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Halo formation
10

Fig. 1.— The particle distribution of Halo I in the comoving space (left) and the phase space (right). We select a slice of thickness 3 %
of RM (z) at each redshift, and plot all the particles within the slice in the lect panel. In contrast, we consider a large sphere that encloses
the protohalo defined at each halo and plot randomly selected 1 % of the particles in the sphere. The gray circles in the left panels and
the vertical lines in the right panels indicate RM (z). The particles are color-coded according to the initial position at z = 99; the sphere of
radius RM (z = 99) is divided into seven equal radial shells, and particles in each bin are plotted in different colors. Black points correspond
to particles outside the initial halo at z = 99. Those different color particles become mixed due to the subsequent evolution. In order to
clarify the later evolution visually . we redefine the colors of the particles at z = 1 (approximately the turn-around epoch), and keep the
color convention until z = 0.
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Fig. 1.— Continued.
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Fig. 1.— Continued.
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Fig. 1.— Continued.

Suto, Kitayama, Osato, Sasaki & Suto (16)

RM(z)

Halo I (M~10^15 M_sun/h)



Comparison with SCM 13

Fig. 3.— The comparison of the evolution of the halo radius predicted by TSC (solid) with the simulation (squares). The model prediction
is calculated by using the initial condition of each simulated halos. The red dashed line shows the solution of the collapse model with the
velocity dispersion terms included (see text), which improves the prediction for the evolution of the halo radius.
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Fig. 4.— The particle distributions of Halo III at z = 1, and of Halo VI at z = 1.5, showing their highly non-spherical evolution. The
plotted particles are a randomly selected 5 % of those in the box 1.2 RM (z) on a side, centered on the halo center.

Suto, Kitayama, Osato, 
Sasaki & Suto (16)

Evolution of 

RM(z)
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z ∼ 2. Although the coordinate space distribution has
exhibited clear non-sphericity by z = 3, the phase space
distribution looks still well ordered. The innermost par-
ticles, however, have fallen into the center and then have
positive (outward) radial velocity. By z = 2, the region
with large velocity dispersion σ2

r has formed. The region
gradually expands outward, and finally reaches outside
the halo radius R(z = 0). This is the most remarkable
difference between the simulation and the description of
TSC.
To look into the region with large σ2

r more carefully,
we fully exploit all the particles and visualize the phase
space density in Figure 2. The figure clearly shows the
high density region around the outer end of the large σ2

r
region, indicating the stream of the particles that have
(more than) once fallen into the center. Such a motion of
particles creates the large σ2

r region expanding outward.
It is informative to consider here the predic-

tion of the self-similar model for the EdS universe
(Filmore & Goldreich 1984; Bertschinger 1985). In the
self-similar model, a spherical shell falls toward the cen-
ter, and moves outward again after shell-crossing. The
shell turns-around at some radius and falls back toward
the center. Such oscillations of a number of shells ac-
count for the development of the velocity dispersion in a
halo. The physical size of the halo increases with time
as more shells infall with larger turn-around radius.
The above picture explains, at least qualitatively, the

evolution of σ2
r of Halo I shown in Figure 2. From z = 1

to z = 0, the velocity dispersion develops from the center
of the halo. The profile of σ2

r shows a sharp drop-off at
the radius corresponding to the end of the large velocity
dispersion region. In contrast, the radial (peculiar) ve-
locity vr almost vanishes in the central region, while it
is negative in the outer region, representing the falling
particles. All these features are consistent with the self-
similar model.
In addition to the “regular” development of σ2

r de-
scribed above, the inhomogeneity contributes to the evo-
lution of σ2

r in the simulated halos. For example, the
infall and the subsequent turn-around of a substructure
generates an additional velocity dispersion that is not
described in the self-similar model. Such a process en-
hances individuality of halos, and makes it difficult to
find universality (if any) of the evolution of σ2

r , as will
be discussed again in later sections.
For the phase space distribution at z = 0, the solu-

tion of the self-similar model is overplotted. The over-
all feature of the simulated halo is followed, at least
qualitatively, by the self-similar solution. Especially,
groups of the particles in course of the first and sec-
ond turning-arounds are apparent in the phase space
distribution. Strictly speaking, however, the self simi-
lar model describes a spherical halo in the EdS universe,
which naturally leads to the big difference between the
simulation data and the overplotted self-similar solution.
In addition, the density profile of the self-similar solu-
tion is predicted to be asymptotically proportional to
r−9/4, which is inconsistent with the NFW density pro-
file (Navarro et al. 1995, 1996, 1997). Therefore the self-
similar solution is not fully reliable when we quantita-
tively investigate the evolution of velocity dispersion.
Adhikari et al. (2014) have also considered the region

with large velocity dispersion in a different context. They
refer to the radius where the density sharply drops as
“splashback radius”, which is essentially the same as the
locus where the velocity dispersion sharply drops. They
proposed the splashback radius as a more physically mo-
tivated definition of a dark halo, instead of the traditional
definition by using some threshold overdensity. Although
the splashback radius is often much beyond the X-ray
observed region of galaxy clusters, More et al. (2015)
have shown that the relation between the splashback
and R200m, within which the overdensity is 200 times
the mean matter density, can be written as a function of
the peak height inside R200m. Furthermore, More et al.
(2015) indicated that the splashback radius may be al-
ready observed as a caustic of line-of sight velocity of
galaxies by Rines et al. (2013). Although Adhikari et al.
(2014) claimed that it is difficult to unambiguously de-
termine the splashback radius of individual halos, these
studies indicate the importance of velocity dispersion in
the halo evolution.

4. COMPARISON OF HALO RADIUS EVOLUTION
AGAINST TSC AND SPHERICALLY AVERAGED JEANS

EQUATION

We now compare the evolution of the sphere charac-
terized by the radius RM (z) defined in Section 3.2, with
the prediction of TSC. Figure 3 demonstrates the re-
sults for the six halos in Table 1. The TSC predictions
(black solid line) are calculated from the initial overden-
sity of each halo. From the initial time until shortly
before the turn-around epoch zta, RM (z) is very close to
the model prediction, despite the fact that non-sphericity
and non-uniformity develop by z ∼ 3. From around
zta, RM (z) deviates from the model prediction; the turn-
around epoch is delayed, and thereafter the radius of the
simulated halo becomes systematically larger than the
model. Finally, the radius RM (z) does not collapse to
zero (naturally), but settles into a finite radius. In ad-
dition, the present radius is also larger than the model
prediction. Although the degree of the deviation from
TSC varies from halo to halo, the above trend holds for
majority of the simulated halos: the simulated halos turn
around later, and have larger radii both at zta and z = 0
than those predicted by TSC.
We suspect that the difference between the simulation

and TSC is mostly due to the velocity dispersion focused
on in the previous section. In numerical simulations, the
motion of dark matter particles should be described not
by Equation (2), but by the (three-dimensional) Jeans
equation. We here focus only on their radial motion to
see the effect of the velocity dispersion in the framework
of spherical symmetry. The spherically symmetric ver-
sion of the Jeans equation is

Dvr
Dt

= −
1

ρ

∂(ρσ2
r)

∂r
−

2σ2
r − σ2

tan

r
−

GM

r2
, (10)

where D/Dt denotes the Lagrangian differentiation, and
σ2
tan is the tangential velocity dispersion of dark matter.

Note that σ2
tan includes dispersions in two directions (θ

and ϕ directions in the spherical coordinates). The den-
sity and velocity dispersion usually decrease as a function
of radius, so the first term is expected to delay the col-
lapse epoch. To confirm this, we evaluate the first two
terms at r = RM (z) in the right-hand-side of Equation
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Beyond spherical collapse model
SCM only describes the onset of halo formation 

In particular, SCM fails to describe phase-space structure of halo
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Self-similar collapse
• Einstein-de Sitter background, a(t)∝ t2/3

• Motion of continuously infall shells at
turn-around radius

• Scale-free initial density perturbation,�i / M�✏
i

により計算されるX 特に時刻 ֏での転回点半径ճ	֏
以内では球殻 ֏ ମ ֏だけがこの積分
に寄与するから- この積分をծ	֏Ӵ ֍
 � ௷ՙɱ թ <֍  ֍	֏Ӵ ֏
> տծտ֏ տ֏
と書き直すことができるX
以下で示すように- スケールフリーな境界条件 ᇂɸ ϑ ֍ɘᆙ のもとでは- 球殻の運動֍	֏Ӵ ֏
は自己相似的であり- その球殻の転回点半径 	֏
で規格化した運動は- 以下で求
める関数 ᇊ	ᇑ
を用いて ֍	֏Ӵ ֏
 � ֍	֏
ᇊ	֏�֏
 UkX98V

と書くことができるX このとき- 転回点以内の質量プロファイルの表式ծ	֏Ӵ ֍
 � ௷ՙɱ թ <֍  ֍	֏
ᇊ	֏�֏
> տծ	֏
տ֏ տ֏
において- 変数変換 ֏ ޘ ᇑ � ֏�֏ を施すと- 式 UkXjNVによりտծ	֏
տ֏ տ֏ �  ϵϯᇃ ծ	֏
֏ տ֏ �  ϵϯᇃ ծ	֏�ᇑ
ᇑ տᇑ �  ϵϯᇃ ᇑɞ�ɘᆙծ	֏
ᇑ տᇑ
と計算できるから- 同じく式 UkXjNV により ֍	֏
�֍	֏
 � ᇑᆖ となることを用いると-
質量プロファイルの表式はծ	֏Ӵ ֍
 � ϵϯᇃծ	֏
 ௷�ȯ թ  ֍֍	֏
  ᇊ	ᇑ
ᇑᆖ  տᇑᇑȯ�ɞ�ɘᆙ UkX9eV

へと帰着されるX
球殻 ֏ の運動方程式は տɞ֍տ֏ɞ � ըծ	֏Ӵ ֍	֏Ӵ ֏

֍ɞ UkX9dV

であるX ここに自己相似解 UkX98Vを代入すると- 転回点以後 U֏ � ֏V には運動方程式はտɞᇊ	ᇑ
տᇑɞ �  ֏ɞ֍ɘ 	֏
 ըծ	֏
ᇊɞ  ϵϯᇃ ௷�ȯ թ ᇊ	ᇑ
ᇑᆖ  ᇊ	ᇑ
ᇑᆖ  տᇑᇑȯ�ɞ�ɘᆙ
に帰着されるX 右辺の係数は式 UkXjdVから֏ɞ֍ɘ 	֏
ըծ	֏
 � ᇎɞ̈́ ծ	֏
ծ	֏
 � ᇎɞ̈́ ᇑɞ�ɘᆙ

k9

r < r⇤

⌧ ⌘ t/t⇤

Self-similar 
ansatz

: time normalized by turn-around time Heaviside step func.

Mass: Mt / a(t)1/✏;

5.2 Similarity Solutions for Spherical Collapse 221

a problem with spherical symmetry, such as the one considered here, this means that any physical
quantity, q(r, t), can be written in the form, q(r, t) = Q(t)Q[r/ R(t)], where R(t) and Q(t) are the
characteristic scales for the radius r and for the quantity q, respectively, both having power-law
dependence on t, and Q is an arbitrary function of the normalized radius. When considering
gravitational collapse in an expanding background, self-similarity requires the expansion of the
universe to be scale-free [i.e. a(t) is a power law of t], and so we need to assume an Einstein–de
Sitter universe. In this case, the turnaround radius and time (which again refer to the radius and
time at the first apocenter) are

rmax

ri
=

Cr

δi
;

tmax

ti
=
(

Ct

δi

)3/ 2

, (5.37)

where Cr = 3/ 5, Ct =Cr(3π/ 4)2/ 3 and δi is the initial mean density contrast within the mass shell
[see Eq. (5.8)]. In order for the problem to have self-similar solutions, we also need to assume
the initial density perturbation to be scale-free. We therefore write

δi ≡
δMi

Mi
=
(

Mi

M∗

)− ε
, (5.38)

where ε is a constant and M∗ is a reference mass scale. Denoting the turnaround radius at time t
by rt and the mass within it by Mt ≡ M(rt , t), we find from Eqs. (5.37) and (5.38) that

Mt

M∗
=

1

C1/ ε
t

(
t
ti

)2/ 3ε
; (5.39)

rt =
Cr

Ct

[
3Mt

4πρ(ti)

]1/ 3( t
ti

)2/ 3

, (5.40)

where ρ(ti) is the background density at ti. Under the assumption of self-similarity, the mass
M(r, t) must have the self-similar form

M(r, t) = MtM (r/ rt), (5.41)

where M is a dimensionless mass profile. Since M(r, t) contains all the mass in the mass shells
with current radii smaller than r(ri, t), we have for r < rt that

M (r/ rt) =
1

Mt

∫ Mt

0
H
[
r(ri, t)− r(r′i, t)

]
dM′

i , (5.42)

where H (x) is the Heaviside step function: H (x) = 1 for x ≥ 0 and H (x) = 0 otherwise. In
terms of the dimensionless variables,

λ = r/ rmax and τ = t/ tmax, (5.43)

where rmax and tmax are the radius and time at the first apocenter, respectively, the equation of
motion, Eq. (5.36), can be written as

d2λ
dτ2 = − π2

8
τ2/ 3ε

λ 2 M

[
λ

Λ(τ)

]
, (5.44)

where

M (x) =
2

3ε

∫ ∞

1

dy
y1+2/ 3ε H

[
x− λ (y)

Λ(y)

]
and Λ(τ) = τ2/ 3+2/ 9ε . (5.45)

The boundary conditions are λ = 1 and dλ / dτ = 0 at the turnaround time τ = 1. Eq. (5.44)
is independent of ri, and so it applies to all mass shells that have turned around before time t.
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gravitational collapse in an expanding background, self-similarity requires the expansion of the
universe to be scale-free [i.e. a(t) is a power law of t], and so we need to assume an Einstein–de
Sitter universe. In this case, the turnaround radius and time (which again refer to the radius and
time at the first apocenter) are

rmax

ri
=

Cr

δi
;

tmax

ti
=
(

Ct

δi

)3/ 2

, (5.37)

where Cr = 3/ 5, Ct =Cr(3π/ 4)2/ 3 and δi is the initial mean density contrast within the mass shell
[see Eq. (5.8)]. In order for the problem to have self-similar solutions, we also need to assume
the initial density perturbation to be scale-free. We therefore write

δi ≡
δMi

Mi
=
(

Mi

M∗

)− ε
, (5.38)

where ε is a constant and M∗ is a reference mass scale. Denoting the turnaround radius at time t
by rt and the mass within it by Mt ≡ M(rt , t), we find from Eqs. (5.37) and (5.38) that

Mt

M∗
=

1

C1/ ε
t

(
t
ti

)2/ 3ε
; (5.39)

rt =
Cr

Ct

[
3Mt

4πρ(ti)

]1/ 3( t
ti

)2/ 3

, (5.40)

where ρ(ti) is the background density at ti. Under the assumption of self-similarity, the mass
M(r, t) must have the self-similar form

M(r, t) = MtM (r/ rt), (5.41)

where M is a dimensionless mass profile. Since M(r, t) contains all the mass in the mass shells
with current radii smaller than r(ri, t), we have for r < rt that

M (r/ rt) =
1

Mt

∫ Mt

0
H
[
r(ri, t)− r(r′i, t)

]
dM′

i , (5.42)

where H (x) is the Heaviside step function: H (x) = 1 for x ≥ 0 and H (x) = 0 otherwise. In
terms of the dimensionless variables,

λ = r/ rmax and τ = t/ tmax, (5.43)

where rmax and tmax are the radius and time at the first apocenter, respectively, the equation of
motion, Eq. (5.36), can be written as

d2λ
dτ2 = − π2

8
τ2/ 3ε

λ 2 M

[
λ

Λ(τ)

]
, (5.44)

where

M (x) =
2

3ε

∫ ∞

1

dy
y1+2/ 3ε H

[
x− λ (y)

Λ(y)

]
and Λ(τ) = τ2/ 3+2/ 9ε . (5.45)

The boundary conditions are λ = 1 and dλ / dτ = 0 at the turnaround time τ = 1. Eq. (5.44)
is independent of ri, and so it applies to all mass shells that have turned around before time t.

EoM

Fillmore & Goldreich (’84)
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Tracing multi-stream flow with particle 
trajectories in N-body simulation

(Diemer’17; Diemer et al.’17)

= SPARTA algorithm + α

Keeping track of apocenter passage(s) for particle trajectories, 

• 60 snapshots at 0<z<1.43
• L=316Mpc/h, N=512^3

number of apocenter passages, p, is stored for each particle

N-body simulation

• Einstein-de Sitter universe

Tiling phase-space 
streams with p
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Comparison with self-similar solution
Use apocenter-passage positions 
p=1~5 to fit to self-similar solution

by Fillmore & Goldreich (’84)

 Fitting parameters:

accretion rate

s = (1/✏), rta(tta)
scale radius(M / as)

(Master thesis by H. Sugiura )
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Zel’dovich近似と高次摂動
（ラグランジェ摂動論）
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1 BASIC EQUATIONS

We begin by writing down equations of motion for mass
element, which have to be solved with Poisson equation:

ẍ+ 2Hẋ = − 1
a2

∇x φ(x), (1)

∇2
x φ(x) = 4πGa2ρm δ(x). (2)

Taking the divergence and rotation, Eq. (1) with a help
of Eq. (2) yield

∇x ·
[
ẍ+ 2Hẋ

]
= −4πG ρm δ, (3)

∇x ×
[
ẍ+ 2Hẋ

]
= 0. (4)

In what follows, using the Lagrangian coordinate, q,
we will describe the motion of mass element in Eulerian
space, x. Introducing the displacement field Ψ, the relation
between the Eulerian and Lagrangian positions is given by

x(q, t) = q +Ψ(q, t). (5)

In Lagrangian coordinate, mass element is supposed to be
homogeneously distributed, i.e., ρm dnq = ρm(x) dnx with n
being the space dimension. In this report, we shall consider
the n = 2 and 3 cases. The density field δ is expressed as

δ(x) =
ρm(x)
ρm

− 1 =

∣∣∣∣
∂x
∂q

∣∣∣∣
−1

− 1. (6)

Below, following Matsubara (2015), we will derive the
evolution equations for displacement field. To do this, for
convenience, we introduce the quantities J and J defined
by

Jij ≡ ∂xi

∂qj

= δij +Ψi,j(q), (7)

J ≡ det(J). (8)

Note that J and J−1 are expressed in terms of J as follows:

J =

⎧
⎪⎪⎨

⎪⎪⎩

1
6
ϵijkϵpqrJipJjqJkr (3D)

1
2
ϵijϵpqJipJjq (2D)

(9)

(J−1)ij =

⎧
⎪⎪⎨

⎪⎪⎩

1
2J

ϵjkpϵiqr Jkq Jpr (3D)

1
J
ϵikϵjl Jlk (2D)

(10)

Here, the quantities ϵijk and ϵij represent the 3D and 2D
Levi-Civita symbols, respectively. Properties of Levi-Civita
symbols are summarized as1

(3D) : ϵ123 = 1 = ϵ231 = ϵ312, ϵ132 = −1 = ϵ213 = ϵ312,
ϵijkϵklm = δilδjm − δimδjl,
ϵilmϵjlm = 2δij , ϵijkϵijk = 6

(2D) : ϵ12 = 1 = −ϵ21,
ϵijϵik = δjk, ϵijϵij = 2

(11)

Using the Lagrangian quantities defined above, Eqs. (3)
and (4) are rewritten with

ϵikpϵjqrJkqJpr

(
T̂ − 4πG

3
ρm

)
Jij + 8πGρm = 0, (12)

JijϵjkpJqk T̂ Jqp = 0. (13)

in 3D case, and

ϵilϵjkJlk

(
T̂ − 2πG ρm

)
Jij + 4πGρm = 0, (14)

ϵpkJqk T̂ Jqp = 0. (15)

1 Subscripts 1, 2 and,3 correspond to qx, qy and qz , respectively.

c⃝ 2017 The Authors
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Lagrangian coordinate (q):
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We begin by writing down equations of motion for mass
element, which have to be solved with Poisson equation:

ẍ+ 2Hẋ = − 1
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∇x φ(x), (1)
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x φ(x) = 4πGa2ρm δ(x). (2)

Taking the divergence and rotation, Eq. (1) with a help
of Eq. (2) yield

∇x ·
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being the space dimension. In this report, we shall consider
the n = 2 and 3 cases. The density field δ is expressed as
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− 1 =
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− 1. (6)
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Using the Lagrangian quantities defined above, Eqs. (3)
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(
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In Lagrangian coordinate, mass density is assumed to be uniform:
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1 BASIC EQUATIONS

We begin by writing down equations of motion for mass
element, which have to be solved with Poisson equation:

ẍ+ 2Hẋ = − 1
a2

∇x φ(x), (1)

∇2
x φ(x) = 4πGa2ρm δ(x). (2)

Taking the divergence and rotation, Eq. (1) with a help
of Eq. (2) yield

∇x ·
[
ẍ+ 2Hẋ

]
= −4πG ρm δ, (3)

∇x ×
[
ẍ+ 2Hẋ

]
= 0. (4)

In what follows, using the Lagrangian coordinate, q,
we will describe the motion of mass element in Eulerian
space, x. Introducing the displacement field Ψ, the relation
between the Eulerian and Lagrangian positions is given by

x(q, t) = q +Ψ(q, t). (5)

In Lagrangian coordinate, mass element is supposed to be
homogeneously distributed, i.e., ρm dnq = ρm(x) dnx with n
being the space dimension. In this report, we shall consider
the n = 2 and 3 cases. The density field δ is expressed as

δ(x) =
ρm(x)
ρm

− 1 =

∣∣∣∣
∂x
∂q

∣∣∣∣
−1

− 1. (6)

Below, following Matsubara (2015), we will derive the
evolution equations for displacement field. To do this, for
convenience, we introduce the quantities J and J defined
by

Jij ≡ ∂xi

∂qj

= δij +Ψi,j(q), (7)

J ≡ det(J). (8)

Note that J and J−1 are expressed in terms of J as follows:

J =

⎧
⎪⎪⎨

⎪⎪⎩

1
6
ϵijkϵpqrJipJjqJkr (3D)

1
2
ϵijϵpqJipJjq (2D)

(9)

(J−1)ij =

⎧
⎪⎪⎨

⎪⎪⎩

1
2J

ϵjkpϵiqr Jkq Jpr (3D)

1
J
ϵikϵjl Jlk (2D)

(10)

Here, the quantities ϵijk and ϵij represent the 3D and 2D
Levi-Civita symbols, respectively. Properties of Levi-Civita
symbols are summarized as1

(3D) : ϵ123 = 1 = ϵ231 = ϵ312, ϵ132 = −1 = ϵ213 = ϵ312,
ϵijkϵklm = δilδjm − δimδjl,
ϵilmϵjlm = 2δij , ϵijkϵijk = 6

(2D) : ϵ12 = 1 = −ϵ21,
ϵijϵik = δjk, ϵijϵij = 2

(11)

Using the Lagrangian quantities defined above, Eqs. (3)
and (4) are rewritten with

ϵikpϵjqrJkqJpr

(
T̂ − 4πG

3
ρm

)
Jij + 8πGρm = 0, (12)

JijϵjkpJqk T̂ Jqp = 0. (13)

in 3D case, and

ϵilϵjkJlk

(
T̂ − 2πG ρm

)
Jij + 4πGρm = 0, (14)

ϵpkJqk T̂ Jqp = 0. (15)

1 Subscripts 1, 2 and,3 correspond to qx, qy and qz , respectively.

c⃝ 2017 The Authors

Rewriting quantities in Eulerian space with 
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symbols are summarized as1

(3D) : ϵ123 = 1 = ϵ231 = ϵ312, ϵ132 = −1 = ϵ213 = ϵ312,
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(2D) : ϵ12 = 1 = −ϵ21,
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Using the Lagrangian quantities defined above, Eqs. (3)
and (4) are rewritten with
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(
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2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

j,k

= −
∑

m1+m2=n

ϵijk Ψ
(m1)
p,j

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

p,k . (23)

✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j

(24)

ϵpq
( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(n)

q,p

= −
∑

m1+m2=n

ϵpq Ψ
(m1)
k,q

( ∂2

∂η2
+

1
2
∂
∂η

)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵijkϵipq Ψ
(m1)
j,p

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
2

∑

m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q

×
( ∂2

∂η2
+

1
2
∂
∂η

− 1
2

)
Ψ(m3)

k,r , (22)

ϵijk
( ∂2
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+
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∂
∂η
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( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

k,q

− 1
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ϵijkϵpqr Ψ
(m1)
i,p Ψ(m2)

j,q
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( ∂2

∂η2
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1
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∂
∂η
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2
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Ψ(m3)
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ϵijk
( ∂2

∂η2
+

1
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∂
∂η

)
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j,k
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ϵijk Ψ
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1
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With this definition, taking the divergence of Eq. (4.11) gives

∇x

(
ψ̈ + 2Hψ̇

)
= −4πGρm δm(x) (4.13)

In the above, the sources of nonlinearity are

1 + δm(x) =

∣∣∣∣
∂x

∂q

∣∣∣∣
−1

≡ 1

J
, (4.14)

∂

∂xi
=

(
∂x

∂q

)−1

ij

∂

∂qj

≡ (J−1)ij
∂

∂qj

. (4.15)

Regarding ψ as a perturbed quantity, the leading-order evaluation leads to

J =
1

6
ϵijkϵpqrJipJjqJkr ≃ 1 +∇q ·ψ, (4.16)

(J−1)ij =
1

2J
ϵjkpϵiqrJkqJpr ≃ δij +O(ψ). (4.17)

Eq. (4.13) is then rewritten at leading order with

(J−1)ij
∂

∂qj

(
ψ̈ + 2Hψ̇

)
= −4πGρm

( 1
J
− 1
)

=⇒ (∇q ·ψ).. + 2H(∇q ·ψ). − 4πGρm(∇q ·ψ) ≃ 0. (4.18)

Eq. (4.18) is nothing but the evolution equation for linear density field. Since δm ≃ −∇q ·ψ
at t→ 0, we may write the displacement field as

ψ(q; a) = −D1(a)∇qϕ(q), ∇2
qϕ(q) = δ0(q). (4.19)

Here, D1 is the linear growth factor, and δ0 is the initial density field.

A crucial point may be that the density field is not assumed to be small. Thus, it is
often said that the solution may be applied to the quasi-linear regime. Plugging Eq. (4.19)
into Eq. (4.14), we obtain

1 + δm(x) ≃
1

(1−D1 λ1)(1−D1 λ2)(1−D1 λ3)
. (4.20)

where λi is the eigenvalue of the vector ϕ,i. This illustrates how the non-sphericity of the
structure develops according to the initial condition. In particular, the above equation
implies that in the Gaussian initial condition, most of the nonlinear structure is aspherical.

Beyond Zel’dovich approximation

Zel’dovich approximation is regarded as the first-order approximation to the displace-
ment field ψ, and there is a systematic way of perturbative expansion to improve the dis-
placement field. This is the Lagrangian perturbation theory (e.g., [12, 51, 13, 14, 30, 16]).
Here, we give the basic equations for ψ, with which we can systematically construct the
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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)
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ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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With this definition, taking the divergence of Eq. (4.11) gives

∇x

(
ψ̈ + 2Hψ̇

)
= −4πGρm δm(x) (4.13)

In the above, the sources of nonlinearity are
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Regarding ψ as a perturbed quantity, the leading-order evaluation leads to
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Eq. (4.18) is nothing but the evolution equation for linear density field. Since δm ≃ −∇q ·ψ
at t→ 0, we may write the displacement field as

ψ(q; a) = −D1(a)∇qϕ(q), ∇2
qϕ(q) = δ0(q). (4.19)

Here, D1 is the linear growth factor, and δ0 is the initial density field.

A crucial point may be that the density field is not assumed to be small. Thus, it is
often said that the solution may be applied to the quasi-linear regime. Plugging Eq. (4.19)
into Eq. (4.14), we obtain

1 + δm(x) ≃
1

(1−D1 λ1)(1−D1 λ2)(1−D1 λ3)
. (4.20)

where λi is the eigenvalue of the vector ϕ,i. This illustrates how the non-sphericity of the
structure develops according to the initial condition. In particular, the above equation
implies that in the Gaussian initial condition, most of the nonlinear structure is aspherical.

Beyond Zel’dovich approximation

Zel’dovich approximation is regarded as the first-order approximation to the displace-
ment field ψ, and there is a systematic way of perturbative expansion to improve the dis-
placement field. This is the Lagrangian perturbation theory (e.g., [12, 51, 13, 14, 30, 16]).
Here, we give the basic equations for ψ, with which we can systematically construct the
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Figure 10. Redshift-zero Eulerian locations of particles occupying a 2562 sheet of a 2563-particle ⇤CDM realization, projecting out the third dimension.
Clockwise from upper left, particle positions are determined using: a full N -body simulation; the Zel’dovich approximation; 2LPT; and the SC approximation
(12). By eye, the SC approximation gives the results closest to full gravity.

extremely underdense in the final conditions. These middling over-
densities are unlikely to produce spurious haloes detected in a 2LPT
realization, but there remains some chance of that.

What are we to conclude about the reliability of 2LPT at low
redshifts for mock galaxy catalogs? The work here is hardly an ex-
haustive study, as it considers just the single simulation analyzed
here. But for this simulation at z = 0, the population of overdense
particles that should be underdense starts to be a worry. This prob-
lem would be even more severe if �( lin) were increased, popu-
lating the high- i branch of the  2LPT,parab parabola. One way to
increase �( lin) is by increasing the mass resolution (since fluctu-

ations grow on small scales in a ⇤CDM universe), so we recom-
mend caution in using 2LPT realization at high resolution and low
redshift. This is not surprising, of course; for high LPT accuracy,
�( lin) should be . 1. Fortunately, to our knowledge, low-redshift
uses of 2LPT have been at lower mass resolution than this, resulting
in an appropriately low �( lin).

While the SC approximation excels at predicting 1-point
statistics and a visually plausible particle distribution, unfortu-
nately it seems to have deficiencies, as well. The SC approximation
shifts the locations of nonlinear structures more than does the ZA.
This is difficult to see in Fig. 10, so we overplot the N -body and
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Figure 13. The Zel’dovich and SC panels of Fig. 10, with the full N-body results overplotted in red. While Zel’dovich gives artificially empty voids and
fuzzier haloes, it gives somewhat more accurate large-scale flows than does SC.

Figure 14. Matter power spectra in a 200 h−1 Mpc N-body simulation at z =
0, compared to power spectra of particle distributions displaced according
to various approximations.

large-scale flows, but these could be tied to ψ = −3 collapses, and
could be absent at high redshift without stream crossing.

The ‘barrier’ at ψ = −3 could be useful for halo finding in N-
body simulations. Unfortunately, it seems not straightforward to
use this barrier to halo find in a single snapshot of a simulation, but
other possibilities exist. For instance, ψ could be measured at each
time-step; if a particle ever has ψ ≤ −3, it could be tagged as a halo
particle.

It is also quite interesting to consider ways of predicting where
ψ = −3 from the initial conditions. Such considerations may even
allow analytical mass functions. Indeed, similar ideas have been
proposed using LPT (e.g. Monaco et al. 2002). Another possible
approach may be to infer Lagrangian halo boundaries from the
ψ sc(ψ lin) formula, as in the lower-left panel of Fig. 8. The true
halo contours are often smoothed versions of these contours, and

Figure 15. Fourier-space cross-correlation coefficients between the various
approximately-evolved density fields and the particle distribution as evolved
in the full N-body simulation. The solid black line is essentially the non-
linear propagator between the initial and final states; the Lagrangian cross-
correlations are higher, indicating higher accuracy.

perhaps could be obtained by a combination of mathematical mor-
phology techniques such as dilation and erosion (e.g. Serra 1983)
in Lagrangian space, as can be useful in cleaning detected void
boundaries (Platen, van de Weygaert & Jones 2007).

In conclusion, ψ , a natural density-like variable in a Lagrangian
viewpoint, seems to be a rather useful quantity, with some extra in-
formation that is not in the density itself. It is fortunate that a simple
formula gives ψ’s behaviour in voids, where dark energy is most
energetically dominant (if indeed it is a substance). To understand
dark energy, understanding the stretching of the Lagrangian mesh
in voids is likely particularly important.

 at K
yoto U

niversity on N
ovem

ber 9, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

152 M. C. Neyrinck

Figure 13. The Zel’dovich and SC panels of Fig. 10, with the full N-body results overplotted in red. While Zel’dovich gives artificially empty voids and
fuzzier haloes, it gives somewhat more accurate large-scale flows than does SC.

Figure 14. Matter power spectra in a 200 h−1 Mpc N-body simulation at z =
0, compared to power spectra of particle distributions displaced according
to various approximations.

large-scale flows, but these could be tied to ψ = −3 collapses, and
could be absent at high redshift without stream crossing.

The ‘barrier’ at ψ = −3 could be useful for halo finding in N-
body simulations. Unfortunately, it seems not straightforward to
use this barrier to halo find in a single snapshot of a simulation, but
other possibilities exist. For instance, ψ could be measured at each
time-step; if a particle ever has ψ ≤ −3, it could be tagged as a halo
particle.

It is also quite interesting to consider ways of predicting where
ψ = −3 from the initial conditions. Such considerations may even
allow analytical mass functions. Indeed, similar ideas have been
proposed using LPT (e.g. Monaco et al. 2002). Another possible
approach may be to infer Lagrangian halo boundaries from the
ψ sc(ψ lin) formula, as in the lower-left panel of Fig. 8. The true
halo contours are often smoothed versions of these contours, and

Figure 15. Fourier-space cross-correlation coefficients between the various
approximately-evolved density fields and the particle distribution as evolved
in the full N-body simulation. The solid black line is essentially the non-
linear propagator between the initial and final states; the Lagrangian cross-
correlations are higher, indicating higher accuracy.

perhaps could be obtained by a combination of mathematical mor-
phology techniques such as dilation and erosion (e.g. Serra 1983)
in Lagrangian space, as can be useful in cleaning detected void
boundaries (Platen, van de Weygaert & Jones 2007).

In conclusion, ψ , a natural density-like variable in a Lagrangian
viewpoint, seems to be a rather useful quantity, with some extra in-
formation that is not in the density itself. It is fortunate that a simple
formula gives ψ’s behaviour in voids, where dark energy is most
energetically dominant (if indeed it is a substance). To understand
dark energy, understanding the stretching of the Lagrangian mesh
in voids is likely particularly important.

 at K
yoto U

niversity on N
ovem

ber 9, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

power spectrum cross correlation coeff.

ΛCDM



Zel’dovich近似の応用
N体シミュレーションの初期条件生成に有用

粒子を格子状に並べてZel’dovich近似でずらす：

x = q + �(q)

格子点の位置 変移場ベクトル

v = aẋ = a�̇(q)

�(k) � ik

k2
D+(z) �0(k)Zel’dovich近似：

初期密度ゆらぎ

1. フーリエ空間上にランダムな初期密度場を生成 �0(k)

2. 変移場ベクトルを計算： �(k) �(q)FFT

3. 変移場ベクトルを使って粒子を移動：�(q) �̇(q) = Ḋ+(z)
D+(z) �(q)

計算の流れ
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm
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ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
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ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:
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(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
∂η

− 3
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)
Ψ(n)

k,k

= −
∑
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j,p

( ∂2

∂η2
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∂
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)
ψ(m2)

k,q
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2
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m1+m2+m3=n

ϵijkϵpqr Ψ
(m1)
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j,q

×
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∂η2
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1
2
∂
∂η
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2

)
Ψ(m3)

k,r , (22)
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2
∂
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)
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ϵijk Ψ
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1
2
∂
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)
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✒ ✑
2D✓ ✏
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∂
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∂
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)
Ψ(m2)

k,p . (25)

✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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Under Einstein-de Sitter approximation:
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
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)
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2
ϵijkϵpqr Ψi,pΨj,q

(
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(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:

3D✓ ✏
( ∂2

∂η2
+

1
2
∂
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)
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✒ ✑
2D✓ ✏

( ∂2

∂η2
+

1
2
∂
∂η

− 3
2

)
Ψ(n)

k,k

= −
∑

m1+m2=n

ϵilϵjk Ψ
(m1)
l,k

( ∂2

∂η2
+

1
2
∂
∂η

− 3
4

)
ψ(m2)

i,j
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
T̂ − 4πG

3
ρm

)
Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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∂
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∂
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)
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×
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1
2
∂
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2

)
Ψ(m3)
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1
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)
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p,k . (23)

✒ ✑
2D✓ ✏
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∂
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Ψ(m2)
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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2 Authors

in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
Ψk,k

= −ϵijkϵipq Ψj,p

(
T̂ − 2πG ρm

)
ψk,q

− 1
2
ϵijkϵpqr Ψi,pΨj,q

(
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Ψk,r,

(16)

ϵijk T̂ Ψj,k = −ϵijk Ψp,j T̂ Ψp,k. (17)✒ ✑
2D✓ ✏

(
T̂ − 4πG ρm

)
Ψk,k

= −ϵilϵjk Ψl,k

(
T̂ − 2πG ρm

)
ψi,j (18)

ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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in 2D case. Here, the differential operator, T̂ , is defined as
T̂ f(t) ≡ f̈(t) + 2Hḟ(t).

Noting that Jij is expressed as Jij = δij + Ψi,j , the
evolution equations derived above are further recast as those
of longitudinal and transverse parts of displacement field,
i.e., ∇q · Ψ and ∇q × Ψ. The resultant equations become
summarized below:

3D✓ ✏
(
T̂ − 4πG ρm

)
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ϵpq T̂ Ψq,p = −ϵpq Ψk,qT̂ Ψk,p. (19)✒ ✑
Note that Eqs. (16) and (17) correspond to Eqs. (19)

and (31) of Matsubara (2015).

2 LAGRANGIAN PERTURBATION THEORY

Eqs. (16)–(19) are the basis to perturbatively solve displace-
ment field in 3D and 2D. In this section, we develop a per-
turbative expansion of Ψ, and present analytic expressions
for perturbative solutions in a specific initial condition:

Ψ(q, t) = Ψ(1)(q, t) +Ψ(2)(q, t) +Ψ(3)(q, t) + · · · (20)

To derive the analytic expressions relevant for standard
ΛCDM model, we employ the Einstein-de Sitter approxi-
mation. In this approximation, all the time-dependent func-
tions obtained in the Einstein de-Sitter Universe, which are
expressed in terms of the scale factor a(t), are recast as the
function of linear growth factor D1 by simply replacing a
with D1. Let us introduce the new time variable η:

η ≡ lnD1(t). (21)

Substituting Eq. (20) into Eqs. (16)–(19), in the Einstein-de

Sitter approximation, the following recurrence relations for
displacement field are obtained:
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✒ ✑
Eqs. (22) and (23) exactly coincide with Eqs. (60) and

(61) of Matsubara (2015). The longitudinal- and transverse-
mode of the displacement field have different linear differen-
tial operators (at left-hand-side). To derive the higher-order
growth functions, the following Green functions are useful:

GL(η1, η2) =
2
5

(
eη1−η2 − e−(3/2)(η1−η2)

)
Θ(η1 − η2). (26)

for longitudinal mode, and

GT(η1, η2) = 2
(
1− e−(1/2)(η1−η2)

)
Θ(η1 − η2). (27)

for transverse mode. It is easy to check that these functions
satisfy G(η, η) = 0 and d

dηG(η1, η2)|η1=η2 = 1.
Below, we first give a linear-order displacement field

as initial condition. Then explicit forms of the higher-order
displacement fields are derived up to third order.

2.1 Initial condition (first order)

We consider the initial condition set at t = t0. For an an-
alytically tractable initial condition, the displacement field
is assumed to have a simple sinusoidal form with periodic
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Figure 1 – Panneau du haut : densité projetée obtenue à la fin de la si-
mulation (c) de la Table 1. Les tranches correspondant aux plans x = 0,
y = 0 et z = 0 sont représentées. Panneau du bas : profil logarithmique de
la densité radiale ⇢(r) mesuré à di↵érent temps dans la simulation du pan-
neau de gauche (courbes en continu, pointillés et tirets). La courbe en tirets
correspond au temps dynamique représenté dans le panneau de gauche. Pour
indication, la pente �1.7 est montrée en rouge. A titre de comparaison, la
densité mesurée dans la simulation de très haute résolution (g) est représentée
par une courbe orange, à comparer directement à la courbe continue.

4

10次まで計算

Saga, AT & Colombi, arXiv:1805.08787

宇宙論的ヴラソフシミュ
レーションと比較
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elements at collapse time calculated at n
th order with

LPT, xsc(q, n) = [xsc(q, n), ysc(q, n), zsc(q, n)], is well
described by the following fitting form:

Asc(q, n) = ↵A(q)+
1

bA(q) + cA(q) exp
⇥
d(q)ne(q)

⇤ , (6)

with A = x, y, z and where ↵A, bA, cA, dA and eA

are fitting parameters which depend both on initial con-
ditions and Lagrangian position q. Taking the limit
n ! 1 gives the extrapolated result at infinite order,
xsc(q, n ! 1) ! [↵x(q),↵y(q),↵z(q)]. The same treat-
ment can be applied just before and after shell-crossing:
by taking the central finite time di↵erence, the extrapo-
lated velocity, vsc(q, n ! 1), is also obtained.

Examination of Fig. 1 shows that the result of this
procedure (cyan curves) reproduces very well simulation
measurements, even the spiky structure in the ✏y,z/✏x = 1
case. Disagreement is at worse a few percent when
✏y,z/✏x < 1. Even if there are still some small mis-
matches, partly attributable to a small desynchronization
due to the finite time step in the simulations, the extrap-
olation based on Eq. (6) is unquestionably successful and
can be used to perform quantitative predictions over the
entire parameter space covered by (✏y/✏x, ✏z/✏x). Note
that the same fitting technique has been employed to
predict the shell-crossing time, tsc(n = 1), used as the
output time for the simulations shown in Fig. 1.

Analysis of the shell-crossing structure.—Making use
of the generic convergence behavior described in Eq. (6),
we can explore the global parameter dependence of the
shell-crossing structure, by studying the properties of
the shape of the 2D section (x, vx) shown on Fig. 1.
Fig. 2 summarizes the results of a parameter space sur-
vey, focusing on the maximum of the normalized velocity
vx/(aH) (top panel) and the corresponding Lagrangian
position (bottom panel). Again, as expected, for the sub-
space of parameters probed by our runs, the theoretical
predictions given by the black dots are found to be in
good agreement with the simulations.

What is more striking about Fig. 2 is the sudden tran-
sition in the vicinity of the point (✏y/✏x, ✏z/✏x) = (1, 1),
where the maximum velocity suddenly augments when
these ratios increase towards unity (upper right part of
top panel) while the corresponding Lagrangian coordi-
nate gets very close to zero, suggesting the convergence
to some singular behavior (upper right part of bottom
panel). This sudden change is in fact also associated to
a drastic variation in the shape of the structure of the
phase-space sheet at collapse, as illustrated by Fig. 3 in
(x, vx) sub-space, where we consider the case ✏z/✏x = 1
and values of ✏y/✏x increasing from 0.85 to unity. As
seen in this figure, the cross-section of the phase-space
sheet changes drastically from a smooth “S” shape, which
is the normal behavior for most of values of the ratios
(✏y/✏x, ✏z/✏x), to a spiky structure when both these ra-
tios approach unity, min(✏y,z/✏x) >⇠ 0.9. Again, the case
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FIG. 2. Parameter dependence of the normalized maximum
velocity vx,max/(aH) (top panel) and the corresponding La-
grangian coordinate qmax (bottom panel) at shell-crossing
time. These quantities are rescaled so that they are unity
for (✏y/✏x, ✏z/✏x) = (1, 1) and (✏y/✏x, ✏z/✏x) = (0, 0), respec-
tively. The parameters used in the simulations are also shown
as black dots on each panel, along with measured values of
vx,max/(aH) and qmax in the simulations, to be compared to
the isocontours.

✏y,z/✏x ' 1 is special because of the (close to) simultane-
ous collapses along three main directions of motion and
one expects a di↵erent behavior of post-collapse dynam-
ics compared to the typical cases. This might correspond
in the CDM paradigm to a population of rare halos or
subhalos with particular properties and is worth investi-
gating more in a future work.

Conclusion and outlook.—With Lagrangian perturba-
tion theory (LPT) extrapolated to infinite order, we
found a way to describe accurately the phase-space struc-
ture of proto-halos growing from three initial sine waves
of various amplitudes, ✏x, ✏y and ✏z, until collapse time.
To validate the theory, we used the state of the art
Vlasov code of [39]. During our investigations, we found,
as expected, that convergence of the LPT series ex-
pansion gets worse when going from quasi-one dimen-
sional to tri-axial symmetric initial conditions. An ex-
ploration of parameter space shows that a spiky struc-
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Making use of convergence of LPT expansion

n!1�! a Extrapolation

xLPT(q) = qx +
NX

n=1

 (n)
x (q)at n-th order is found to be accurately fitted to

a+
1

b+ c exp[dne]
(a, · · · , e : fitting parameter)at any Lagrangian position
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After shell-crossing,
quasi-1D collapse 3D collapsequasi-2D collapse

マルチストリーム構造が発達（ハローが形成）



Cosmological N-body simulations

Run N-body simulation many times with a large 
number of particles in a huge box 

To reduce O(N^2) operation for force calculation, 

• Tree algorithm
• Particle-Mesh algorithm (using FFT) 

O(N log N)

Directly solve equation of motion for N particles 

N~1,000^3, L~1,000 Mpc, >50 runs

Still extensive but very useful for practical purposes :

For cosmological  
study

mock data analysis,  locating ‘galaxies’ in dark matter halo, …



Tree-PM method for force calculation

• long-range:  PM method with FFT

• short-range:  Tree algorithm

In Fourier space,

The cosmological simulation code GADGET-2 1111

computation, an estimate of the size of the force from the previous
time-step is not yet available. We then use the ordinary BH opening
criterion to obtain such estimates, followed by a recomputation of
the forces in order to have consistent accuracy for all steps.

Salmon & Warren (1994) pointed out that tree codes can produce
rather large worst-case force errors when standard opening criteria
with commonly employed opening angles are used. These errors
originate in situations where the distance to the nearest particle
in the node becomes very small. When coming very close to or
within the node, the error can even become unbounded. Our relative
opening criterion (18) may suffer such errors because we may in
principle encounter a situation where a particle falls inside a node
while still satisfying the cell-acceptance criterion. To protect against
this possibility, we impose an additional opening criterion, i.e.

|rk − ck | ! 0.6 l. (19)

Here, c = (c1, c2, c3) is the geometric centre of the node, r is the
particle coordinate, and the inequality applies for each coordinate
axis k ∈ {1, 2, 3} separately. We hence require that the particle lies
outside a box about 20 per cent larger than the tree node. Tests
have shown that this robustly protects against the occurrence of
pathologically large force errors while incurring an acceptably small
increase in the average cost of the tree walk.

3.1.2 Neighbour search using the tree

We also use the BH oct-tree for the search of SPH neighbours,
following the range-search method of Hernquist & Katz (1989).
For a given spherical search region of radius hi around a target
location r i , we walk the tree with an opening criterion that examines
whether there is any geometric overlap between the current tree
node and the search region. If yes, the daughter nodes of the node
are considered in turn; otherwise, the walk along this branch of the
tree is immediately discarded. The tree walk is hence restricted to
the region local to the target location, allowing an efficient retrieval
of the desired neighbours. This use of the tree as a hierarchical
search grid makes the method extremely flexible and insensitive in
performance to particle clustering.

A difficulty arises for the SPH force loop, where the neighbour
search depends not only on hi, but also on properties of the target
particles. We here need to find all pairs with distances |r i − r j | <

max(hi, hj), including those where the distance is smaller than hj

but not smaller than hi. We solve this issue by storing in each tree
node the maximum SPH smoothing length occurring among all
particles represented by the node. Note that we update these values
consistently when the SPH smoothing lengths are redetermined in
the first part of the SPH computation (i.e. the density loop). Using
this information, it is straightforward to modify the opening criterion
such that all interacting pairs in the SPH force computation are
always correctly found.

Finally, a few notes on how we solve the implicit equation (6)
for determining the desired SPH smoothing lengths of each parti-
cle in the first place. For simplicity, and to allow a straightforward
integration into our parallel communication strategy, we find the
root of this equation with a binary bisection method. Convergence
is significantly accelerated by choosing a Newton–Raphson value
as the next guess instead of the mid-point of the current interval.
Given that we compute ∂ρ i/hi anyway for our SPH formulation,
this comes at no additional cost. Likewise, for each new time-step,
we start the iteration with a new guess for hi based on the expected
change from the velocity divergence of the flow. Because we usually
only require that equation (6) is solved to a few per cent accuracy,

finding and adjusting the SPH smoothing lengths are subdominant
tasks in the CPU time consumption of our SPH code.

3.1.3 Periodic boundaries in the tree code

The summation over the infinite grid of particle images required for
simulations with periodic boundary conditions can also be treated
in the tree algorithm. GADGET-2 uses the technique proposed by
Hernquist, Bouchet & Suto (1991) for this purpose. The global BH
tree is only constructed for the primary mass distribution, but it is
walked such that each node is periodically mapped to the closest im-
age as seen from the coordinate under consideration. This accounts
for the dominant forces of the nearest images. For each of the partial
forces, the Ewald summation method can be used to complement the
force exerted by the nearest image with the contribution of all other
images of the fiducial infinite grid of nodes. In practice, GADGET-2
uses a 3D lookup table (in one octant of the simulation box) for the
Ewald correction, as proposed by Hernquist et al. (1991).

In the first version of our code, we carried out the Ewald cor-
rection for each of the nodes visited in the primary tree walk over
nearest node images, leading to roughly a doubling of the computa-
tional cost. However, the sizes of Ewald force correction terms have
a very different distance dependence than the ordinary Newtonian
forces of tree nodes. For nodes in the vicinity of a target particle, i.e.
for separations small against the boxsize, the correction forces are
negligibly small, while for separations approaching half the box-
size they become large, eventually even cancelling the Newtonian
force. In principle, therefore, the Ewald correction only needs to be
evaluated for distant nodes with the same opening criterion as the
ordinary Newtonian force, while for nearby ones, a coarser opening
angle can be chosen. In GADGET-2 we take advantage of this and carry
out the Ewald corrections in a separate tree walk, taking the above
considerations into account. This leads to a significant reduction of
the overhead incurred by the periodic boundaries.

3.2 The TreePM method

The new version of GADGET-2 used in this study optionally allows
the pure tree algorithm to be replaced by a hybrid method consisting
of a synthesis of the PM method and the tree algorithm. GADGET-
2’s mathematical implementation of this so-called TreePM method
(Xu 1995; Bode, Ostriker & Xu 2000; Bagla 2002) is similar to that
of Bagla & Ray (2003). The potential of equation (3) is explicitly
split in Fourier space into a long-range part and a short-range part
according to φ k = φ

long
k + φshort

k , where

φ
long
k = φk exp

(
−k2r 2

s

)
, (20)

with rs describing the spatial scale of the force split. This long-range
potential can be computed very efficiently with mesh-based Fourier
methods. Note that if rs is chosen slightly larger than the mesh scale,
force anisotropies that exist in plain PM methods can be suppressed
to essentially arbitrarily small levels.

The short-range part of the potential can be solved in real space
by noting that for r s ≪ L the short-range part of the real-space
solution of equation (3) is given by

φshort(x ) = −G
∑

i

mi

ri
erfc

(
ri

2rs

)
. (21)

Here, ri = min(|x − r i − nL|) is defined as the smallest distance
of any of the images of particle i to the point x . Because the com-
plementary error function rapidly suppresses the force for distances
large compared to rs (the force drops to about 1 per cent of its
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computation, an estimate of the size of the force from the previous
time-step is not yet available. We then use the ordinary BH opening
criterion to obtain such estimates, followed by a recomputation of
the forces in order to have consistent accuracy for all steps.

Salmon & Warren (1994) pointed out that tree codes can produce
rather large worst-case force errors when standard opening criteria
with commonly employed opening angles are used. These errors
originate in situations where the distance to the nearest particle
in the node becomes very small. When coming very close to or
within the node, the error can even become unbounded. Our relative
opening criterion (18) may suffer such errors because we may in
principle encounter a situation where a particle falls inside a node
while still satisfying the cell-acceptance criterion. To protect against
this possibility, we impose an additional opening criterion, i.e.

|rk − ck | ! 0.6 l. (19)

Here, c = (c1, c2, c3) is the geometric centre of the node, r is the
particle coordinate, and the inequality applies for each coordinate
axis k ∈ {1, 2, 3} separately. We hence require that the particle lies
outside a box about 20 per cent larger than the tree node. Tests
have shown that this robustly protects against the occurrence of
pathologically large force errors while incurring an acceptably small
increase in the average cost of the tree walk.

3.1.2 Neighbour search using the tree

We also use the BH oct-tree for the search of SPH neighbours,
following the range-search method of Hernquist & Katz (1989).
For a given spherical search region of radius hi around a target
location r i , we walk the tree with an opening criterion that examines
whether there is any geometric overlap between the current tree
node and the search region. If yes, the daughter nodes of the node
are considered in turn; otherwise, the walk along this branch of the
tree is immediately discarded. The tree walk is hence restricted to
the region local to the target location, allowing an efficient retrieval
of the desired neighbours. This use of the tree as a hierarchical
search grid makes the method extremely flexible and insensitive in
performance to particle clustering.

A difficulty arises for the SPH force loop, where the neighbour
search depends not only on hi, but also on properties of the target
particles. We here need to find all pairs with distances |r i − r j | <

max(hi, hj), including those where the distance is smaller than hj

but not smaller than hi. We solve this issue by storing in each tree
node the maximum SPH smoothing length occurring among all
particles represented by the node. Note that we update these values
consistently when the SPH smoothing lengths are redetermined in
the first part of the SPH computation (i.e. the density loop). Using
this information, it is straightforward to modify the opening criterion
such that all interacting pairs in the SPH force computation are
always correctly found.

Finally, a few notes on how we solve the implicit equation (6)
for determining the desired SPH smoothing lengths of each parti-
cle in the first place. For simplicity, and to allow a straightforward
integration into our parallel communication strategy, we find the
root of this equation with a binary bisection method. Convergence
is significantly accelerated by choosing a Newton–Raphson value
as the next guess instead of the mid-point of the current interval.
Given that we compute ∂ρ i/hi anyway for our SPH formulation,
this comes at no additional cost. Likewise, for each new time-step,
we start the iteration with a new guess for hi based on the expected
change from the velocity divergence of the flow. Because we usually
only require that equation (6) is solved to a few per cent accuracy,

finding and adjusting the SPH smoothing lengths are subdominant
tasks in the CPU time consumption of our SPH code.

3.1.3 Periodic boundaries in the tree code

The summation over the infinite grid of particle images required for
simulations with periodic boundary conditions can also be treated
in the tree algorithm. GADGET-2 uses the technique proposed by
Hernquist, Bouchet & Suto (1991) for this purpose. The global BH
tree is only constructed for the primary mass distribution, but it is
walked such that each node is periodically mapped to the closest im-
age as seen from the coordinate under consideration. This accounts
for the dominant forces of the nearest images. For each of the partial
forces, the Ewald summation method can be used to complement the
force exerted by the nearest image with the contribution of all other
images of the fiducial infinite grid of nodes. In practice, GADGET-2
uses a 3D lookup table (in one octant of the simulation box) for the
Ewald correction, as proposed by Hernquist et al. (1991).

In the first version of our code, we carried out the Ewald cor-
rection for each of the nodes visited in the primary tree walk over
nearest node images, leading to roughly a doubling of the computa-
tional cost. However, the sizes of Ewald force correction terms have
a very different distance dependence than the ordinary Newtonian
forces of tree nodes. For nodes in the vicinity of a target particle, i.e.
for separations small against the boxsize, the correction forces are
negligibly small, while for separations approaching half the box-
size they become large, eventually even cancelling the Newtonian
force. In principle, therefore, the Ewald correction only needs to be
evaluated for distant nodes with the same opening criterion as the
ordinary Newtonian force, while for nearby ones, a coarser opening
angle can be chosen. In GADGET-2 we take advantage of this and carry
out the Ewald corrections in a separate tree walk, taking the above
considerations into account. This leads to a significant reduction of
the overhead incurred by the periodic boundaries.

3.2 The TreePM method

The new version of GADGET-2 used in this study optionally allows
the pure tree algorithm to be replaced by a hybrid method consisting
of a synthesis of the PM method and the tree algorithm. GADGET-
2’s mathematical implementation of this so-called TreePM method
(Xu 1995; Bode, Ostriker & Xu 2000; Bagla 2002) is similar to that
of Bagla & Ray (2003). The potential of equation (3) is explicitly
split in Fourier space into a long-range part and a short-range part
according to φ k = φ

long
k + φshort

k , where

φ
long
k = φk exp

(
−k2r 2

s

)
, (20)

with rs describing the spatial scale of the force split. This long-range
potential can be computed very efficiently with mesh-based Fourier
methods. Note that if rs is chosen slightly larger than the mesh scale,
force anisotropies that exist in plain PM methods can be suppressed
to essentially arbitrarily small levels.

The short-range part of the potential can be solved in real space
by noting that for r s ≪ L the short-range part of the real-space
solution of equation (3) is given by

φshort(x ) = −G
∑

i

mi

ri
erfc

(
ri

2rs

)
. (21)

Here, ri = min(|x − r i − nL|) is defined as the smallest distance
of any of the images of particle i to the point x . Because the com-
plementary error function rapidly suppresses the force for distances
large compared to rs (the force drops to about 1 per cent of its
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computation, an estimate of the size of the force from the previous
time-step is not yet available. We then use the ordinary BH opening
criterion to obtain such estimates, followed by a recomputation of
the forces in order to have consistent accuracy for all steps.

Salmon & Warren (1994) pointed out that tree codes can produce
rather large worst-case force errors when standard opening criteria
with commonly employed opening angles are used. These errors
originate in situations where the distance to the nearest particle
in the node becomes very small. When coming very close to or
within the node, the error can even become unbounded. Our relative
opening criterion (18) may suffer such errors because we may in
principle encounter a situation where a particle falls inside a node
while still satisfying the cell-acceptance criterion. To protect against
this possibility, we impose an additional opening criterion, i.e.

|rk − ck | ! 0.6 l. (19)

Here, c = (c1, c2, c3) is the geometric centre of the node, r is the
particle coordinate, and the inequality applies for each coordinate
axis k ∈ {1, 2, 3} separately. We hence require that the particle lies
outside a box about 20 per cent larger than the tree node. Tests
have shown that this robustly protects against the occurrence of
pathologically large force errors while incurring an acceptably small
increase in the average cost of the tree walk.

3.1.2 Neighbour search using the tree

We also use the BH oct-tree for the search of SPH neighbours,
following the range-search method of Hernquist & Katz (1989).
For a given spherical search region of radius hi around a target
location r i , we walk the tree with an opening criterion that examines
whether there is any geometric overlap between the current tree
node and the search region. If yes, the daughter nodes of the node
are considered in turn; otherwise, the walk along this branch of the
tree is immediately discarded. The tree walk is hence restricted to
the region local to the target location, allowing an efficient retrieval
of the desired neighbours. This use of the tree as a hierarchical
search grid makes the method extremely flexible and insensitive in
performance to particle clustering.

A difficulty arises for the SPH force loop, where the neighbour
search depends not only on hi, but also on properties of the target
particles. We here need to find all pairs with distances |r i − r j | <

max(hi, hj), including those where the distance is smaller than hj

but not smaller than hi. We solve this issue by storing in each tree
node the maximum SPH smoothing length occurring among all
particles represented by the node. Note that we update these values
consistently when the SPH smoothing lengths are redetermined in
the first part of the SPH computation (i.e. the density loop). Using
this information, it is straightforward to modify the opening criterion
such that all interacting pairs in the SPH force computation are
always correctly found.

Finally, a few notes on how we solve the implicit equation (6)
for determining the desired SPH smoothing lengths of each parti-
cle in the first place. For simplicity, and to allow a straightforward
integration into our parallel communication strategy, we find the
root of this equation with a binary bisection method. Convergence
is significantly accelerated by choosing a Newton–Raphson value
as the next guess instead of the mid-point of the current interval.
Given that we compute ∂ρ i/hi anyway for our SPH formulation,
this comes at no additional cost. Likewise, for each new time-step,
we start the iteration with a new guess for hi based on the expected
change from the velocity divergence of the flow. Because we usually
only require that equation (6) is solved to a few per cent accuracy,

finding and adjusting the SPH smoothing lengths are subdominant
tasks in the CPU time consumption of our SPH code.

3.1.3 Periodic boundaries in the tree code

The summation over the infinite grid of particle images required for
simulations with periodic boundary conditions can also be treated
in the tree algorithm. GADGET-2 uses the technique proposed by
Hernquist, Bouchet & Suto (1991) for this purpose. The global BH
tree is only constructed for the primary mass distribution, but it is
walked such that each node is periodically mapped to the closest im-
age as seen from the coordinate under consideration. This accounts
for the dominant forces of the nearest images. For each of the partial
forces, the Ewald summation method can be used to complement the
force exerted by the nearest image with the contribution of all other
images of the fiducial infinite grid of nodes. In practice, GADGET-2
uses a 3D lookup table (in one octant of the simulation box) for the
Ewald correction, as proposed by Hernquist et al. (1991).

In the first version of our code, we carried out the Ewald cor-
rection for each of the nodes visited in the primary tree walk over
nearest node images, leading to roughly a doubling of the computa-
tional cost. However, the sizes of Ewald force correction terms have
a very different distance dependence than the ordinary Newtonian
forces of tree nodes. For nodes in the vicinity of a target particle, i.e.
for separations small against the boxsize, the correction forces are
negligibly small, while for separations approaching half the box-
size they become large, eventually even cancelling the Newtonian
force. In principle, therefore, the Ewald correction only needs to be
evaluated for distant nodes with the same opening criterion as the
ordinary Newtonian force, while for nearby ones, a coarser opening
angle can be chosen. In GADGET-2 we take advantage of this and carry
out the Ewald corrections in a separate tree walk, taking the above
considerations into account. This leads to a significant reduction of
the overhead incurred by the periodic boundaries.

3.2 The TreePM method

The new version of GADGET-2 used in this study optionally allows
the pure tree algorithm to be replaced by a hybrid method consisting
of a synthesis of the PM method and the tree algorithm. GADGET-
2’s mathematical implementation of this so-called TreePM method
(Xu 1995; Bode, Ostriker & Xu 2000; Bagla 2002) is similar to that
of Bagla & Ray (2003). The potential of equation (3) is explicitly
split in Fourier space into a long-range part and a short-range part
according to φ k = φ

long
k + φshort

k , where

φ
long
k = φk exp

(
−k2r 2

s

)
, (20)

with rs describing the spatial scale of the force split. This long-range
potential can be computed very efficiently with mesh-based Fourier
methods. Note that if rs is chosen slightly larger than the mesh scale,
force anisotropies that exist in plain PM methods can be suppressed
to essentially arbitrarily small levels.

The short-range part of the potential can be solved in real space
by noting that for r s ≪ L the short-range part of the real-space
solution of equation (3) is given by

φshort(x ) = −G
∑
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mi
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ri
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Here, ri = min(|x − r i − nL|) is defined as the smallest distance
of any of the images of particle i to the point x . Because the com-
plementary error function rapidly suppresses the force for distances
large compared to rs (the force drops to about 1 per cent of its
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opening criterion (18) may suffer such errors because we may in
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while still satisfying the cell-acceptance criterion. To protect against
this possibility, we impose an additional opening criterion, i.e.
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Here, c = (c1, c2, c3) is the geometric centre of the node, r is the
particle coordinate, and the inequality applies for each coordinate
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have shown that this robustly protects against the occurrence of
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Performance of each method is O(N log N)

(Barnes-Hut oct-tree)
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Cosmological initial condition
For particle assigned on each grid:

x = q + �(q)

initial position Lagrangian displacement

v = aẋ = a�̇(q)
Note

‘q’ is called Lagrangian coordinate (homogeneous mass dist)

�(k) � ik

k2
D+(z) �0(k)leading order

(Zel’dovich approx.) initial density field (random)

1. generate random field �0(k)

2. calculate displacement field �(k) �(q)FFT

3. move particles according to displacement field �(q) �̇(q) = Ḋ+(z)
D+(z) �(q)

General procedure Improved initial condition generator 
with Lagrangian PT (2LPT code)



オイラー的摂動論



Perturbation theory (PT)
Theory of large-scale structure based on gravitational instability

Cold dark matter + baryons = pressureless & irrotational fluid

Basic 
eqs. 

� = �(1) + �(2) + �(3) + · · · ��(k; t)�(k�; t)� = (2�)3 �D(k + k�) P (|k|; t)

standard PT 
|�|� 1

Juszkiewicz (’81), Vishniac (’83), Goroff et al. (’86), 
Suto & Sasaki (’91), Jain & Bertschinger (’94), ...

Single-stream approx. of 
collisionless Boltzmann eq.



Equations of motion
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Replacing the time derivative by derivatives with respect to the scale factor a (@⌧ = Ha@a),
we can rewrite the di↵erential equations for � and ✓ for a ⇤CDM universe as
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The equations of motion for the EdS case are easily recovered by setting ⌦m = 1. The
linear solution of these equations is simply the linear combination of a growing and a
decaying mode. Clearly, we are interested only in the growing mode

�(1)(k, a) = D1(a) �1(k) , (2.13)

where �1 is a Gaussian random field that describes the initial conditions of the density field
and D1 is the usual growth factor
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2
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H2
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Z
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0

da0
1

H3
, (2.14)

which reduces to D1 = a in EdS. It is useful to consider the Green’s function of Eq. (2.12),
which is obtained by replacing the right hand side of Eq. (2.12) with a Dirac distribution
�D(a � a0). The Green’s functions for � and ✓ in ⇤CDM are given by

G�(a, a0) = ⇥(a � a0)
2

5

1
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�
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G✓(a, a0) = �H f(a) G�(a, a0) ,

(2.15)

where the function f(a) is the logarithmic derivative of the growth factor f(a) ⌘ d ln D1/d ln a
and is f(a) = 1 in EdS. The exact solution for the decaying mode D� = H/(aH0) can in

principle be approximated as D� ⇡ D�3/2
1 .

On large scales, it is safe to assume that the linear solution is dominant and that
the density contrast is small, i.e. �(1) < 1. In particular, this is the case for the smoothed
fields. This allows us to solve the equations of motion perturbatively. In the absence of an
e↵ective stress tensor, we recover the results form SPT where the solution of the equations
of motion is written as a series in powers of �1

�(k, a) =
1X

i=1

�(i)(k, a) , ✓(k, a) = �H f(a)
1X

i=1

✓(i)(k, a) . (2.16)
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as v ⌘ ⇡/⇢ + counterterms 1. Let us stress again that all quantities in Eq. (2.6) contain
only long wavelength modes. The stress tensor ⌧ ij that enters in the Euler equation is a
complicated function of the Newtonian potential (see e.g. Eqs. (34) � (36) of Ref. [5]) and,
as we shall see, plays a crucial role in the renormalization of loop integrals. Throughout
this work we will neglect the vorticity since at the linear order it decays as ⇠ 1/a (see
Refs. [8, 9] for a discussion of the vorticity in the EFTofLSS). It is therefore useful to
rewrite the Euler equation for the velocity divergence ✓ ⌘ r · v

@⌧✓ + H ✓ + vj@j✓ + @iv
j@jv

i + 4� = ⌧✓ , (2.7)

where we defined

⌧✓ ⌘ �@i
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@j⌧

ij

�
(2.8)

and 4 ⌘ r · r = @i@i.
The quest of finding a perturbative solution for the equations of motion in Eq. (2.6) is

not new, in particular in the approximation where the e↵ective stress tensor is neglected.
This is what is usually called SPT. For a thorough review on the subject see Ref. [1]. Here,
we shall merely recall well known results and introduce our notation. It is most convenient
to rewrite Eqs. (2.6) and (2.7) in Fourier space

@⌧�(k, ⌧) + ✓(k, ⌧) = S↵(k, ⌧) ,

@⌧✓(k, ⌧) + H ✓(k, ⌧) +
3

2
⌦mH2�(k, ⌧) = S�(k, ⌧) ,

(2.9)

where, in a slight abuse of notation, we used the same notation for the fields in Fourier
space as in real space. We will mostly work in Fourier space and we shall often drop the
arguments of the fields for streamlining the notation. The two source terms S↵ and S�

contain the non-linear terms of the equations of motion as well as the e↵ective stress tensor

S↵(k, ⌧) ⌘ �
Z

q

↵(q,k � q) ✓(q, ⌧)�(k � q, ⌧) ,

S�(k, ⌧) ⌘ �
Z

q

�(q,k � q) ✓(q, ⌧)✓(k � q, ⌧) + ⌧✓(k, ⌧) .

(2.10)

We use the abbreviation
R
q ⌘

R
d3q/(2⇡)3 and denote the absolute value of a vector as

k = |k|. The kernel functions ↵ and � are

1As discussed in Ref. [8], the definition of the velocity involves counterterms which are needed to
renormalize the velocity correlators. The finite part of these counterterms, however, can be set to zero.
We can therefore safely ignore these counterterms for the rest of this paper (see also Ref. [9]).
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we shall merely recall well known results and introduce our notation. It is most convenient
to rewrite Eqs. (2.6) and (2.7) in Fourier space
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3
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⌦mH2�(k, ⌧) = S�(k, ⌧) ,

(2.9)

where, in a slight abuse of notation, we used the same notation for the fields in Fourier
space as in real space. We will mostly work in Fourier space and we shall often drop the
arguments of the fields for streamlining the notation. The two source terms S↵ and S�

contain the non-linear terms of the equations of motion as well as the e↵ective stress tensor

S↵(k, ⌧) ⌘ �
Z

q

↵(q,k � q) ✓(q, ⌧)�(k � q, ⌧) ,
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Z

q

�(q,k � q) ✓(q, ⌧)✓(k � q, ⌧) + ⌧✓(k, ⌧) .

(2.10)

We use the abbreviation
R
q ⌘

R
d3q/(2⇡)3 and denote the absolute value of a vector as

k = |k|. The kernel functions ↵ and � are

1As discussed in Ref. [8], the definition of the velocity involves counterterms which are needed to
renormalize the velocity correlators. The finite part of these counterterms, however, can be set to zero.
We can therefore safely ignore these counterterms for the rest of this paper (see also Ref. [9]).
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⇢̃(x, ⌧) ⌘
Z

d3q f(x, q) , ⇡̃(x, ⌧) ⌘
Z

d3q q f(x, q) . (2.4)

It is then straight forward to derive the equations of motion for ⇢̃ and ⇡̃ and it turns out
that they are simply the continuity and the Euler equation of an imperfect fluid.

The ultimate goal is to find an analytic description of the dynamics at large scales,
i.e. in the mildly non-linear regime where linear dynamics are dominant. The non-linear
scale kNL (in momentum space) acts as a scale that separates the fully non-linear physics
at small scales from the large scale dynamics. The situation where one is interested only in
a limited range of scales is encountered in many areas of physics and is most conveniently
tackled using EFT techniques. EFT allows us to consistently compute non-linear correc-
tions to the linear solution on large scales but without ignoring possible e↵ects due to the
short scale dynamics. The problem is that whenever we consider non-linear solutions of
the equation of motion, all scales couple together. In particular, modes that are smaller
than kNL can couple to modes that are larger than kNL. The EFT framework helps us to
account for these e↵ects systematically without forcing us to consider the full non-linear
solution of the equations of moiton.

The first step towards the equations of motion in the EFTofLSS is to introduce a
smoothing procedure. In field theory language this means that we regularize the theory.
The smoothing over some cut-o↵ scale ⇤�1 can be done using a window function W⇤ which
is e.g. a Gaussian or top hat function. In the end, the physical results will not depend
on ⇤ or the specific shape of W⇤ but only on the physical scale kNL. We can apply the
smoothing to the quantities in Eq. (2.4)

⇢(x, ⌧) ⌘ [⇢̃]⇤ =

Z
d3yW⇤(x � y)⇢̃(y, ⌧) ,

⇡(x, ⌧) ⌘ [⇡̃]⇤ =

Z
d3yW⇤(x � y)⇡̃(y, ⌧) ,

(2.5)

where now ⇢ and ⇡ depend only on wave vectors that are smaller than ⇤ (we use the
same notation as Ref. [2] for the smoothing of a quantity). Applying the smoothing to the
Boltzmann equation, we can derive the equations of motion for the smoothed quantities

@⌧� + @i

⇥
(1 + �)vi

⇤
= 0 ,

@⌧v
i + H vi

l
+ @i� + vj

l
@jv

i = � 1

a ⇢
@j⌧

ij ,

4 � =
3

2
H2⌦m � .

(2.6)

� is the Newtonian potential which is generated by the (smoothed) density contrast � ⌘
⇢/⇢̄�1, where ⇢̄ is the time dependent background density, and the velocity field v is defined
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τ: conformal time
(adτ = dt)
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Figure 1: SPT vertex.

In ⇤CDM, the growth factor of the n-th order solution has to be computed at every given
order using Eqs. (2.14) and (2.15). However, it is possible to write the n-th order growth
factor as the n-th power of D1

�(n)(k, a) = Dn

1 (a) �n(k) , ✓(n)(k, a) = Dn

1 (a) ✓n(k) . (2.17)

In the limit of ⌦m = 1, the above solution is exact, i.e. the n-th order solution scales exactly
as an. The approximation in (2.17) is valid at the 1% level of accuracy up to third order
as pointed out in Ref. [16].2 The momentum dependence is given in terms of a convolution
of powers of �1

�n(k) =

Z

q1

...

Z

qn

(2⇡)3�(3)
D

(k � q1... � qn) Fn(q1, ..., qn) �1(q1)...�1(qn) ,

✓n(k) =

Z

q1

...

Z

qn

(2⇡)3�(3)
D

(k � q1... � qn) Gn(q1, ..., qn) �1(q1)...�1(qn) ,

(2.18)

where the symmetric kernel functions Fn and Gn are known and given e.g. in Ref. [1]. Note
that Fn and Gn only depend on ratios of the momenta. A diagrammatic representation
of SPT has been discussed in the literature. One usually represents the kernels Fn and
Gn as a vertex to which one can attach n external legs as is shown in Fig. 1. Note that
as opposed to the diagrammatic language of renormalized perturbation theory (RPT, see
Refs. [17–20]), we use already the time integrated kernels as vertices.3

For the following discussion, it is important to know how the kernels scale if one of
the momenta becomes very large. It was noted in Ref. [21] (see also Ref. [1]) that the
kernels obey scaling laws such as

lim
q!1

Fn(k1, . . . ,kn�2, q, �q) / k2

q2
, (2.19)

2We checked that with the Green’s function of Eq. (2.15) the di↵erence between the (exact) second

order growth factor and D1(a)2 is at the ⇠ 0.1% level. However, replacing D� ⇡ D�3/2
1 inside the Green’s

function increases this di↵erence to ⇠ 4% at late times.
3Note that in renormalized perturbation theory “renormalization” does not refer to the cancellation of

UV-divergences as in EFTofLSS but to a procedure to include higher order contributions in SPT.
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↵(q1, q2) ⌘ q1 · (q1 + q2)

q2
1

, �(q1, q2) ⌘ 1

2
(q1 + q2)

2 q1 · q2

q2
1 q2

2

. (2.11)

Replacing the time derivative by derivatives with respect to the scale factor a (@⌧ = Ha@a),
we can rewrite the di↵erential equations for � and ✓ for a ⇤CDM universe as

H2

⇢
�a2@2

a
+

3

2
(⌦m � 2) a@a +

3

2
⌦m

�
� = S� � H @a

�
a S↵

�
,

H
⇢

a2@2
a

+

✓
4 � 3

2
⌦m

◆
a@a + (2 � 3⌦m)

�
✓ = @a

�
a S�

�
� 3

2
⌦mHS↵ .

(2.12)

The equations of motion for the EdS case are easily recovered by setting ⌦m = 1. The
linear solution of these equations is simply the linear combination of a growing and a
decaying mode. Clearly, we are interested only in the growing mode

�(1)(k, a) = D1(a) �1(k) , (2.13)

where �1 is a Gaussian random field that describes the initial conditions of the density field
and D1 is the usual growth factor

D1(a) =
5

2
⌦0

m
H2

0

H
a

Z
a

0

da0
1

H3
, (2.14)

which reduces to D1 = a in EdS. It is useful to consider the Green’s function of Eq. (2.12),
which is obtained by replacing the right hand side of Eq. (2.12) with a Dirac distribution
�D(a � a0). The Green’s functions for � and ✓ in ⇤CDM are given by

G�(a, a0) = ⇥(a � a0)
2

5

1

H2
0⌦

0
m

D1(a0)

a0

⇢
D�(a)

D�(a0)
� D1(a)

D1(a0)

�
,

G✓(a, a0) = �H f(a) G�(a, a0) ,

(2.15)

where the function f(a) is the logarithmic derivative of the growth factor f(a) ⌘ d ln D1/d ln a
and is f(a) = 1 in EdS. The exact solution for the decaying mode D� = H/(aH0) can in

principle be approximated as D� ⇡ D�3/2
1 .

On large scales, it is safe to assume that the linear solution is dominant and that
the density contrast is small, i.e. �(1) < 1. In particular, this is the case for the smoothed
fields. This allows us to solve the equations of motion perturbatively. In the absence of an
e↵ective stress tensor, we recover the results form SPT where the solution of the equations
of motion is written as a series in powers of �1

�(k, a) =
1X

i=1

�(i)(k, a) , ✓(k, a) = �H f(a)
1X

i=1

✓(i)(k, a) . (2.16)
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D1(a):  Linear growth factor

Linear density field
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II. EQUATIONS OF MOTION
AND THE ! EXPANSION

A. Equations of motion

In what follows, we consider the evolution of cold dark
matter (CDM) plus baryon systems neglecting the tiny
fraction of (massive) neutrinos. Owing to the single-stream
approximation of the collisionless Boltzmann equation,
which is thought to be quite accurate an approximation
on large scales, the evolution of the CDM plus baryon
system can be treated as an irrotational and pressureless
fluid system whose governing equations are continuity and
Euler equations in addition to the Poisson equation (see
Ref. [39] for review). In the Fourier representation, these
equations are further reduced to a more compact form. Let
us introduce the two-component multiplet (e.g., Ref. [20])

!aðk; tÞ ¼
!
!ðk; tÞ;$"ðk; tÞ

fðtÞ

"
; (1)

where the subscript a ¼ 1, 2 selects the density and the
velocity components of CDM plus baryons, with ! and
"ðxÞ % r & vðxÞ=ðaHÞ, where a and H are the scale factor
of the Universe and the Hubble parameter, respectively.
The function fðtÞ is given by fðtÞ % dlnDðtÞ=dlna, and
the quantityDðtÞ is the linear growth factor. Then, in terms
of the new time variable # % lnDðtÞ, the evolution equa-
tion for the vector quantity !aðk; tÞ becomes

#
!ab

@

@ #
þ"abð#Þ

$
!bðk;#Þ

¼
Z d3k1d

3k2
ð2$Þ3 !Dðk$ k1 $ k2Þ%abcðk1; k2Þ

(!bðk1;#Þ!cðk2;#Þ; (2)

where we used the summation convention, that is the
repetition of the same subscripts indicates the sum over
the whole multiplet components. In the above, the quantity
!D is the Dirac delta function, and the time-dependent
matrix "abð#Þ is given by

"abð#Þ ¼
0 $1

$ 3
2f2

"mð#Þ 3
2f2

"mð#Þ $ 1

 !
(3)

with the quantity "mð#Þ being the density parameter of
CDM plus baryons at a given time. The vertex function
%abc becomes

%abcðk1; k2Þ ¼

8
>>>>>>>>>>><
>>>>>>>>>>>:

1
2

%
1þ k2&k1

jk2j2

&
; ða; b; cÞ ¼ ð1; 1; 2Þ

1
2

%
1þ k1&k2

jk1j2

&
; ða; b; cÞ ¼ ð1; 2; 1Þ

ðk1&k2Þjk1þk2j2
2jk1j2jk2j2 ; ða; b; cÞ ¼ ð2; 2; 2Þ

0; otherwise:

(4)

Equation (2) can be recast as the integral equation
(e.g., Refs. [20,39])

!aðk;#Þ ¼ gabð#;#0Þ&bðkÞ

þ
Z #

#0

d#0gabð#;#0Þ
Z d3k1d

3k2
ð2$Þ3

( !Dðk$ k1 $ k2Þ%bcdðk1; k2Þ!cðk1;#0Þ
(!dðk2;#0Þ: (5)

The quantity &aðkÞ % !aðk;#0Þ denotes the initial con-
dition, and the function gab denotes the linear propagator
satisfying the following equation,

#
!ab

@

@ #
þ"abð#Þ

$
gbcð#;#0Þ ¼ 0; (6)

with the boundary condition gabð#;#Þ ¼ !ab. The statis-
tical properties of the field !a are encoded in the initial
field &a, for which we assume Gaussian statistics. The
power spectrum of &a is defined as

h&aðkÞ&bðk0Þi¼ ð2$Þ3!Dðkþ k0ÞPab;0ðkÞ: (7)

In what follows, most of the calculations will be made
assuming the contribution of decaying modes of linear
perturbation can be neglected. This implies that the field
&aðkÞ is factorized as &aðkÞ ¼ !0ðkÞu a with u a ¼ ð1; 1Þ,
and thus the initial power spectrum is written as
Pab;0ðkÞ ¼ P0ðkÞu au b.
Using the formal expression (5), a perturbative solution

is obtained by expanding the fields in terms of the initial
fields

!aðk;#Þ ¼
X1

n¼1

!ðnÞ
a ðk;#Þ: (8)

The expression of the solution at each order is written as

!ðnÞ
a ðk;#Þ ¼

Z d3k1 & & &d3kn
ð2$Þ3ðn$1Þ !Dðk$ k1 $ . . .$ knÞ

(F ðnÞ
a ðk1; k2; & & & ;kn ;#Þ!0ðk1Þ & & &!0ðknÞ:

(9)

The kernelF ðnÞ
a is generally a complicated time-dependent

function, but can be constructed in terms of the quantities
%abc and gab. Examples of the solutions are shown dia-
grammatically in Fig. 1. Because we are interested in the

FIG. 1. Diagrammatic representation of the standard PT
expansion.
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Power spectrum

From a diagrammatic point of view, we can easily convince ourselves that there is no
possibility to connect the three external points without invoking the three-point vertex of
F2. On the top left of Fig. 3 the tree-level bispectrum is shown.

One can then start computing higher-order corrections to the power- and bispectrum.
As shown in Fig. 2 there are two possible one-loop corrections to the power spectrum and
they take the rather simple form

P22(k) = 2

Z

q

Plin(q)Plin(|k � q|) F 2
2 (q,k � q) ,

P13(k) = 6Plin(k)

Z

q

Plin(q) F3(k, q, �q) ,

(2.24)

giving the SPT power spectrum

PSPT(k) = Plin(k) + P22(k) + P13(k) + higher order loops . (2.25)

These integrals can be divergent when the loop momentum q becomes large and the renor-
malization of these divergences has been discussed in the Ref. [6]. It is in fact one of the
main shortcomings of SPT that depending on the initial conditions, i.e. the form of the
linear power spectrum, the perturbative expansion leads to divergent, non-physical results.

At the one-loop level, the bispectrum receives contributions from correlating either
three �(2), one �(3) with one �(2) and one �(1) or one �(4) with two �(1) (see Refs. [1, 22, 23]
for discussions of the one-loop bispectrum in SPT as well as Ref. [24]). This is what is
shown in Fig. 3. Translating the graphs of Fig. 3 into mathematical expressions, the four
one-loop contributions are

B222 = 8

Z

q

F2(�q, q + k1)F2(q + k1, �q + k2)F2(k2 � q, q)

Plin(q)Plin(|q + k1|)Plin(|q � k2|) , (2.26)

BI

321 = 6Plin(k3)

Z

q

F3(�q, q � k2, �k3)F2(q,k2 � q) Plin(q)Plin(|q � k2|)

+ 5 perm. , (2.27)

BII

321 = 6F2(k2,k3) Plin(k2)Plin(k3)

Z

q

F3(k3, q, �q) Plin(q) + 5 perm. ,

= F2(k2,k3) Plin(k2)P13(k3) + 5 perm. , (2.28)

B411 = 12Plin(k2)Plin(k3)

Z

q

F4(q, �q, �k2, �k3) Plin(q) + 2 cyc. perm. (2.29)

Note that BII

321 reduces to the one-loop contribution to the power spectrum stemming from
the correlator h�(3)�(1)i, i.e. P13. Again, these integrals can be divergent just as in the case
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Figure 2: Tree-level and one-loop power spectrum.

where k = k1 + . . .kn�2. For us it will turn out to be important that also for F2 and
F3 a similar scaling holds when the sum of the arguments remains finite while one of the
momenta goes to infinity, i.e.

lim
q!1

F2(�q, q + k) / lim
q!1

F2(�q + k1, q + k2) / k2

q2
,

lim
q!1

F3(�q, q + k1,k2) / k2

q2
,

(2.20)

where we assumed that the momenta k1 ⇠ k2 ⇠ k are of the same order.

2.2 The bispectrum in SPT

Let us for the moment focus only on the SPT part of the equations of motion and postpone
a detailed discussion of the e↵ective stress tensor to Secs. 3 and 4. The two- and three-
point connected correlators of the stochastic field � are the quantities that we will consider
in this paper. In Fourier space, the power- and bispectrum are defined as

h�(k1, a)�(k2, a)i ⌘ (2⇡)3�(3)
D

(k1 + k2) P (k1, a) . (2.21)

and

⌦
�(k1, a) �(k2, a) �(k3, a)

↵
⌘ (2⇡)3�(3)

D
(k1 + k2 + k3) B(k1,k2,k3, a) (2.22)

Because of the �D-function, the bispectrum is not a function of three independent vectors.
We will usually drop the time argument of B and P and write B as a function of the three
moduli of the momenta B(k1, k2, k3). The linear power spectrum Plin is then nothing but
the two-point correlator of two �(1) and it can be represented diagrammatically by a simple
dot with two external lines as shown on the left in Fig. 2. The arrows show the direction
of the momenta. Since we are considering only the case of Gaussian initial conditions,
the correlator of three �(1) is zero. The first non-trivial contribution stems from the first
non-linear contribution to �(1), i.e. �(2), which gives us the tree-level bispectrum

B112(k1, k2, k3, a) = 2F2(k1,k2)Plin(k1, a)Plin(k2, a) + 2 cycl. perm. (2.23)
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Next-to-next-to leading order

up to 2-loop order

P (k) = P (11)(k) +
�
P (22)(k) + P (13)(k)

�
+

�
P (33)(k) + P (24)(k) + P (15)(k)

�
+ · · ·

Linear (tree) 1-loop 2-loop

P (mn) � ��(m)�(n)�

Calculation involves multi-dimensional numerical integration
(time-consuming)

Crocce & Scoccimarro (’06)



Comparison with simulations

next-to-next-to-
leading order (2-

next-to-leading order (1-loop)

Standard PT produces ill-
behaved PT expansion !!

1-loop : 
overestimates simulations

2-loop : 
overestimates at high-z, while it 
turn to underestimate at low-z

AT et al. (’09)

Standard PT qualitatively 
explains scale-dependent 
nonlinear growth, however,

… need to be improved



Density field in standard PT
6

FIG. 1. 2D density field at z = 0 smoothed with Gaussian filter of R = 10h−1Mpc. The results generated with GridSPT code
are shown (from top left to bottom middle), averaging over the 10h−1Mpc depth in each grid. Here, the color scale represents
the amplitude of the density field, δSPT =

∑n
i=1 Di

+ δi with the number n indicated in each panel. For comparison, bottom
right panel shows the density field from N -body simulation, evolved with the same random seed as used in grid PT calculations.

FIG. 2. Same as in Fig. 1, but zoom-in plot of the 2D density field over 200 × 200h−1Mpc size is particularly shown for the
region enclosed by the dashed line in bottom right panel of Fig. 1.

density fields, i.e., δSPT =
∑n

i=1 Di
+ δi with the number n indicated in each panel. For comparison, the last panel

(bottom right) is the N -body result obtained from the same initial density field as used in grid PT calculation.
Adding higher-order PT corrections, the resultant density fields tend to show a clearer contrast, and resemble the
N -body density field. At the fifth order, the PT density field seems to almost match the N -body result from a visual
inspection. It is indeed hard from Fig. 1 to discriminate between each other, but a closer look at high-density region
seen in Fig. 2 reveals that there is a slight mismatch between PT prediction (at the fifth order) and simulation result.

Gaussian smoothing (10Mpc/h)

AT, Nishimichi & Jeong (to appear soon)
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1D density field in standard PT
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FIG. 3. 1D density field at z = 0 smoothed with Gaussian filter of R = 10h−1Mpc, taken from Fig. 2. The density field shown
here lies at x = 341h−1 Mpc, indicated as vertical dashed line in bottom right panel of Fig. 2.
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FIG. 4. Same as in Fig. 3, but the low-density region at y = 175h−1 Mpc is particularly shown (indicated as horizontal dashed
line in in bottom right panel of Fig. 2).

To scrutinize the results more carefully, we select representative regions from the local patch in Fig. 2 (indicated
in horizontal and vertical dashed lines), and plot the 1D density fields in Figs. 3 and 4. The left panels plot the
GridSPT density fields, δSPT =

∑n
i=1 Di

+δi with n = 1 − 5 (indicated in the panel), while the right panels compare
the result of n = 5 with those obtained from the N -body simulation and second-order Lagrangian PT with 2LPT
code. As increasing the order of perturbative expansion, the density peak becomes steepened, and the amplitude gets
increased at high density regions, and the low-density regions are flattened conversely. A notable point may be that
the convergence of the PT predictions tends to be slow at low density regions. This implies that the PT prediction
is generally poor to describe the bulk matter flows, consistent with Ref. [17]. On the other hand, the convergence
at high-density regions looks faster, and at the fifth order, the PT prediction reproduces the N -body density fields
remarkably well. Although there is a general trend that the predicted peak amplitude slightly overestimates the
N -body results, the overall structure of density peaks is better described by the fifth-order standard PT than second-
order Lagrangian PT. Nevertheless, as it has been partly pointed out in previous works, this does not imply that the
statistical correlation of standard PT with N -body density field is better than that of Lagrangian PT. This point will
be discussed in detail in Sec. III B 2 and III B 3.

Finally, we note here that the resultant density fields obtained from the GridSPT calculation is rather sensitive to
the choice of the filter scale. Fig. 5 plots the 1D density fields at the same regions as shown in Figs. 3 and 4, but
the fifth-order PT results at different filter scales are depicted as different colors. A slight decrease of the filter scale
results in a spurious wiggle structure at low density region, and this can also affect small density peaks, leading to
an un-physical behavior of δ < −1. These are not simply due to the numerical artifact, if any , but rather due to a
direct manifestation of the fact that the standard PT calculation explicitly violates mass conservation, and exhibits
a rather strong mode coupling between long and short modes. We will discuss this UV-sensitive behavior from the
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To scrutinize the results more carefully, we select representative regions from the local patch in Fig. 2 (indicated
in horizontal and vertical dashed lines), and plot the 1D density fields in Figs. 3 and 4. The left panels plot the
GridSPT density fields, δSPT =

∑n
i=1 Di

+δi with n = 1 − 5 (indicated in the panel), while the right panels compare
the result of n = 5 with those obtained from the N -body simulation and second-order Lagrangian PT with 2LPT
code. As increasing the order of perturbative expansion, the density peak becomes steepened, and the amplitude gets
increased at high density regions, and the low-density regions are flattened conversely. A notable point may be that
the convergence of the PT predictions tends to be slow at low density regions. This implies that the PT prediction
is generally poor to describe the bulk matter flows, consistent with Ref. [17]. On the other hand, the convergence
at high-density regions looks faster, and at the fifth order, the PT prediction reproduces the N -body density fields
remarkably well. Although there is a general trend that the predicted peak amplitude slightly overestimates the
N -body results, the overall structure of density peaks is better described by the fifth-order standard PT than second-
order Lagrangian PT. Nevertheless, as it has been partly pointed out in previous works, this does not imply that the
statistical correlation of standard PT with N -body density field is better than that of Lagrangian PT. This point will
be discussed in detail in Sec. III B 2 and III B 3.

Finally, we note here that the resultant density fields obtained from the GridSPT calculation is rather sensitive to
the choice of the filter scale. Fig. 5 plots the 1D density fields at the same regions as shown in Figs. 3 and 4, but
the fifth-order PT results at different filter scales are depicted as different colors. A slight decrease of the filter scale
results in a spurious wiggle structure at low density region, and this can also affect small density peaks, leading to
an un-physical behavior of δ < −1. These are not simply due to the numerical artifact, if any , but rather due to a
direct manifestation of the fact that the standard PT calculation explicitly violates mass conservation, and exhibits
a rather strong mode coupling between long and short modes. We will discuss this UV-sensitive behavior from the

High density

Low density

Gaussian smoothing (10Mpc/h) AT, Nishimichi & Jeong (to appear soon)



Correlation between N-body and SPT 13

FIG. 12. Joint PDF of the grid PT and N -body density fields, Prob(δSPT, δN-body), where δSPT =
∑n

i=1 Di
+ δi with the number

n indicated in each panel. In measuring joint PDF, the Gaussian filter of R = 10h−1Mpc is applied to the final density field,
and the results at z = 0 are shown. For comparison, we also plot in bottom right panel the joint PDF of the second-order
Lagrangian PT and N -body density fields.

3. Joint probability distribution

Our last measurement is the joint probability distribution function (PDF) for the local density obtained both
from the GridSPT calculation, δSPT =

∑n
i=1 Di

+δi, and N -body simulation, δN-body. This quantity, denoted by
Prob(δSPT, δN-body), characterizes the probability that at a given position in the space, the overdensity from N -body
simulation is δN-body, while the GridSPT calculation predicts δSPT. It thus gives the field-to-field correlation for the
real-space density fields.

Fig. 12 shows the measured result of the joint PDF for smoothed density fields with Gaussian filter at z = 0. Here,
the results at the smoothing radius R = 10h−1Mpc is particularly shown. In each panel, the results with standard
PT are presented up to the fifth order (i.e., n = 1 − 5). For reference, the joint PDF between 2LPT and N -body
density fields is also shown (lower right). Compared to the results with 2LPT, the lower-order results of the GridSPT
calculations show not only a large scatter but also a declined correlation feature in the joint PDF. Here, the magenta
line in each panel represents the conditional mean for a given N -body density field, δSPT(δN-body), defined by:

δSPT(δN-body) =

∫
dδSPT δSPT

Prob(δSPT, δN-body)

Prob(δN-body)
. (26)

As increasing n (i.e., the order of perturbation), the scatter gets smaller, and the conditional mean tends to follow
a linear relation depicted as black solid line, meaning that the GridSPT density field gets closer to the N -body density
field. Overall, the result with 2LPT still looks much better as is seen in the smaller scatter around the mean. However,
a closer look at the higher density region reveals a small decline i.e., δ2LPT(δN-body) < δN-body, where the GridSPT
results at n > 3 are apparently better correlated with the N -body results. Beyond this regime, on the other hand, the
conditional mean of the GridSPT tends to get steeper, and thus the GridSPT overpredicts the amplitude of density
fields. These behaviors are indeed what we saw in the power spectrum and bispectrum (Figs. 6-8), and partly explains
why standard PT gives a better prediction.

Finally, as we discussed in Sec. III A, the measured result of joint PDF is also sensitive to the choice of filter scales.
Fig. 13 shows the same plot as in Fig. 12, but the results of the Gaussian filter of the radii R = 8 (top) and 6h−1

Mpc (bottom) are shown. Decreasing the filter scale, a sizable amount of scatter appears in the joint PDF of the

Gaussian smoothing (10Mpc/h)

AT, Nishimichi & Jeong (to appear soon)



Improving PT predictions

Initial power spectrum Observables

�0(k)

P0(k)
P (k; z)

�(k; z)

B(k1, k2, k3; z)

T (k1, k2, k3, k4; z)

··
·

Concept of ‘propagator’ in physics/mathematics may be useful

from linear theory

of dark matter/galaxies/halos(CMB Boltzmann code)

initial density field (Gaussian) Evolved density field (non-Gaussian)

Nonlinear 
mapping

Reorganizing standard PT expansion by introducing 
non-perturbative statistical quantities

Basic 
idea



Propagator in physics

✦ Probability amplitude in quantum mechanics

✦ Green’s function in linear differential equations

( )

G(x, t;x�, t�)
( )

Schrödinger Eq.



Cosmic propagators

(Non-linear extension of Green’s function)

non-linear evolution & statistical properties
Propagator should carry information on

Ensemble w.r.t  randomness of initial condition

�
� �m(k; t)
� �0(k�)

�
� �D(k � k�) �(k; t)

Evolved (non-linear) density field

Initial density field

Propagator

Crocce & Scoccimarro (’06)

�(1)(k; t)

Contain statistical information on full-nonlinear evolution



Multi-point propagators

As a natural generalization,

Bernardeau, Crocce & Scoccimarro (’08)

or Wiener-Hermite expansion

• Building blocks of a new perturbative theory (PT) expansion

Γ-expansion

�
�n �m(k; t)

� �0(k1) · · · � �0(kn)

�
= (2�)3(1�n) �D(k � k�) �(n)(k1, · · · ,kn; t)

Multi-point propagator

• A good convergence of PT expansion is expected

With this multi-point prop. 

(c.f.  standard PT)

Matsubara (’11) integrated PT
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FIG. 13: Reconstruction of the bispectrum from multi-point
propagators. The crossed circles represent initial power spec-
tra. The sum in Eq. (59) runs over the number of connecting
lines between each of the emerging modes, e.g. that cross
each of the dashed half lines.

〈

Ψa(k1)Ψb(k2)Ψc(k2)
〉

=
∑

r,s,t

(

r + s

r

)(

s + t

s

)(

t + r

t

)

r!s!t!

∫

d3q1 . . .d3qr d3q′
1 . . .d3q′

s d3q′′
1 . . . d3q′′

t

×δD(k1 − q1...r − q′
1...s) δD(k2 + q′

1...s − q′′
1...t) δD(k3 + q′′

1...t + q1...r)

×Γ(r+s)
a (q1, . . . ,qr,q

′
1, . . . ,q

′
s)Γ(s+t)

b (−q′
1, . . . ,−q′

s,q
′′
1 , . . . ,q′′

t )

×Γ(t+r)
c (−q′′

1 , . . . ,−q′′
t ,−q1, . . . ,−qr)P0(q1) . . . P0(qr) P0(q

′
1) . . . P0(q

′
s) P0(q

′′
1 ) . . . P0(q

′′
t ).

(59)

This sum is diagrammatically represented in Fig. 13. We see that it runs over the number of lines that connect each
side of the diagram (with the constraint that at most one of the indices r, s or t is zero, otherwise we would have
a disconnected diagram). The leading order (tree) contribution is then obtained for r = s = 1, t = 0 (plus cyclic
permutations), up to one-loop corrections (in square brackets) we have

B(k1, k2, k3) = 2 Γ(2)(k1,k2)Γ(1)(k1)Γ(1)(k2)P0(k1)P0(k2) + cyc.

+
[

8

∫

d3q Γ(2)(k1 − q,q)Γ(2)(k2 + q,−q)Γ(2)(q − k1,−k2 − q)P0(|k1 − q|)P0(|k2 + q|)P0(q)

+ 6

∫

d3q Γ(3)(−k3,−k2 + q,−q)Γ(2)(k2 − q,q)Γ(1)(k3)P0(|k2 − q|)P0(q)P0(k3) + cyc.
]

. (60)

Note that having resummed the multi-point propagators
means that many of the one-loop corrections in standard
PT are already encoded in Γ(p) and thus the number of
one-loop diagrams is reduced. For the power spectrum
we have one instead of two diagrams, for the bispectrum
we have two instead of the four in standard PT [21].

It is useful to compare the structure of Eqs. (58)
and (60). We see that the one-loop corrections to the
power spectrum depend on the initial power spectrum P0

through a convolution with the three-point propagator
Γ(2), which determines the large-scale (tree-level) bispec-
trum. The two-loop correction to the power spectrum in-
volves a similar convolution with Γ(3), which determines
the large-scale trispectrum, and contributes to the one-
loop bispectrum. This pattern continues to higher or-
ders, demonstrating that in order to extract the most

information about the initial power spectrum P0, it is
advantageous to simultaneously measure the power spec-
trum and higher-order spectra at large scales and include
these relationships when doing cosmological parameter
estimation.

As a preliminary application of these results, we com-
pute the reduced bispectrum Q defined by

Q =
B(k1, k2, k3)

P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)
, (61)

where we use one-loop results for both the power spec-
trum and bispectrum from Eq. (58) and Eq. (60), respec-
tively. Since we don’t yet have a full prescription for the
multi-point propagators valid at all scales, we use their
high-k limit expressions, Eq. (42) modified as follows,

Bispectrum

P(k)
= + 6+ 2 + ...

initial P(k)

k -k k -k k -k k -k

q -q

k-q -(k-q)

q -q

k-p-q -(k-p-q)

p -p

=B(k1, k2, k3) 2 + 8 + 6 + cyc.
k2

k1k3

k2

k1k3

k2

k1k3

2

Note that the formal solution of Φa can be obtained from Eq. (2) and is expressed as (e.g., [2, 3])

Ψa(k; η) = gab(η, η0) φb(k) +
∫ η

η0

dη′gab(η, η′)
∫

d3k1 d3k2

(2π)3
δD(k − k1 − k2) γbcd(k1, k2)Ψc(k1; η′)Ψd(k2; η′). (5)

Here, the quantity φa(k) ≡ Ψa(k, η0) denotes the initial condition, and the quantity gab denotes the linear propagator
satisfying the following equation:

[
δab

∂

∂η
+ Ωab(η)

]
gbc(η, η′) = 0, (6)

with the boundary condition gab(η, η) = δab. The statistical properties of the field Ψa is encoded in the initial field
φa, for which we assume Gaussian statistics. The power spectrum of φa is defined as

⟨φa(k)φb(k′)⟩ = (2π)3 δD(k + k′)Pab(k). (7)

In what follows, we neglect the decaying modes of linear perturbation, and assumed that only the growing mode is
survived. This implies that the field φa(k) is factorized as φa(k) = δ0(k)ua with ua = (1, 1), and thus the power
spectrum is simply reduced to Pab(k) = P0(k)uaub.

Eq. (2) or (5) is the building block of large-scale structure, and the three quantities γabc, gab and P0uaub introduced
here constitute the basic pieces of standard PT.

B. Γ expansion

〈
Φa(k; η)Φb(k′; η)

〉
= (2π)3 δD(k + k′)Pab(|k|; η) (8)

Ψ(n)
a (k; η) =

∫
d3k1 · · · d3kn

(2π)3(n−1)
Fab1b2···bn(k1, · · · , kn; η)Ψb1(k1) · · ·Ψbn(kn). (9)

1
p!

〈
δpΨa(k, η)

δφc1(k1) · · · δφcp(kp)

〉
= δD(k − k1···p)

1
(2π)3(p−1)

Γ(p)
ac1···cp(k1, · · · , kp; η) (10)

Pab(|k|; η) =
∑

t!
∫

d3q1 · · · d3qt

(2π)3(t−1)
δ(k − q1···t)Γ

(t)
a (q1, · · · , qt; η)Γ(t)

b (q1, · · · , qt; η)P0(q1) · · ·P0(qt) (11)

Γ(t)
a (q1, · · · , qt; η) = Γ(t)

ac1···ct(q1, · · · , qt; η)uc1 · · ·uct (12)

For the matter power spectrum, P (k; η) = P11(k; η),

P (k; η) =
[
Γ(1)(k; η)

]2
P0(k) + 2

∫
d3q

(2π)3
[
Γ(2)(q,k − q; η)

]2
P0(q)P0(|k − q|)

+ 6
∫

d6pd3q

(2π)6
[
Γ(3)(p, q, k − p − q; η)

]2
P0(p)P0(q)P0(|k − p − q|) (13)

with Γ(p) = Γ(p)
1 .

2

Note that the formal solution of Φa can be obtained from Eq. (2) and is expressed as (e.g., [2, 3])

Ψa(k; η) = gab(η, η0) φb(k) +
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dη′gab(η, η′)
∫
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(2π)3
δD(k − k1 − k2) γbcd(k1, k2)Ψc(k1; η′)Ψd(k2; η′). (5)

Here, the quantity φa(k) ≡ Ψa(k, η0) denotes the initial condition, and the quantity gab denotes the linear propagator
satisfying the following equation:

[
δab

∂

∂η
+ Ωab(η)

]
gbc(η, η′) = 0, (6)

with the boundary condition gab(η, η) = δab. The statistical properties of the field Ψa is encoded in the initial field
φa, for which we assume Gaussian statistics. The power spectrum of φa is defined as

⟨φa(k)φb(k′)⟩ = (2π)3 δD(k + k′)Pab(k). (7)

In what follows, we neglect the decaying modes of linear perturbation, and assumed that only the growing mode is
survived. This implies that the field φa(k) is factorized as φa(k) = δ0(k)ua with ua = (1, 1), and thus the power
spectrum is simply reduced to Pab(k) = P0(k)uaub.

Eq. (2) or (5) is the building block of large-scale structure, and the three quantities γabc, gab and P0uaub introduced
here constitute the basic pieces of standard PT.

B. Γ expansion

〈
Φa(k; η)Φb(k′; η)

〉
= (2π)3 δD(k + k′)Pab(|k|; η) (8)

Ψ(n)
a (k; η) =

∫
d3k1 · · · d3kn

(2π)3(n−1)
Fab1b2···bn(k1, · · · , kn; η)Ψb1(k1) · · ·Ψbn(kn). (9)

1
p!

〈
δpΨa(k, η)

δφc1(k1) · · · δφcp(kp)

〉
= δD(k − k1···p)

1
(2π)3(p−1)

Γ(p)
ac1···cp(k1, · · · , kp; η) (10)

Pab(|k|; η) =
∑

t!
∫

d3q1 · · · d3qt

(2π)3(t−1)
δ(k − q1···t)Γ

(t)
a (q1, · · · , qt; η)Γ(t)

b (q1, · · · , qt; η)P0(q1) · · ·P0(qt) (11)

Γ(t)
a (q1, · · · , qt; η) = Γ(t)

ac1···ct(q1, · · · , qt; η)uc1 · · ·uct (12)

For the matter power spectrum, P (k; η) = P11(k; η),

P (k; η) =
[
Γ(1)(k; η)

]2
P0(k) + 2

∫
d3q

(2π)3
[
Γ(2)(q,k − q; η)

]2
P0(q)P0(|k − q|)

+ 6
∫

d6pd3q

(2π)6
[
Γ(3)(p, q, k − p − q; η)

]2
P0(p)P0(q)P0(|k − p − q|) (13)

with Γ(p) = Γ(p)
1 .

+ · · ·t
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FIG. 13: Reconstruction of the bispectrum from multi-point
propagators. The crossed circles represent initial power spec-
tra. The sum in Eq. (59) runs over the number of connecting
lines between each of the emerging modes, e.g. that cross
each of the dashed half lines.

〈

Ψa(k1)Ψb(k2)Ψc(k2)
〉

=
∑

r,s,t

(

r + s

r

)(

s + t

s

)(

t + r

t

)

r!s!t!

∫

d3q1 . . .d3qr d3q′
1 . . .d3q′

s d3q′′
1 . . . d3q′′

t

×δD(k1 − q1...r − q′
1...s) δD(k2 + q′

1...s − q′′
1...t) δD(k3 + q′′

1...t + q1...r)

×Γ(r+s)
a (q1, . . . ,qr,q

′
1, . . . ,q

′
s)Γ(s+t)

b (−q′
1, . . . ,−q′

s,q
′′
1 , . . . ,q′′

t )

×Γ(t+r)
c (−q′′

1 , . . . ,−q′′
t ,−q1, . . . ,−qr)P0(q1) . . . P0(qr) P0(q

′
1) . . . P0(q

′
s) P0(q

′′
1 ) . . . P0(q

′′
t ).

(59)

This sum is diagrammatically represented in Fig. 13. We see that it runs over the number of lines that connect each
side of the diagram (with the constraint that at most one of the indices r, s or t is zero, otherwise we would have
a disconnected diagram). The leading order (tree) contribution is then obtained for r = s = 1, t = 0 (plus cyclic
permutations), up to one-loop corrections (in square brackets) we have

B(k1, k2, k3) = 2 Γ(2)(k1,k2)Γ(1)(k1)Γ(1)(k2)P0(k1)P0(k2) + cyc.

+
[

8

∫

d3q Γ(2)(k1 − q,q)Γ(2)(k2 + q,−q)Γ(2)(q − k1,−k2 − q)P0(|k1 − q|)P0(|k2 + q|)P0(q)

+ 6

∫

d3q Γ(3)(−k3,−k2 + q,−q)Γ(2)(k2 − q,q)Γ(1)(k3)P0(|k2 − q|)P0(q)P0(k3) + cyc.
]

. (60)

Note that having resummed the multi-point propagators
means that many of the one-loop corrections in standard
PT are already encoded in Γ(p) and thus the number of
one-loop diagrams is reduced. For the power spectrum
we have one instead of two diagrams, for the bispectrum
we have two instead of the four in standard PT [21].

It is useful to compare the structure of Eqs. (58)
and (60). We see that the one-loop corrections to the
power spectrum depend on the initial power spectrum P0

through a convolution with the three-point propagator
Γ(2), which determines the large-scale (tree-level) bispec-
trum. The two-loop correction to the power spectrum in-
volves a similar convolution with Γ(3), which determines
the large-scale trispectrum, and contributes to the one-
loop bispectrum. This pattern continues to higher or-
ders, demonstrating that in order to extract the most

information about the initial power spectrum P0, it is
advantageous to simultaneously measure the power spec-
trum and higher-order spectra at large scales and include
these relationships when doing cosmological parameter
estimation.

As a preliminary application of these results, we com-
pute the reduced bispectrum Q defined by

Q =
B(k1, k2, k3)

P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)
, (61)

where we use one-loop results for both the power spec-
trum and bispectrum from Eq. (58) and Eq. (60), respec-
tively. Since we don’t yet have a full prescription for the
multi-point propagators valid at all scales, we use their
high-k limit expressions, Eq. (42) modified as follows,

1-loop 2-loop

1-looptree

Initial power spectrum



Generic property of propagators

�(2)(k1, k2, k3)�(1)(k)
IV. THE LARGE-k BEHAVIOR OF MULTIPOINT

PROPAGATORS

A. The large-k limit of the two-point propagator

As discussed in the previous section, the two-point
propagator Gab generalizes gab beyond linear theory and
thus reflects a key property of the evolved fields. The
general properties of Gab have been explored in detail in
[13], but we briefly recall them here to motivate their
generalization to multipoint propagators.

Following Eqs. (9) and (10), and the definition in
Eq. (13), one can expand the function Gab with respect
to the amplitude of initial fluctuations,

Gabðk; sf; siÞ ¼ gabðsf $ siÞ þG1-loop
ab ðk; sf; siÞ þ . . .

(24)

where G1-loop
ab ðk; sf; siÞ is the first nonlinear correction

term, describing the transition into the nonlinear regime.
Graphically, this term corresponds to a ‘‘one-loop’’ dia-
gram (i.e. an integral over P0), which is shown in Fig. 3.

As nonlinear effects become important Gab is expected
to decay to zero since they erase the one-to-one correspon-
dence of modes valid in the linear regime. This introduces
a characteristic scale that describes the decay length of the
two-point propagator. It was shown in [13] that this decay
can be computed exactly in the high-k limit, where a subset
of diagrams is expected to provide the dominant contribu-
tion. Following a line of calculation that we will use again
shortly, it was shown that in the large-k limit,

Gabðk; sf; siÞ ¼ exp
!
$ k2

2
!2

vðesf $ esiÞ2
"
gabðsf $ siÞ;

(25)

where the characteristic decay length is determined by the
rms velocity fluctuations

!2
v ¼ 1

3

Z 1

0

d3k

k2
P0ðkÞ: (26)

In [13], it is shown how to match this result valid for
k!v & 1 to the low-k behavior described by Eq. (24), to
obtain a prescription for its full time and k dependence.
This prescription was found to be in good agreement with
numerical simulations at all scales and different redshifts
for density and velocity divergence propagators.

Here, we concentrate on the large-k behavior of the
density propagator from growing-mode initial conditions,

!ð1Þ ' !ð1Þ
1bub ¼ G11 þG12 (we will henceforth use bothG

and !ð1Þ to refer to the two-point propagator). We use the

algorithm presented in [13] to measure !ð1Þ based on the
cross-correlation property in Eq. (14). We defer a descrip-
tion of the simulations used here until Sec. VI below.

Figure 4 shows !ð1Þ normalized by the linear growth factor

!ð1Þ
tree ¼ g11 þ g12, with gab the linear propagator defined in

Eq. (7); the unusual notation for the growth factor is used
here to emphasize that it is given by the tree contributions
to the two-point propagator; this will have a natural gen-
eralization for multipoint propagators. The figure shows

log!ð1Þ vs logk2 to emphasize the Gaussian decay predicted
very well by Eq. (25) at all redshifts with a characteristic
scale given by Eq. (26).
In the following sections we extend the studies already

carried out with Gab to the case of the three-point propa-

gator !ð2Þ and, when possible, to the most general case of
!ðn Þ.

B. Dominant diagrams and principal trees

To study the high-k regime of the propagators, the first
step is to identify the set of diagrams that is expected to

ab
(1-loop)(k, s2, s1) =

s1s2

FIG. 3. The one-loop contribution to Gabðk; s2; s1Þ. The (
represents a primordial power spectrum P0ðq Þ with the corre-
sponding ‘‘loop’’ momentum q integrated over with weight
ð2"Þ$3

R
d3q. See [13] for an explicit calculation of this dia-

gram.

FIG. 4 (color online). The large-k limit of the two-point den-
sity propagator !ð1Þ. Symbols correspond to measurements in
numerical simulations at redshifts z ¼ 1, 0.5 and z ¼ 0 (top to
bottom); see text for details. The solid lines correspond to the
large-k limit expression given in Eq. (25). The linear relation
obtained by plotting logG vs k2 makes it evident that the
suppression of G is indeed Gaussian in the high-k limit.
Moreover, the slope is very well predicted by Eqs. (25) and
(26).
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with !ð2Þ
abc;tree defined in Eq. (19). This is a truly remarkable

result. It shows that the whole effect of loop summation is
encoded in the value of k3 in exactly the same way as for
the two-point propagator Gab.

We now compare this result to measurements in numeri-
cal simulations, which will be described in detail in
Sec. VI. As done for the two-point propagator (see
Fig. 4), we test for the Gaussian decay in the high-k limit
by plotting in Fig. 8 equilateral configurations

log!ð2Þ
1 ðk; k; kÞ vs k2, for which Eq. (37) predicts a straight

line with known slope. We do so for three different red-
shifts, z ¼ 0, 0.5, 1, finding very good agreement in all
cases with the predictions of Eq. (37), shown by solid lines.
This validates our resummation scheme.

Equation (37) and its generalization to other multipoint
propagators have important implications for the power
spectrum and higher-order statistics, that we discuss in
Sec. VII. We note also that a second, faster method to
perform the loop resummation is discussed in
Appendix B. We now consider the extension of these
results to arbitrary multipoint propagators.

D. The large-k limit for higher-order multipoint
propagators

The structure we found for the three-point propagator

!ð2Þ is appealing enough to consider its full generalization
to propagators of an arbitrary number of points. The crucial
property is the extension of the one-loop relation given in
Eq. (33). For higher than three-point propagators, the tree
order is given by the sum of several diagrams. When loop

(1
)

(2)

(1
)

(2)

(1)(1)

p12= 3

p11= 3

FIG. 7. This figure illustrates the effect of the time-ordering exchanges (thick double arrow lines). Through such exchanges, the
complete set of diagrams that correspond to a given fpijg can be explored. Successive time exchanges can, however, lead to identical
diagrams (e.g. left and right diagrams in each panel). The unordered time integration then leads to a multiplicity factor for each
diagram. For the top panel (corresponding to p12 ¼ 3), the same diagram is obtained each time two-loop lines are exchanged. There
are p12! of such possible exchanges. For the bottom panel (corresponding to p11 ¼ 3), the same diagram can be obtained either by the
exchange of loop lines, or by the exchange of the initial and final times of each of their loops (double arrow dashed line). There are thus
p11!2

p11 of such possible exchanges.

FIG. 8 (color online). The large-k limit of the three-point

density propagator !ð2Þ
1 $ !ð2Þ

1bcubuc, the only density contraction
that can be measured for growing-mode initial conditions, ub ¼
ð1; 1Þ. The symbols in the figure correspond to equilateral
configurations at redshifts z ¼ 1, 0.5, 0 (from top to bottom).
We have normalized these measurements to the low-k limit

!ð2Þ
1;tree given by Eq. (20). The figure clearly shows that the

measured propagator closely follows the large-k limit given by

Eq. (37) represented by solid lines, once !ð2Þ
1 decays by % e&1

from its tree-level value.
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Constructing regularized propagators

• UV property (k >>1) :

• IR behavior (k<<1) can be described by standard PT calculations :

Bernardeau, Crocce & Scoccimarro (’08), Bernardeau, Van de Rijt, Vernizzi (’11)
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A regularization scheme that reproduces both UV & IR behaviors
Bernardeau, Crocce & Scoccimarro (’12)



Regularized propagator

A global solution that satisfies both UV (k>>1) & IR (k<<1) properties:

Precision of IR behavior can be systematically improved by 
including higher-loop corrections and adding counter terms
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Propagators in N-body simulations

�(1)(k)

Bernardeau et al. (’12)

predictions up to 
2-loop order

predictions up to 
1-loop order�(2)(k1, k2, k3)

Bernardeau, AT & Nishimichi ('12)

Equilateral Collinear
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solid: 1-loop 
dashed: tree

compared with 'Regularized' propagators constructed analytically



RegPT
A public code based on multi-point propagators at 2-loop order

AT, Bernardeau, Nishimichi & Codis ('12)

poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k# 0:2– 0:3hMpc$1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

!ðrÞ ¼
Z dkk2

2"2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which !ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno$wiggleðkÞ, where the reference spectrum Pno$wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN$bodyðkÞ $
PRegPTðkÞ'=Pno$wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.
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cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r" 30h#1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is
naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.
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Correlation function

Power spectrum

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html

: fast PT code for P(k) & ξ(r)
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Why improved PT works well?

simply chosen at the center of the n-th radial bin, i.e., rn ¼
ðrmin þ rmaxÞ=2.

Equation (4.2) usually suffers from the ambiguity of the
zero-point normalization in the amplitude of two-point
correlation function, because of the lack of the low-k
powers due to the finite boxsize of the simulations. With
the 1; 0243 grids and the boxsize of Lbox ¼ 1h%1 Gpc;
however, we can safely evaluate the two-point correlation
function around the baryon acoustic peak. Comparison
between different computational methods, together with
convergence check of this method, is presented in
Appendix C.

Finally, similar to the estimation of power spectrum, the
finite-mode sampling also affects the calculation of the
two-point correlation function. We thus correct it by sub-
tracting and adding the extrapolated linear density field as
!̂ðrÞ % !̂linðrÞ þ !linðrÞ, where !̂lin is the correlation func-
tion estimated from the Gaussian density field, and !lin is
the linear-theory prediction of two-point correlation
function.

B. Results in real space

1. Power spectrum

Before addressing a quantitative comparison between
the N-body simulation and improved PT, we first discuss
the convergence properties of the improved PT, and con-
sider how well the calculation based on the improved PT
does improve the prediction compared to the standard PT.

Figure 4 plots the overall behaviors of the nonlinear
power spectrum of density fluctuation, Pðk; zÞ &
P11ðk; zÞ, given at z ¼ 0, adopting the WMAP3 cosmologi-
cal parameters. In the left panel, the results of standard PT
are shown, and the contributions to the total power spec-
trum up to the two-loop diagrams are separately plotted.
On the other hand, the right panel shows the results of the
improved PT. We plot the contributions up to the second-
order Born approximation labeled as MC1 and MC2.
In Fig. 4, there are clear distinctions between standard

and improved PTs. While the loop corrections in standard
PT change their signs depending on the scales and exhibit
an oscillatory feature, the corrections coming from the
Born approximation in the improved PT are all positive
and mostly the smooth function of k. Further, the higher-
order corrections in the improved PT have a remarkable
scale-dependent property compared to those in the stan-
dard PT; their contributions are well localized around some
characteristic wave numbers, and they are shifted to the
higher k modes as increasing the order of PT. These trends
clearly indicate that the improved PTwith closure approxi-
mation has a better convergence property. Qualitative be-
haviors of the higher-order corrections quite resemble the
predictions of RPT by Crocce and Scoccimarro [34].
Now, let us focus on the behavior of BAOs, and

discuss how the convergence properties seen in Fig. 4
affect the predictions of BAO features. In Fig. 5, adopting
the WMAP3 cosmological parameters, we plot the ratio
PðkÞ=Pno-wiggleðkÞ, where the function Pno-wiggleðkÞ is the

FIG. 4 (color online). Convergence properties of standard PT (left) and improved PT (right) expansions in the matter power
spectrum. In each panel, the higher-order contributions to the total power spectrum labeled as Pnl is separately plotted. In the left panel,

one-loop and two-loop corrections in the standard PT P1-loop
11 and P2-loop

11 , are plotted, while in the right panel, the mode-coupling

corrections PðMC1Þ
11 and PðMC2Þ

11 in the improved PT given at Eqs. (3.12) and (3.13), respectively, are shown (labeled as MC1 and MC2),
together with the first term in Eq. (3.11) [labeled as G2P0]. Note that the dashed lines indicate the negative values.
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[�(1)]2P0
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• All corrections become
comparable at low-z. 

• Positivity is not guaranteed.
Corrections are positive & localized, 
shifted to higher-k for higher-loop

AT et al. (’09)
AT, Bernardeau, Nishimichi, Codis (’12)



RegPT in modified gravity
Good convergence is ensured by 

a generic damping behavior in propagators 

well-controlled expansion with RegPTEven in modified gravity,

�(n) k���� �(n)
tree e�k2�2

d/2
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FIG. 4: Power spectrum of the density field in real space multiplied by k3/2, k3/2 P11(k), at z = 0, 0.5, 1, and 2 (from top to
bottom). Left panel shows the results in GR, while right panel presents the cases in f(R) gravity with |fR,0| = 10−4. Solid and
dotted lines are RegPT predictions at one-loop and linear theory predictions, respectively. Note that the errorbars indicated
in N -body results are the dispersion of the power spectrum amplitude over the modes in each Fourier bin.

C. Correlation function

The predictions for the correlation function are simply
obtained from the power spectrum:

ξ(r) =
∫

dk k2

2π2
P11(k)

sin(kr)
kr

. (57)

In the standard PT case, because of the un-regularized
UV behavior, the above integral cannot be reliably es-
timated. But now, with the RegPT treatment, we are
able to evaluate the correlation function, which can be
directly compared with the N -body results.

However, only with the single realization data, a reli-
able estimation of the correlation function is rather dif-
ficult in N -body simulations. This is because the mea-
sured amplitude of the correlation function is strongly
correlated between different scales. Then, due to the
cosmic variance error, a small deficit in the initial power
spectrum in the N -body realization, especially at low-k,
can coherently affect the shape and amplitude of corre-
lation function over the whole scales, and the measured
result of correlation function can drastically differ from
what we would expect from the true input power spec-
trum. The proper way to overcome such a problem is to
use a large number of realizations taking ensemble av-
erages over a large number of different realizations. For
the problem we are interested in, however, we can still
make a meaningful comparison with the single realization
data by combining the N -body catalogs in GR and f(R)
gravity. Let us take the difference:

∆ξ(r) = ξf(R)(r) − ξGR(r). (58)

Since the two catalogs were created with the same ran-
dom seed, a non-zero value of ∆ξ implies the systematic
difference of the dynamics between GR and f(R) grav-
ity. On the scales we are interested in, the leading-order
term in Γ expansion is known to play a dominant role
for the nonlinear effect on the correlation function (e.g.,
[20, 25, 29]). Then, from Eq. (54), the PT prediction
gives

[∆ξ(r)]PT ≃
(
[Γ(1)

reg,f(R)]
2 − [Γ(1)

reg,GR]2
)
⊗ ξ0(r), (59)

where the symbol ⊗ indicates a convolution. The func-
tion ξ0 represents the correlation function of the input
linear density field, which can be computed with the ran-
dom initial data of N -body simulation. Thus, plugging
the prediction of the regularized two-point propagators
into the above, the predicted value of [∆ξ]PT is directly
compared with the measured value.

Fig. 5 shows the results of the comparison at z = 0, 0.5
and 1 (from left to right panels). The measured results of
∆ξ are plotted as filled circles, while the PT predictions
with the regularized one-loop propagator are depicted as
solid magenta lines. Note that for clarity, the results at
z = 0.5 and 1 are multiplied by the factor 3 and 9, respec-
tively. We do not plot here the result at z = 2, since the
differences are quite small. The RegPT prediction fairly
traces the measured result of ∆ξ quite well, and is con-
sistent with the N -body estimates of Eq. (59) depicted
as blue dashed lines, in which we directly use the two-
point propagator Γ(1)

reg measured in N -body simulations.
For comparison, we also plot the linear theory prediction
(dotted), where the two-point propagators in Eq. (59)

z=2

z=1

z=0.5

z=0
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FIG. 2: Two-point propagator of density field, Γ(1)
1 (k), measured in N -body simulations at z = 0, 0.5, 1, and 2. Left and right

panels respectively shows the results in GR and f(R) gravity with |fR,0| = 10−4. In top panels, the propagators are normally
plotted as function of wavenumber. On the other hand, to clearly show the high-k limit behaviors, bottom panels plot the
normalized propagators Γ(1)/D+ as function of k2 in semi-log scale. In each panel, solid and dotted lines are the regularized
propagators at tree level and one-loop order, respectively [Eqs. (51) and (55)].

small scales, the propagators are divided by the linear
growth factor, Γ(1)

1 /D+, and are plotted as function of
wavenumber squared k2 in semi-logarithmic scales.

As we see from bottom panels, the measured propaga-
tors exhibit the exponential damping behaviors in both
GR and f(R) gravity. The results are then in a good
agreement with the theoretical predictions depicted as
solid lines, which represent the regularized propagators
at one-loop order, Γ(1)

reg [Eqs. (55)]. For reference, we also
plot the tree-level prediction given in Eq. (51), which
degrades the agreement with N -body simulations, as ex-
pected from previous studies in GR. Note here that we do
not indicate the error in N -body simulations, since the
plotted results are the ratio of measured values, and the
cosmic variance cancels out at the leading order. Only

with one realization data, we could not properly estimate
the higher-order cosmic variance error. Nevertheless, the
reasonable agreement with prediction implies that the
propagators were reliably estimated in N -body simula-
tion, and measured results seem robust against numerical
systematics.

A closer look at bottom panels, however, reveals a
small discrepancy between predictions and simulations.
This is rather manifest at higher redshifts in both GR
and f(R) cases. Since both the one-loop and tree-level
predictions become closer at higher redshifts, the discrep-
ancy would not be ascribed to the breakdown of PT treat-
ment. Rather, we suspect a small systematic error in the
N -body simulations. A part of the reasons may come
from the fact that the initial conditions were generated
with the Zel’dovich dynamics, which is known to pro-

f(R)

propagators power spectrum

z=0 z=0.5
z=1

z=2

�(1)(k)

k3/2 P (k)

N-body data: Baojiu Li AT, Nishimichi, Bernardeau,et al.(’14)


