非線形構造形成

Contents

- 球対称コラプスモデル
- ゼルドビッチ近似と高次摂動
- オイラー的摂動論

球対称コラプスモデル

(Spherical collapse model, SCM)

Halo formation

Beyond spherical collapse model (SCM only describes the enset of halo formation (SCM)

SCM only describes the onset of halo formation

In particular, SCM fails to describe <u>phase-space structure</u> of halo (continuous matter accretion)

Self-Similar collapse

Tractable analytic treatment

```
e.g., Fillmore & Goldreich ('84)
Bertschinger ('85)
```

Self-similar collapse

Fillmore & Goldreich ('84)

- Einstein-de Sitter background, $a(t) \propto t^{2/3}$
- Scale-free initial density perturbation, $\delta_{\rm i} \propto M_{\rm i}^{-\epsilon}$
- Motion of continuously infall shells at $r < r_{*}$

turn-around radius

$$\begin{array}{l} \begin{array}{l} \text{Self-similar}\\ \text{ansatz} \end{array} \quad r(t,t_*) = r_*(t_*)\lambda(t/t_*) \\ \\ \hline \\ \begin{array}{l} \text{EoM} \end{array} \end{array} \\ \begin{array}{l} \begin{array}{l} \frac{\mathrm{d}^2\lambda}{\mathrm{d}\tau^2} = -\frac{\pi^2}{8}\frac{\tau^{2/3\varepsilon}}{\lambda^2}\mathscr{M}\left[\frac{\lambda}{\Lambda(\tau)}\right] \text{;} \quad \mathscr{M}(x) = \frac{2}{3\varepsilon}\int_1^\infty \frac{\mathrm{d}y}{y^{1+2/3\varepsilon}}\mathscr{\mathscr{H}}\left[x - \frac{\lambda(y)}{\Lambda(y)}\right] \end{array} \end{array}$$

 $au \equiv t/t_*$: time normalized by turn-around time

Heaviside step func.

Mass:
$$M(r,t) = M_t \mathcal{M}\left(\frac{\lambda}{\Lambda(t)}\right)$$
; $M_t \propto a(t)^{1/\epsilon}$

Solutions

修論 by 杉浦宏夢

trajectory of mass shell

Tracing multi-stream flow with particle trajectories in N-body simulation

修論 by 杉浦宏夢

Keeping track of apocenter passage(s) for particle trajectories, number of <u>apocenter</u> passages, **b**, is stored for each particle

= SPARTA algorithm + α (Diemer'17; Diemer et al.'17)

> Tiling phase-space streams with p

N-body simulation Y. Rasera@ (Observatoire de Paris)

- L=316Mpc/h, N=512^3
- 60 snapshots at 0<z<1.43
- Einstein-de Sitter universe

Comparison with self-similar solution

Zel'dovich近似と高次摂動 (ラグランジェ摂動論)

Lagrangian PT

$\begin{array}{l} \underline{\text{Basic equations}}\\ \ddot{\boldsymbol{x}} + 2H\dot{\boldsymbol{x}} = -\frac{1}{a^2} \nabla_x \phi(\boldsymbol{x}), \end{array} \overset{}{\checkmark} L = \frac{1}{2} m a^2 \dot{\boldsymbol{x}}^2 - m \phi(\boldsymbol{x})\\ \boldsymbol{\nabla}_x^2 \phi(\boldsymbol{x}) = 4\pi G a^2 \overline{\rho}_{\text{m}} \delta(\boldsymbol{x}). \end{array}$

Lagrangian coordinate (**q**): $x(q,t) = q + \Psi(q,t)$

In Lagrangian coordinate, mass density is assumed to be uniform:

$$\overline{\rho}_{\mathrm{m}} d^{n} \boldsymbol{q} = \rho_{\mathrm{m}}(\boldsymbol{x}) d^{n} \boldsymbol{x} \longrightarrow \delta(\boldsymbol{x}) = \frac{\rho_{\mathrm{m}}(\boldsymbol{x})}{\overline{\rho}_{\mathrm{m}}} - 1 = \left| \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{q}} \right|^{-1} - 1$$

Rewriting quantities in Eulerian space with those in Lagrangian quantities

Lagrangian PT

Matsubara ('15)

$$\nabla_{x} \cdot \begin{bmatrix} \ddot{x} + 2H\dot{x} \end{bmatrix} = -4\pi G \,\overline{\rho}_{\mathrm{m}} \,\delta,$$

$$\nabla_{x} \times \begin{bmatrix} \ddot{x} + 2H\dot{x} \end{bmatrix} = \mathbf{0}.$$

$$\hat{\mathcal{T}}f(t) \equiv \ddot{f}(t) + 2H\dot{f}(t)$$

Longitudinal:
$$(\hat{\mathcal{T}} - 4\pi G \overline{\rho}_{m}) \Psi_{k,k}$$

$$= -\epsilon_{ijk} \epsilon_{ipq} \Psi_{j,p} (\hat{\mathcal{T}} - 2\pi G \overline{\rho}_{m}) \psi_{k,q}$$

$$- \frac{1}{2} \epsilon_{ijk} \epsilon_{pqr} \Psi_{i,p} \Psi_{j,q} (\hat{\mathcal{T}} - \frac{4\pi G}{3} \overline{\rho}_{m}) \Psi_{k,r},$$

Transverse:
$$\epsilon_{ijk} \hat{\mathcal{T}} \Psi_{j,k} = -\epsilon_{ijk} \Psi_{p,j} \hat{\mathcal{T}} \Psi_{p,k}.$$

Levi-Civita symbol

PT expansion: $\Psi(q, t) = \Psi^{(1)}(q, t) + \Psi^{(2)}(q, t) + \Psi^{(3)}(q, t) + \cdots$

Zel'dovich solution: Ist-order LPT

$$\Psi^{(1)} = \Psi^{(1L)} + \Psi^{(1T)}$$
;

$$\eta \equiv \ln D_1(t)$$

$$\left(\frac{\partial^2}{\partial\eta^2} + \frac{1}{2}\frac{\partial}{\partial\eta} - \frac{3}{2}\right)\Psi_{k,k}^{(1L)} = 0$$
$$\left(\frac{\partial^2}{\partial\eta^2} + \frac{1}{2}\frac{\partial}{\partial\eta}\right)\epsilon_{ijk}\Psi_{j,k}^{(1T)} = 0$$

Zel'dovich approximation : $\Psi^{(1T)} = 0$ and take growing-mode only

$$\Psi^{(1)} = \Psi^{(1L)} = -D_1(a) \nabla_q \varphi(\boldsymbol{q}), \quad \nabla_q^2 \varphi(\boldsymbol{q}) = \delta_0(\boldsymbol{q})$$

: initial density field

$$\therefore 1 + \delta_{\mathrm{m}}(\boldsymbol{x}) = \left|\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{q}}\right|^{-1} \equiv \frac{1}{J} \simeq 1 - \nabla_{\boldsymbol{q}} \cdot \boldsymbol{\psi}$$

Particle trajectories in ZA

Zel'dovich近似の応用

N体シミュレーションの初期条件生成に有用

粒子を格子状に並べてZel'dovich近似でずらす:

Higher-order Lagrangian PT

e.g,. Matsubara ('15)

PT expansion:
$$\Psi(q, t) = \Psi^{(1)}(q, t) + \Psi^{(2)}(q, t) + \Psi^{(3)}(q, t) + \cdots$$

Under Einstein-de Sitter approximation: $\Psi_{EdS}^{(n)}(\boldsymbol{q}; a(t)) \longrightarrow \Psi^{(n)}(\boldsymbol{q}; D_1(t))$

Longitudinal: $\left(\frac{\partial^2}{\partial\eta^2} + \frac{1}{2}\frac{\partial}{\partial\eta} - \frac{3}{2}\right)\Psi_{k,k}^{(n)}$ $= -\sum_{m_1+m_2=n} \epsilon_{ijk}\epsilon_{ipq}\Psi_{j,p}^{(m_1)}\left(\frac{\partial^2}{\partial\eta^2} + \frac{1}{2}\frac{\partial}{\partial\eta} - \frac{3}{4}\right)\psi_{k,q}^{(m_2)}$ vanished in ID $-\frac{1}{2}\sum_{m_1+m_2+m_3=n} \epsilon_{ijk}\epsilon_{pqr}\Psi_{i,p}^{(m_1)}\Psi_{j,q}^{(m_2)}\left(\frac{\partial^2}{\partial\eta^2} + \frac{1}{2}\frac{\partial}{\partial\eta} - \frac{1}{2}\right)\Psi_{k,r}^{(m_3)},$ vanished in 2D

Transverse: $\epsilon_{ijk} \left(\frac{\partial^2}{\partial \eta^2} + \frac{1}{2} \frac{\partial}{\partial \eta} \right) \Psi_{j,k}^{(n)} = -\sum_{m_1+m_2=n} \epsilon_{ijk} \Psi_{p,j}^{(m_1)} \left(\frac{\partial^2}{\partial \eta^2} + \frac{1}{2} \frac{\partial}{\partial \eta} \right) \Psi_{p,k}^{(m_2)}.$

vanished in ID

Performance of Lagrangian PT

Saga, AT & Colombi, arXiv:1805.08787

初期条件 (Zel'dovich近似解)

$$\Psi(\boldsymbol{q}) = a_{\text{init}} \begin{pmatrix} \epsilon_{x} \sin q_{x} \\ \epsilon_{y} \sin q_{y} \\ \epsilon_{z} \sin q_{z} \end{pmatrix}$$

10次まで計算

Results

Saga, AT & Colombi, arXiv:1805.08787

After shell-crossing,

quasi-ID collapse

quasi-2D collapse

0.01

0.01

a=0.043

0.02

0.02

3D collapse

18, 18, 18, a=0.035

0.00

х

0.00

Х

0.01

0.01

a=0.040

0.02

0.02

2

0

-2

-4

-0.02

6

0

 $^{-2}$

-4

-0.02

×

-0.01

-0.01

18, 18,

×

マルチストリーム構造が発達(ハローが形成)

Cosmological N-body simulations

Directly solve equation of motion for N particles

Run N-body simulation many times with a large number of particles in a huge box

To reduce $O(N^2)$ operation for force calculation,

- Tree algorithm
- Particle-Mesh algorithm (using FFT)

For cosmological study

 $O(N \log N)$

N~1,000^3, L~1,000 Mpc, >50 runs

Still extensive but very useful for practical purposes : mock data analysis, locating 'galaxies' in dark matter halo, ...

Tree-PM method for force calculation

In Fourier space,

 $\phi_k = \phi_k^{\text{long}} + \phi_k^{\text{short}}.$

$$\phi_{k}^{\text{long}} = \phi_{k} \exp\left(-k^{2} r_{s}^{2}\right)$$

$$\phi_{k}^{\text{short}} = \phi_{k} \left[1 - \exp\left(-k^{2} r_{s}^{2}\right)\right] \longrightarrow \phi^{\text{short}}(\boldsymbol{x}) = -G \sum_{i} \frac{m_{i}}{r_{i}} \operatorname{erfc}\left(\frac{r_{i}}{2r_{s}}\right)$$

$$r_{i} = \min\left(|\boldsymbol{x} - \boldsymbol{r}_{i} - \boldsymbol{n}L|\right)$$

• long-range: PM method with FFT

• short-range: Tree algorithm (Barnes-Hut oct-tree) http://arborjs.org/docs/barnes-hut

Performance of each method is O(N log N)

Cosmological initial condition

For particle assigned on each grid:

 $oldsymbol{x} = oldsymbol{q} + oldsymbol{\Psi}(oldsymbol{q})$

Note $oldsymbol{v} = a\dot{oldsymbol{x}} = a\dot{oldsymbol{\Psi}}(oldsymbol{q})$ initial position Lagrangian displacement

'q' is called Lagrangian coordinate (homogeneous mass dist)

leading order (Zel'dovich approx.) $\Psi(\mathbf{k}) \simeq \frac{i \mathbf{k}}{k^2} D_+(z) \delta_0(\mathbf{k})$ initial density field (random) General procedure Improved initial condition generator with Lagrangian PT (2LPT code) I. generate random field $\delta_0(m{k})$

2. calculate displacement field $\Psi(k) \xrightarrow{} FFT = \Psi(q)$

3. move particles according to displacement field $\Psi(q) \ \dot{\Psi}(q) = \frac{D_+(z)}{D_+(z)} \Psi(q)$

オイラー的摂動論

Perturbation theory (PT)

Theory of large-scale structure based on gravitational instability

Juszkiewicz ('81), Vishniac ('83), Goroff et al. ('86), Suto & Sasaki ('91), Jain & Bertschinger ('94), ...

Cold dark matter + baryons = pressureless & irrotational fluid

$$\frac{\partial \delta}{\partial t} + \frac{1}{a} \vec{\nabla} \cdot \left[(1+\delta) \vec{v} \right] = 0$$

 $\frac{1}{\sigma^2} \nabla^2 \Phi = 4\pi G \,\overline{\rho}_{\rm m} \,\delta$

eqs.

$$\frac{\partial \vec{v}}{\partial t} + \frac{\dot{a}}{a}\vec{v} + \frac{1}{a}(\vec{v}\cdot\vec{\nabla})\vec{v} = -\frac{1}{a}\vec{\nabla}\Phi$$

Single-stream approx. of collisionless Boltzmann eq.

standard PT

 $|\delta| \ll 1$

 $\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \cdots \qquad \langle \delta(\mathbf{k};t)\delta(\mathbf{k}';t)\rangle = (2\pi)^3 \,\delta_{\mathrm{D}}(\mathbf{k} + \mathbf{k}') \,P(|\mathbf{k}|;t)$

Equations of motion

 $\partial_{\tau}\delta + \partial_i \left[(1+\delta)v^i \right] = 0 ,$ T: conformal time (adT = dt) $\partial_{\tau} v^{i} + \mathcal{H} v^{i}_{l} + \partial^{i} \phi + v^{j}_{l} \partial_{i} v^{i} = 0$ $\int_{\boldsymbol{q}} \equiv \int \frac{d^{\mathbf{a}}\boldsymbol{q}}{(2\pi)^3}$ $\Delta \phi = \frac{3}{2} \mathcal{H}^2 \Omega_m \delta .$ $\partial_{\tau}\delta(\boldsymbol{k},\tau) + \theta(\boldsymbol{k},\tau) = -\int_{\tilde{\boldsymbol{k}}} \alpha(\boldsymbol{q},\boldsymbol{k}-\boldsymbol{q}) \,\theta(\boldsymbol{q},\tau) \delta(\boldsymbol{k}-\boldsymbol{q},\tau) ,$ Fourier expansion $\partial_{\tau}\theta(\boldsymbol{k},\tau) + \mathcal{H}\theta(\boldsymbol{k},\tau) + \frac{3}{2}\Omega_m\mathcal{H}^2\delta(\boldsymbol{k},\tau)$ $= -\int_{\boldsymbol{\sigma}} \beta(\boldsymbol{q}, \boldsymbol{k} - \boldsymbol{q}) \,\theta(\boldsymbol{q}, \tau) \theta(\boldsymbol{k} - \boldsymbol{q}, \tau)$ $\theta \equiv \nabla \cdot \boldsymbol{v}$ $\alpha(\boldsymbol{q}_1, \boldsymbol{q}_2) \equiv \frac{\boldsymbol{q}_1 \cdot (\boldsymbol{q}_1 + \boldsymbol{q}_2)}{a_1^2} ,$ $\beta(\boldsymbol{q}_1, \boldsymbol{q}_2) \equiv \frac{1}{2} (\boldsymbol{q}_1 + \boldsymbol{q}_2)^2 \frac{\boldsymbol{q}_1 \cdot \boldsymbol{q}_2}{a_1^2 a_2^2}.$

Standard perturbation theory

Recursion relation for PT kernels

$$\mathcal{F}_a^{(n)}(\boldsymbol{k}_1,\cdots,\boldsymbol{k}_n) \equiv \begin{bmatrix} F_n(\boldsymbol{k}_1,\cdots,\boldsymbol{k}_n) \\ G_n(\boldsymbol{k}_1,\cdots,\boldsymbol{k}_n) \end{bmatrix}$$

$$\mathcal{F}_a^{(n)}(\boldsymbol{k}_1,\cdots,\boldsymbol{k}_n) = \sum_{m=1}^{n-1} \sigma_{ab}^{(n)} \gamma_{bcd}(\boldsymbol{q}_1,\boldsymbol{q}_2) \mathcal{F}_c^{(m)}(\boldsymbol{k}_1,\cdots,\boldsymbol{k}_m) \mathcal{F}_d^{(n-m)}(\boldsymbol{k}_{m+1},\cdots,\boldsymbol{k}_n)$$

$$egin{aligned} m{q}_1 &= m{k}_1 + \dots + m{k}_m \ m{q}_2 &= m{k}_{m+1} + \dots + m{k}_n \ && \sigma^{(n)}_{ab} &= rac{1}{(2n+3)(n-1)} \left(egin{aligned} 2n+1 & 2 \ 3 & 2n \end{array}
ight) \end{aligned}$$

$$\gamma_{abc}(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}) = \begin{cases} \frac{1}{2} \left\{ 1 + \frac{\boldsymbol{k}_{2} \cdot \boldsymbol{k}_{1}}{|\boldsymbol{k}_{2}|^{2}} \right\}; & (a, b, c) = (1, 1, 2) \\ \frac{1}{2} \left\{ 1 + \frac{\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}}{|\boldsymbol{k}_{1}|^{2}} \right\}; & (a, b, c) = (1, 2, 1) \\ \frac{(\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2})|\boldsymbol{k}_{1} + \boldsymbol{k}_{2}|^{2}}{2|\boldsymbol{k}_{1}|^{2}|\boldsymbol{k}_{2}|^{2}}; & (a, b, c) = (2, 2, 2) \\ 0; & \text{otherwise.} \end{cases}$$

Note—. repetition of the same subscripts (a,b,c) indicates the sum over all multiplet components

PT kernels constructed from recursion relation should be <u>symmetrized</u>

Power spectrum

$$\langle \delta(\mathbf{k}_1, a) \delta(\mathbf{k}_2, a) \rangle \equiv (2\pi)^3 \delta_D^{(3)}(\mathbf{k}_1 + \mathbf{k}_2) P(k_1, a)$$

 $\lim_{k \to \infty} \frac{\text{linear}}{P_{SPT}(k)} = \frac{P_{lin}(k) + P_{22}(k) + P_{13}(k) + \text{higher order loops}}{P_{13}(k) + P_{13}(k) + P$

$$P_{22}(k) = 2 \int_{q} P_{lin}(q) P_{lin}(|\boldsymbol{k} - \boldsymbol{q}|) F_{2}^{2}(\boldsymbol{q}, \boldsymbol{k} - \boldsymbol{q}) ,$$

$$P_{13}(k) = 6 P_{lin}(k) \int_{\boldsymbol{q}} P_{lin}(q) F_{3}(\boldsymbol{k}, \boldsymbol{q}, -\boldsymbol{q}) ,$$

Next-to-next-to leading order

$P^{(mn)} \simeq \langle \delta^{(m)} \delta^{(n)} \rangle$

up to 2-loop order

$$P(k) = P^{(11)}(k) + \left(P^{(22)}(k) + P^{(13)}(k)\right) + \left(P^{(33)}(k) + P^{(24)}(k) + P^{(15)}(k)\right) + \cdots$$

Linear (tree)

I-loop

Crocce & Scoccimarro ('06)

2-loop

Calculation involves multi-dimensional numerical integration (time-consuming)

Comparison with simulations

Standard PT qualitatively explains scale-dependent nonlinear growth, however,

I-loop : overestimates simulations

2-loop : overestimates at high-z, while it turn to underestimate at low-z

Standard PT produces illbehaved PT expansion !!

... need to be improved

Density field in standard PT

x $[h^{-1}Mpc]$ AT, Nishimichi & Jeong (to appear soon)

 $x [h^{-1}Mpc]$

Density field in standard PT

x $[h^{-1}Mpc]$ AT, Nishimichi & Jeong (to appear soon)

Correlation between N-body and SPT

Improving PT predictions

Basic idea Reorganizing standard PT expansion by introducing non-perturbative statistical quantities

 $\delta_0(m{k})$ initial density field (Gaussian) Initial power spectrum

 $P_0(k)$

from linear theory

Nonlinear mapping

(CMB Boltzmann code)

 $\delta(k; z)$ Evolved density field (non-Gaussian) Observables P(k; z) $B(k_1, k_2, k_3; z)$ $T(k_1, k_2, k_3, k_4; z)$

of dark matter/galaxies/halos

Concept of 'propagator' in physics/mathematics may be useful

Propagator in physics

+ Green's function in linear differential equations

Probability amplitude in quantum mechanics

 ∂t

$$\psi(x,t) = \int_{-\infty}^{+\infty} dx' G(x,t;x',t') \,\psi(x',t') \,; \quad t > t'$$

Cosmic propagators

Propagator should carry information on non-linear evolution & statistical properties

Evolved (non-linear) density field

Crocce & Scoccimarro ('06)

$$\left\langle \frac{\delta \delta_{\rm m}(\boldsymbol{k};t)}{\delta \delta_0(\boldsymbol{k'})} \right\rangle \equiv \delta_{\rm D}(\boldsymbol{k}-\boldsymbol{k'}) \Gamma^{(1)}(\boldsymbol{k};t)$$
 Propagator

Initial density field

Ensemble w.r.t randomness of initial condition

Contain statistical information on *full-nonlinear* evolution (Non-linear extension of Green's function)

Multi-point propagators

Bernardeau, Crocce & Scoccimarro ('08) Matsubara ('11) ---- integrated PT

As a natural generalization,

Multi-point propagator

$$\left\langle \frac{\delta^n \, \delta_{\mathrm{m}}(\boldsymbol{k};t)}{\delta \, \delta_0(\boldsymbol{k}_1) \cdots \delta \, \delta_0(\boldsymbol{k}_n)} \right\rangle = (2\pi)^{3(1-n)} \, \delta_{\mathrm{D}}(\boldsymbol{k}-\boldsymbol{k'}) \, \Gamma^{(n)}(\boldsymbol{k}_1,\cdots,\boldsymbol{k}_n;t)$$

With this multi-point prop.

Building blocks of a new perturbative theory (PT) expansionΓ-expansion or Wiener-Hermite expansion
A good convergence of PT expansion is expected (c.f. standard PT) **Power spectrum**

Initial power spectrum

$$P(k;t) = \left[\Gamma^{(1)}(k;t)\right]^{2} P_{0}(k) + 2 \int \frac{d^{3}q}{(2\pi)^{3}} \left[\Gamma^{(2)}(q, k - q;t)\right]^{2} P_{0}(q) P_{0}(|k - q|) + \cdots + 6 \int \frac{d^{6}pd^{3}q}{(2\pi)^{6}} \left[\Gamma^{(3)}(p, q, k - p - q;t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|k - p - q|) + \cdots + 6 \int \frac{d^{6}pd^{3}q}{(2\pi)^{6}} \left[\Gamma^{(3)}(p, q, k - p - q;t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|k - p - q|) + \cdots + 6 \int \frac{d^{6}pd^{3}q}{(2\pi)^{6}} \left[\Gamma^{(3)}(p, q, k - p - q;t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|k - p - q|) + \cdots + 6 \int \frac{d^{6}pd^{3}q}{(2\pi)^{6}} \left[\Gamma^{(3)}(p, q, k - p - q;t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|k - p - q|) + \cdots + 6 \int \frac{d^{6}pd^{3}q}{(2\pi)^{6}} \left[\Gamma^{(3)}(p, q, k - p - q;t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|k - p - q|) + \cdots + 2 \int \frac{d^{6}pd^{3}q}{(2\pi)^{6}} \left[\Gamma^{(3)}(p, q, k - p - q;t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|k - p - q|) + \cdots + 2 \int \frac{d^{6}pd^{3}q}{(2\pi)^{6}} \left[\Gamma^{(3)}(p, q, k - p - q;t)\right]^{2} P_{0}(p) P_{0}(p) P_{0}(|k - p - q|) + \cdots + 2 \int \frac{d^{6}pd^{3}q}{(2\pi)^{6}} \left[\Gamma^{(3)}(p, q, k - p - q;t)\right]^{2} P_{0}(p) P_{0}(k_{2}) + cyc.$$

$$+ \left[8 \int \frac{d^{3}q}{q} \Gamma^{(2)}(k_{1} - q, q) \Gamma^{(2)}(k_{2} + q, -q) \Gamma^{(2)}(q - k_{1} - k_{2} - q) P_{0}(|k_{1} - q|) P_{0}(|k_{2} + q|) P_{0}(q) + 6 \int \frac{d^{3}q}{q} \Gamma^{(3)}(-k_{3} - k_{2} + q, -q) \Gamma^{(2)}(k_{2} - q, q) \Gamma^{(1)}(k_{3}) P_{0}(|k_{2} - q|) P_{0}(q) P_{0}(k_{3}) + cyc.\right].$$

$$B(k_{1}, k_{2}, k_{3}) = 2 \int \frac{k_{3}}{k_{1}} \int \frac{k_{3}}{k_{2}} \int$$

 \otimes

k2

+ 6

I-loop

 \otimes

k2

×1.8

+ CYC.

+ 8

tree

k2

Generic property of propagators

Crocce & Scoccimarro '06, Bernardeau et al. '08

Constructing regularized propagators

• UV property (k >>1) :

$$\Gamma^{(n)} \xrightarrow{k \to +\infty} \Gamma^{(n)}_{\text{tree}} e^{-k^2 \sigma_v^2/2} \quad ; \quad \sigma_v^2 = \int \frac{dq}{6\pi^2} P_{\theta\theta}(q)$$

Bernardeau, Crocce & Scoccimarro ('08), Bernardeau, Van de Rijt, Vernizzi ('11)

• IR behavior (k<<1) can be described by standard PT calculations :

$$\Gamma^{(n)} = \Gamma^{(n)}_{\text{tree}} + \Gamma^{(n)}_{1\text{-loop}} + \Gamma^{(n)}_{2\text{-loop}} + \cdots$$

Importantly, each term behaves like $\Gamma_{p-\text{loop}}^{(n)} \xrightarrow{k \to +\infty} \frac{1}{p!} \left(-\frac{k^2 \sigma_v^2}{2}\right)^p \Gamma_{\text{tree}}^{(n)}$

A regularization scheme that reproduces both UV & IR behaviors Bernardeau, Crocce & Scoccimarro ('12)

Regularized propagator

Bernardeau, Crocce & Scoccimarro ('12)

A global solution that satisfies both UV (k >> I) & IR (k << I) properties:

Precision of IR behavior can be systematically improved by including higher-loop corrections and adding counter terms

e.g., For IR behavior valid at 2-loop level,

$$\Gamma_{\rm reg}^{(n)} = \left[\Gamma_{\rm tree}^{(n)} \left\{1 + \frac{k^2 \sigma_{\rm v}^2}{2} + \frac{1}{2} \left(\frac{k^2 \sigma_{\rm v}^2}{2}\right)^2\right\} + \Gamma_{\rm 1-loop}^{(n)} \left\{1 + \frac{k^2 \sigma_{\rm v}^2}{2}\right\} + \Gamma_{\rm 2-loop}^{(n)} \right] \exp\left\{-\frac{k^2 \sigma_{\rm v}^2}{2}\right\}$$

Propagators in N-body simulations

compared with 'Regularized' propagators constructed analytically

Bernardeau, AT & Nishimichi ('12)

Bernardeau et al. ('12)

RegPT: fast PT code for P(k) & $\xi(r)$ few sec.

(regularized)

A public code based on multi-point propagators at 2-loop order

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html

Why improved PT works well?

AT, Bernardeau, Nishimichi, Codis ('12) AT et al. ('09)

- All corrections become comparable at low-z.
- Positivity is not guaranteed.

Corrections are positive & localized, shifted to higher-k for higher-loop

RegPT in modified gravity

Good convergence is ensured by

a generic damping behavior in propagators $\Gamma^{(n)} \xrightarrow{k \to \infty} \Gamma^{(n)}_{\text{tree}} e^{-k^2 \sigma_d^2/2}$

Even in modified gravity, well-controlled expansion with RegPT

N-body data: Baojiu Li