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Figure 12. Comparison between the best fitting model and the BOSS DR12 measurements in the three redshift bins used in this analysis.
The errors on the data points are the diagonal of the corresponding covariance matrix. The red line represents the best fitting model to
the SGC, while the black line shows the best fitting model for the NGC. The SGC best fitting model includes a small discreteness e↵ect
mainly visible at small k. The NGC and SGC have been fit simultaneously, using the same cosmological fitting parameters. However,
the SGC and NGC have a separate amplitude nuisance parameter and di↵erent window functions, which leads to the di↵erence between
the red and black line. The reason for having separate nuisance parameters for NGC and SGC are slight di↵erences in the galaxy sample
selection (see section 2 and Alam et al. 2016). See Table 3 for more details.
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Figure 14. The best fitting models (black solid line) of the isotropic BAO analysis compared to the power spectrum monopole measure-
ments (data points). Both the model and the data have been plotted relative to the smooth model, and the data points for NGC and SGC
have been combined using the corresponding covariance matrices (see appendix B). The left panel shows the pre-reconstruction result,
while the right panel presents the post reconstruction result. Similar plots for the NGC and SGC separately are included in appendix A.
See Table 3 for more details.
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥Bm(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2hMpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
X

n

W (ki, kn)P (kn)m �W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2⌃2
nl/2 + 1, (34)

where the damping scale ⌃nl is a fitted parameter. We assume
a Gaussian prior on ⌃nl with width ±2h�1 Mpc, centred on
8.24h�1 Mpc for pre-reconstruction fits and 4.47h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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Fig. 11. Evolution of the metric and density perturbations as a function of the scale factor (normalized to a0 = 1 today), in the longitudinal gauge,
for modes 10−3h Mpc−1 < k < 1h Mpc−1 (from top to bottom), and for two cosmological models: !CDM (left) and !MDM (right), both with
"m = 0.147 and #! = 0.7. The integration has been performed with the code CMBFAST starting from the initial condition k3/2$ = −10−5. The
!MDM model has three degenerate neutrinos with m% = 0.46 eV, corresponding to f% = 0.1.
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"m = 0.147 and #! = 0.7. The integration has been performed with the code CMBFAST starting from the initial condition k3/2$ = −10−5. The
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equal to (1 − 3
5f!), but then it will increase progressively until unity, so that %f!=0

cdm becomes a linear function of a
or [ag(a)]. In a crude approximation, we can write

%f!=0
cdm [a0] ≃

(
a0g(a0)

(1 − f!)anr

)
%f!=0

cdm [(1 − f!)anr], (137)

but this tends to overestimate the growth of perturbations in the massless case: it assumes that right after a = anr
the logarithmic slope is equal to one, which is not true immediately. Indeed, a comparison with numerical results
shows that the total growth factor is a bit smaller,

%f!=0
cdm [a0] ≃

(
a0g(a0)

(1 − f!)
1/2anr

)
%f!=0

cdm [(1 − f!)anr]. (138)

Using this semi-analytic result, we find that the ratio between the present value of %cdm in the two models reads

%f!
cdm[a0]

%f!=0
cdm [a0]

= (1 − f!)
1/2
(

a0g(a0)

anr

)− (3/5)f!

. (139)

According to Eq. (124) this means that the total matter power spectrum is reduced by

P(k)f!

P(k)f!=0 = (1 − f!)
3
(

a0g(a0)

anr

)− (6/5)f!

. (140)

Finally, we can replace (a0/anr) by 2000m!/(1 eV) and, assuming that the mass m! is shared by a number N! of
families, we can use m! = ("!/N!)93.2 eV. We obtain an expression that depends only on (f!, N!, "m, #$)

P(k)f!

P(k)f!=0 = (1 − f!)
3[1.9 × 105g(a0)"mf!/N!]− (6/5)f! . (141)

We show in Fig. 12 that this semi-analytic expression is a very good approximation of the exact numerical result,
and also that for plausible values of ("m, N!, #$) and for f! < 0.07, it can be approximated by the well-known
linear expression [93]

P(k)f!

P(k)f!=0 ≃ − 8f!. (142)
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is found to be in excellent agreement with the analytical prediction of Eq. (141). For simplicity, the growth factor
g(a0) ≃ 0.8 can even be replaced by one in Eq. (141) without changing the result significantly. The well-known
formula P(k)f!/P (k)f!=0 ≃ −8f! is a reasonable first-order approximation for 0 < f! < 0.07.

4.6. Summary of the neutrino mass effects

4.6.1. Effects on CMB and LSS power spectra for fixed ("m, #$) and degenerate masses
In Fig. 14, we show CT

l and P(k) for two models: $CDM with f! = 0 and $MDM with N! = 3 massive neutrinos
and a total density fraction f! = 0.1. We also display for comparison the neutrinoless model of Section 4.4.6. In all
models, the values of ("b, "m, #$, As, n, %) have been kept fixed, with the increase in "! being compensated by a
decrease in "cdm. There is a clear difference between the neutrinoless and massless neutrino cases, caused by a large
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is found to be in excellent agreement with the analytical prediction of Eq. (141). For simplicity, the growth factor
g(a0) ≃ 0.8 can even be replaced by one in Eq. (141) without changing the result significantly. The well-known
formula P(k)f!/P (k)f!=0 ≃ −8f! is a reasonable first-order approximation for 0 < f! < 0.07.
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models, the values of ("b, "m, #$, As, n, %) have been kept fixed, with the increase in "! being compensated by a
decrease in "cdm. There is a clear difference between the neutrinoless and massless neutrino cases, caused by a large
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equal to (1 − 3
5f!), but then it will increase progressively until unity, so that %f!=0

cdm becomes a linear function of a
or [ag(a)]. In a crude approximation, we can write

%f!=0
cdm [a0] ≃

(
a0g(a0)

(1 − f!)anr

)
%f!=0

cdm [(1 − f!)anr], (137)

but this tends to overestimate the growth of perturbations in the massless case: it assumes that right after a = anr
the logarithmic slope is equal to one, which is not true immediately. Indeed, a comparison with numerical results
shows that the total growth factor is a bit smaller,

%f!=0
cdm [a0] ≃

(
a0g(a0)

(1 − f!)
1/2anr

)
%f!=0

cdm [(1 − f!)anr]. (138)

Using this semi-analytic result, we find that the ratio between the present value of %cdm in the two models reads

%f!
cdm[a0]

%f!=0
cdm [a0]

= (1 − f!)
1/2
(

a0g(a0)

anr

)− (3/5)f!

. (139)

According to Eq. (124) this means that the total matter power spectrum is reduced by

P(k)f!

P(k)f!=0 = (1 − f!)
3
(

a0g(a0)

anr

)− (6/5)f!

. (140)

Finally, we can replace (a0/anr) by 2000m!/(1 eV) and, assuming that the mass m! is shared by a number N! of
families, we can use m! = ("!/N!)93.2 eV. We obtain an expression that depends only on (f!, N!, "m, #$)

P(k)f!

P(k)f!=0 = (1 − f!)
3[1.9 × 105g(a0)"mf!/N!]− (6/5)f! . (141)

We show in Fig. 12 that this semi-analytic expression is a very good approximation of the exact numerical result,
and also that for plausible values of ("m, N!, #$) and for f! < 0.07, it can be approximated by the well-known
linear expression [93]

P(k)f!

P(k)f!=0 ≃ − 8f!. (142)
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G. Effect of non-zero mass of neutrinos

Even when the neutrinos become non-relativistic, they have a large velocity dispersion due to their small non-zero
masses:

σ2
ν =

∫
d3q

(
q

mν

)2

fν(q)
∫

d3q fν(q)
=

15ζ(5)
ζ(3)

(
4
11

)2/3 T 2
γ,0(1 + z)2

m2
ν

≃
(
6.03 × 10−4 c

)2
(

1 eV
mν

)2

(1 + z)2. (79)

This leads to the characteristic scale.
Free-streaming scale, kFS

kFS ≡
√

3
2

aH

σν
=

0.677
(1 + z)2

mν

1 eV

√
Ωm,0(1 + z)3 + ΩΛ h Mpc−1. (80)

At the scales below the free-streaming scale, k ≪ kFS, the neutrino fluctuations do not grow, and hence the
fluctuations of the total matter is suppressed relative to those in the massless neutrino case. The suppression of linear
matter power spectrum is approximately characterized as

P (k)|fν≠0

P (k)|fν=0
≃ 1 − 8 fν ; fν ≡ Ων,0

Ωm,0
(81)

at z = 0. A more refined (but partly empirical) formula is given by [see Eq. (141) of Ref. [8]]:

P (k)|fν≠0

P (k)|fν=0
≃ (1 − fν)3

(
D1(a)
anr

)−(6/5)fν

= (1 − fν)3
{

1.9 × 105 Ων,0h2

Neff

D1(a)
a

}−(6/5)fν

. (82)

III. PROBES OF LARGE-SCALE STRUCTURE

A. Correlation function and power spectrum

B. Redshift-space distortions

Redshift space

1 + zobs ≃ (1 + z)(1 + v∥) −→ s = r +
1 + z

H(z)
v∥. (83)

For distance galaxies, the observer’s line-of-sight to the galaxy-clustering region is approximately fixed so that one
can introduce a particular direction, ẑ:

s = r +
1 + z

H(z)
(v · ẑ) ẑ. (84)
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Figure 5. Slices of baryon density distribution. All slices are
200h�1Mpc wide and show the baryonic mass averaged over the
volume of a grid cell. Each grid cell is⇠391h�1kpc. The top panel
shows a simulation without neutrinos. The middle and the bot-
tom panels are taken from simulations with ⌦⌫ = 0.02 (⌃m⌫ =
0.95 eV) and ⌦⌫ = 0.04 (⌃m⌫ = 1.9 eV). The baryon density
fields in the middle and the bottom panels are less evolved rel-
ative to the no-neutrino (top panel) case. The simulations were
run with Ncdm=2563, Ngas=5123. The density projections were
made using yt: an analysis and visualization tool (Turk 2008).

Figure 6. Matter power spectrum at z = 0 from simulations
and linear theory (dot–dashed lines) as a function of neutrino
mass. The four neutrino models are: ⌦⌫ = 0 (⌃m⌫ = 0 eV) –
solid (red), ⌦⌫ = 0.01 (⌃m⌫ = 0.475 eV) – long dash–dotted
(green), ⌦⌫ = 0.02 (⌃m⌫ = 0.95 eV) – dashed (blue) and ⌦⌫ =
0.04 (⌃m⌫ = 1.9 eV) – long-dashed (cyan). The vertical dashed
line is the maximum wavenumber up to which the power spectra
from 200h�1Mpc box simulations are valid at 1 per cent level.

Figure 7. Fractional di↵erence between the matter power spec-
tra with and without massive neutrinos at z = 0, from the simu-
lations and the linear theory predictions (dot–dashed lines). The
four neutrino models are: ⌦⌫ = 0 (⌃m⌫ = 0 eV) – solid (red),
⌦⌫ = 0.01 (⌃m⌫ = 0.475 eV) – long dash–dotted (green), ⌦⌫ =
0.02 (⌃m⌫ = 0.95 eV) – dashed (blue) and ⌦⌫ = 0.04 (⌃m⌫ =
1.9 eV) – long-dashed (cyan). The error bars correspond to eight
simulations with di↵erent seeds for the ICs.
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allow us to examine the model power spectra over both
small and large scales. Then we proceed to widen the
explorable parameter space by concentrating on Ðtting the
LCRS power spectrum on large scales in the linear regime
and compare against the predictions of several classes of
CDM-motivated models. In combination with COBE and
other large-scale structure constraints, the large-scale LCRS
power spectrum will help us delineate the allowed param-
eter space in these cosmological models.

5.1. Comparison to N-Body Simulations
We compare the LCRS power spectrum to that of two

N-body models, both kindly provided by Changbom Park :
(1) the ODM model of with h \ 0.5, and bias° 2.2, )0\ 0.4,
factor b \ 1 ; and (2) the CDM1 model, which has )0\ 1,
h \ 0.5, and b \ 1.5. The CDM1 model was computed with
a particle-mesh code on a 3243 mesh, physical comoving
volume (388.8 h~1 Mpc)3, and contains 1623 CDM particles
and 1,201,320 biased ““ galaxy ÏÏ particles, chosen by the
biasing scheme of Both models are normalizedPark (1991).
so that the galaxy p8\ 1.

The convolved redshift-space power spectra of the LCRS
and the N-body models are plotted in The threeFigure 11.
power spectra agree well with each other for j \ 20 h~1
Mpc. On intermediate scales from j D 30 to 50 h~1 Mpc,
the CDM1 model matches the LCRS results somewhat
better than the ODM model does. For wavelengths
j [ 60 h~1 Mpc, the LCRS power falls in between the
CDM1 and ODM curves, with the LCRS results closer to
that of CDM1 on the largest scales j [ 100 h~1 Mpc.
Though both N-body models match the LCRS on small

scales, neither model provides quite the right amount of
large-scale power : not enough power in the case of CDM1
and too much in the case of ODM.

To be more quantitative in our comparison, we can use a
rank sum test to see how probable it is to draw the LCRS
power spectrum from the population of N-body mock
survey power spectra. We choose the rank-sum test as it is
simpler to apply than a s2 test ; we need not make any
assumptions about either the distribution of power at each
k or about the correlations between the power at di†erent k.
At each wavenumber k, we Ðrst assign each of the 30 ODM
mock survey plus 1 LCRS samples a rank in order ofR

i,kincreasing power (the index i denotes the sample). Then, for
each of the 31 samples we combine the ranks at di†erent k
by forming the sum Finally, we assign eachS

i
\;

k
R

i,k.sample an overall rank in order of ascendingR
i,sum S

i
.

Doing this results in the LCRS receiving a rank
giving us a two-tailed conÐdence interval ofRLCRS,sum\ 2,

100È2 ] (2/31 ] 100) \ 87% for rejecting the null hypothe-
sis that the LCRS power spectrum is drawn from the popu-
lation of ODM power spectra. This is not very high
signiÐcance, and it will be further weakened by the fact that
since we only have one ODM simulation box, we do not
sample the full range of variation as we would given an
entire ensemble of ODM simulation boxes. Nevertheless,
the rank sum test does give us a simple quantitative
measure of how well the ODM model can match the LCRS
data. Likewise, the rank sum test applied to 30 CDM1
mock survey plus 1 LCRS samples gives RLCRS,sum\ 10,
where we now assign in order of decreasing powerR

i,kbecause the LCRS power is greater than that of most of the

FIG. 11.ÈObserved convolved LCRS power spectrum compared to the convolved power spectra of the N-body models ODM and CDM1. See text for
details.

distilled spectrum from the data extant in late 2001 and
found a first-peak amplitude that was more intuitively con-
sistent with the bulk of the input data and is now seen to be
consistent with theWMAP power spectrum.

Figure 11 shows the WMAP combined power spectrum
compared to the locus of predicted spectra, in red, based on
a joint analysis of pre-WMAP CMB data and 2dFGRS
large-scale structure data (Percival et al. 2002). As in Figure
8, theWMAP data are plotted with measurement uncertain-
ties, and the best-fit !CDM model (Spergel et al. 2003) is
plotted with a 1 ! cosmic variance error band. Percival et al.
(2002) predict that the location of the first peak should
occur at ‘ ¼ 221:8" 2:4, which is quite consistent with the
value reported by Page et al. (2003c) of ‘ ¼ 220:1" 0:8. The
height of the first peak was predicted to be in the range
4920" 170 lK2, while Page et al. (2003c) report a measured
height of 5580" 75 lK2, about 13% higher. Unlike the posi-
tion, the amplitude of the first peak has a complicated
dependence on cosmological parameters. Percival et al.
(2002) report best-fit parameters for a !CDM model that
are mostly consistent with those reported by Spergel et al.
(2003) for the same class of models. The only mildly dispa-
rate comparison lies in the combination of normalization,
!8, and optical depth, " . Percival et al. (2002) report the

product !8e#" ¼ 0:72" 0:03" 0:02, where the first error is
a ‘‘ theory ’’ error and the second is measurement error.
While Spergel et al. (2003) do not report a maximum likeli-
hood range for this explicit parameter combination, the
product of their maximum likelihood values for !8 and "
yields !8e#" ¼ 0:74, which is consistent with Percival et al.
(2002) but would make the first peak a few percent higher.
Small differences in "bh2, "mh2, and ns may also contribute
to the difference.

7. CONCLUSIONS

We present measurements of the angular power spectrum
of the CMB from the first-year WMAP data. The eight
high-frequency sky maps from DAs Q1–W4 were used to
estimate 28 cross-power spectra, which are largely inde-
pendent of the noise properties of the experiment. These
data were tested for consistency in x 3 and then used in x 5 as
input to a final combined spectrum, discussed in x 6. The
procedures for estimating the uncertainties in the final com-
bined spectrum were discussed in x 4 and in numerous
appendices.

The combined spectrum provides a definitive measure-
ment of the CMB power spectrum, with uncertainties

Fig. 9.—Compilation of recent CMB power spectrum measurements compared to the best-fit !CDM model from the first-year WMAP data. The data
points include noise and cosmic variance uncertainty (but not calibration uncertainty); thus, we omit the cosmic variance band from the model curve in the
figure. On average, the pre-WMAP data agree well with theWMAP power spectrum. The references for the previous data are as follows: Tegmark (1996) for
COBE; Benoit et al. (2003) for ARCHEOPS;Miller et al. (2002) for TOCO; Ruhl et al. (2002) for BOOMERANG; Lee et al. (2001) forMAXIMA; Halverson
et al. (2002) for DASI; Pearson et al. (2003) for CBI; Kuo et al. (2002) for ACBAR.
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variety of galaxy surveys, including the CfA et al.(Vogeley
et al. SSRS Gott, & da Costa1992 ; Park 1994), (Park, 1992 ;

Costa et al. IRAS 1.2 Jy et al.da 1994b), (Fisher 1993),
IRAS QDOT Kaiser, & Peacock and(Feldman, 1994),
APM (Baugh & Efstathiou surveys. In brief, the1993, 1994)
power spectra of these surveys have appeared inconsistent
with predictions of the ““ standard ÏÏ biased cold dark matter
(CDM) model of structure formation with )0 h \ 0.5

et al. while an unbiased(Blumenthal 1984), )0 h B 0.2
model with more large-scale power agrees better with the
observations (e.g., Costa et al. (We express theda 1994b).
Hubble constant as km s~1 Mpc~1, and willH0\ 100 h
use h \ 1 unless otherwise indicated.) In this paper we
present the power spectrum for galaxy samples drawn from
the Las Campanas Redshift Survey (LCRS), an optically
selected survey of 23,697 galaxies with an average redshift
z\ 0.1. The large sample size and extent of our survey
allow us to examine the power spectrum up to wavelengths
of B400 h~1 Mpc, and to provide measurements indepen-
dent of previous results for the purpose of comparing
against cosmological models. In particular, measurements
of the power spectrum on the largest scales j Z 100 h~1
Mpc are especially interesting, as we expect the power spec-
trum to peak there and begin its turnover toward the pri-
mordial spectrum constrained by COBE and other
microwave background observations. The precise ampli-
tude and shape of the power spectrum on large scales will
provide important clues in discriminating among cosmo-
logical models.

A detailed description of the Las Campanas survey is
given in et al. and additional particularsShectman (1996),
may be found in Shectman et al. (1992, 1995), Tucker (1994),

et al. and et al. Here we brieÑyLin (1996), Oemler (1993).
describe the main survey parameters. The survey geometry
is that of six ““ slices ÏÏ (declination by right1¡.5 ] 80¡
ascension), three each in the north and south galactic caps.

shows the LCRS galaxy distribution and clearlyFigure 1
illustrates the striking pattern of clusters, Ðlaments, walls
and voids that is present. The Ðrst 20% of the data was
obtained using a 50 object Ðber-optic spectrograph, and the
remaining 80% of the data was taken with a 112 object
system. The nominal isophotal magnitude limits for the 50
Ðber data were 16.0 π m\ 17.3 (““ hybrid ÏÏ Kron-Cousins R
magnitudes), and an additional cut was applied that
excluded the lowest 20% of galaxies by central surface
brightness. For the 112 Ðber data, the nominal magnitude
limits were 15.0 π m\ 17.7, with exclusion of just the
lowest 4%È9% of galaxies by surface brightness. The survey
photometric limits were chosen so that there would be typi-
cally more targets per Ðeld than available Ðbers, and we
selected targets at random among those that met the selec-
tion criteria. The survey slices were built up by observing

Ðelds, one at a time, with a maximum of 50 or 1121¡.5 ] 1¡.5
galaxies observed per Ðeld. Because we generally do not
reobserve any of our Ðelds, we must keep track of the vari-
able Ðeld-to-Ðeld sampling fractions f in our subsequent
statistical analyses. The average sampling fraction is 70%
for the 112 Ðber data and 58% for the 50 Ðber data. Also,
mechanical constraints prevent two object Ðbers in a single
spectroscopic Ðeld from approaching closer than 55A, intro-
ducing an additional geometric selection e†ect. We will Ðnd
below that the various sampling, photometric, and geomet-
ric selection e†ects in our survey do not signiÐcantly a†ect
the power spectrum results.

FIG. 1.ÈLCRS galaxy distribution in the northern and southern galac-
tic caps.

In we detail our power spectrum estimation tech-° 2
niques and verify them on N-body simulations. In we° 3
present the power spectra of magnitude-limited samples of
Las Campanas galaxies, and compare our results to the
power spectra derived from other redshift surveys. In we° 4
compute the power spectrum for volume-limited samples of
Las Campanas galaxies and test for luminosity bias in the
survey. In we compare our power spectrum results° 5
against those from N-body simulations. We will then focus
on the large-scale linear power spectrum, relate our results
to the COBE DMR constraints, and compare against the
predictions of several classes of CDM models. We sum-
marize our results in Note that a complementary° 6.
analysis of the two-dimensional LCRS power spectrum has
already been carried out et al. more on this(Landy 1996 ;
below), and the derivation of the closely related two-point
correlation function of LCRS galaxies is described in

and et al.Tucker (1994) Tucker (1996).

2. ESTIMATING THE POWER SPECTRUM

The power spectrum estimation technique used here has
been described by various authorsÈin particular see Fisher
et al. et al. and et al.(1993), Feldman (1994), Park

we detail the method below. The most impor-(1994)Èand
tant di†erence is that the LCRS consists of six essentially
two-dimensional ““ slices,ÏÏ so that we need to account for
““ convolution ÏÏ e†ects caused by the survey geometry in
order to calculate the power spectrum properly. These con-
volution e†ects are also evaluated below.
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ν’s free-streaming suppression
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Nonlinear gravitational evolution

poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k# 0:2– 0:3hMpc$1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

!ðrÞ ¼
Z dkk2

2"2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which !ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno$wiggleðkÞ, where the reference spectrum Pno$wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN$bodyðkÞ $
PRegPTðkÞ'=Pno$wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.
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halofit

Perturbation theory (PT) calculation can do a great job at high-z
（but soon becomes worse at low-z)

Even the standard PT would be much more powerful and accurate
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Large-scale structure in SCDM

• BAO：signal is tiny, and even the detection is challenging

•ν’s free-streaming suppression：more difficult to measure ν-mass

• Redshift-space distortions： Test of gravity may get in trouble

• Nonlinear evolution： standard PT does work well. No chance to 

develop resummation/renormalization technique ?

f(z) � d lnD+(z)
d ln a

� {�m(z)}� �� 1
in SCDM

size of RSD �

～summary～

Development of precision cosmology will never happen in SCDM…
ΛCDM (also OCDM) may be the best suited for precision cosmology !!


