な暗黒物質ハローの物理的諸性質

•ハローの ‘普遍’ 密度プロファイルの起源
r � rs�halo(r) �

1
(r/rs)(1 + r/rs)2 �halo � r�1

無衝突系自己重力多体系の理解

（e.g., スプラッシュバック半径、形状、動的性質）

Navarro, Frenk 
& White (’97)



Summary
宇宙論のプローブとしての暗黒物質ハローと

位相空間からみた構造形成

•宇宙論的ヴラソフコードの発展と解析的取り扱い

•位相空間でみられる冷たい暗黒物質の顕著な特徴

{

•標準宇宙モデルと冷たい暗黒物質パラダイム

•粒子軌道を使ったマルチストリームの構造解析

•マルチストリーム構造
•密度のシャープな発散（shell-crossing）

外縁部 → スプラッシュバック半径

球対称自己相似解との比較


