## 非線形構造形成

## 解析的アプローチ

## Contents

- 球対称コラプスモデル
- ゼルドビッチ近似と高次摂動
- オイラ一的摂動論

球対称コラプスモデル
（Spherical collapse model，SCM）

## Halo formation



## Comparison with SCM




## Beyond spherical collapse model

 (SCM)SCM only describes the onset of halo formation
In particular, SCM fails to describe phase-space structure of halo (continuous matter accretion)


Tractable analytic treatment

Self-Similar collapse
e.g., Fillmore \& Goldreich ('84) Bertschinger ('85)

## Self-similar collapse

Fillmore \& Goldreich ('84)

- Einstein-de Sitter background, $\mathrm{a}(\mathrm{t}) \propto \mathrm{t}^{2 / 3}$
- Scale-free initial density perturbation, $\delta_{\mathrm{i}} \propto M_{\mathrm{i}}^{-\epsilon}$
- Motion of continuously infall shells at $r<r_{*}$
turn-around radius
Self-similar ansatz

$$
r\left(t, t_{*}\right)=r_{*}\left(t_{*}\right) \lambda\left(t / t_{*}\right)
$$

$$
\Lambda(\tau)=\tau^{2 / 3+2 / 9 \varepsilon}
$$

$$
\frac{\mathrm{d}^{2} \lambda}{\mathrm{~d} \tau^{2}}=-\frac{\pi^{2}}{8} \frac{\tau^{2 / 3 \varepsilon}}{\lambda^{2}} \mathscr{M}\left[\frac{\lambda}{\Lambda(\tau)}\right] ; \mathscr{M}(x)=\frac{2}{3 \varepsilon} \int_{1}^{\infty} \frac{\mathrm{d} y}{y^{1+2 / 3 \varepsilon}} \mathscr{H}\left[x-\frac{\lambda(y)}{\Lambda(y)}\right]
$$

$\tau \equiv t / t_{*}$ : time normalized by turn-around time
Heaviside step func.
Mass: $\quad M(r, t)=M_{t} \mathcal{M}\left(\frac{\lambda}{\Lambda(t)}\right) ; \quad M_{t} \propto a(t)^{1 / \epsilon}$

## Solutions



修論 by 杉浦宏夢

## trajectory of mass shell




## Tracing multi－stream flow with particle

 trajectories in $N$－body simulation修論 by 杉浦宏夢
Keeping track of apocenter passage（s）for particle trajectories， number of apocenter passages，$p$ ，is stored for each particle

$=$ SPARTA algorithm $+\alpha$
（Diemer＇I7；Diemer et al．＇I7）

Tiling phase－space streams with $p$

N－body simulation Y．Rasera＠
（Observatoire de Paris）
－L＝316Mpc／h，N＝5I2＾3
－ 60 snapshots at $0<z<1.43$
－Einstein－de Sitter universe

I I，000 halos
$\left(M_{200} \geq 10^{13} M_{\odot}\right)$

## Comparison with self-similar solution

Use apocenter-passage positions $p=1 \sim 5$ to fit to self-similar solution by Fillmore \& Goldreich ('84)
Fitting parameters:

$$
s=(1 / \epsilon), \quad r_{\mathrm{ta}}\left(t_{\mathrm{ta}}\right)
$$

accretion rate $\left(M \propto a^{s}\right) \quad$ scale radius



## Zel＇dovich近似と高次摂動

(ラグランジェ摂動論)

## Lagrangian PT

Basic equations

$$
\begin{aligned}
& \ddot{\boldsymbol{x}}+2 H \dot{x}=-\frac{1}{a^{2}} \nabla_{x} \phi(\boldsymbol{x}) \\
& \nabla_{x}^{2} \phi(\boldsymbol{x})=4 \pi G a^{2} \bar{\rho}_{\mathrm{m}} \delta(\boldsymbol{x})
\end{aligned}
$$

Lagrangian coordinate (q): $\quad \boldsymbol{x}(\boldsymbol{q}, t)=\boldsymbol{q}+\mathbf{\Psi}(\boldsymbol{q}, t)$

In Lagrangian coordinate, mass density is assumed to be uniform:

$$
\bar{\rho}_{\mathrm{m}} d^{n} \boldsymbol{q}=\rho_{\mathrm{m}}(\boldsymbol{x}) d^{n} \boldsymbol{x} \quad \longrightarrow \quad \delta(\boldsymbol{x})=\frac{\rho_{\mathrm{m}}(\boldsymbol{x})}{\bar{\rho}_{\mathrm{m}}}-1=\left|\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{q}}\right|^{-1}-1
$$

Rewriting quantities in Eulerian space with those in Lagrangian quantities

## Lagrangian PT

Matsubara ('I5)

$$
\begin{aligned}
& \nabla_{x} \cdot[\ddot{\boldsymbol{x}}+2 H \dot{\boldsymbol{x}}]=-4 \pi G \bar{\rho}_{\mathrm{m}} \delta, \\
& \nabla_{x} \times[\ddot{\boldsymbol{x}}+2 H \dot{\boldsymbol{x}}]=\mathbf{0}
\end{aligned}
$$

$$
\hat{\mathcal{T}} f(t) \equiv \ddot{f}(t)+2 H \dot{f}(t)
$$

Longitudinal: $\left(\hat{\mathcal{T}}-4 \pi G \bar{\rho}_{\mathrm{m}}\right) \Psi_{k, k}$

$$
\begin{aligned}
= & -\epsilon_{i j k} \epsilon_{i p q} \Psi_{j, p}\left(\hat{\mathcal{T}}-2 \pi G \bar{\rho}_{\mathrm{m}}\right) \psi_{k, q} \\
& -\frac{1}{2} \epsilon_{i j k} \epsilon_{p q r} \Psi_{i, p} \Psi_{j, q}\left(\hat{\mathcal{T}}-\frac{4 \pi G}{3} \bar{\rho}_{\mathrm{m}}\right) \Psi_{k, r},
\end{aligned}
$$

Transverse: $\quad \epsilon_{i j k} \hat{\mathcal{T}} \Psi_{j, k}=-\epsilon_{i j k} \Psi_{p, j} \hat{\mathcal{T}} \Psi_{p, k}$.

PT expansion: $\quad \boldsymbol{\Psi}(\boldsymbol{q}, t)=\boldsymbol{\Psi}^{(1)}(\boldsymbol{q}, t)+\boldsymbol{\Psi}^{(2)}(\boldsymbol{q}, t)+\boldsymbol{\Psi}^{(3)}(\boldsymbol{q}, t)+\cdots$

## Zel'dovich solution: Ist-order LPT

$$
\boldsymbol{\Psi}^{(1)}=\boldsymbol{\Psi}^{(1 L)}+\boldsymbol{\Psi}^{(1 T)} ;
$$

$$
\begin{aligned}
& \left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}-\frac{3}{2}\right) \Psi_{k, k}^{(1 L)}=0 \\
& \left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}\right) \epsilon_{i j k} \Psi_{j, k}^{(1 T)}=0
\end{aligned}
$$

Zel'dovich approximation : $\Psi^{(1 T)}=0$ and take growing-mode only

$$
\begin{aligned}
\boldsymbol{\Psi}^{(1)}=\boldsymbol{\Psi}^{(1 L)}=-D_{1}(a) \nabla_{q} \varphi(\boldsymbol{q}), \quad \nabla_{q}^{2} \varphi(\boldsymbol{q})= & \delta_{0}(\boldsymbol{q}) \\
& : \text { initial density field } \\
\because 1+\delta_{\mathrm{m}}(\boldsymbol{x})=\left|\frac{\partial \boldsymbol{x}}{\partial \boldsymbol{q}}\right|^{-1} \equiv & \frac{1}{J} \simeq 1-\nabla_{q} \cdot \boldsymbol{\psi}
\end{aligned}
$$

## Particle trajectories in ZA



Buchert \& Ehlers ('93)


Figure 3. A family of trajectories corresponding to the model presented in Fig. 1 is shown for the first-order (upper panel) and second-order (lower panel) approximations. The trajectories end in the Eulerian space-time section $(y=0.5, t)$ centred at a cluster. These plots illustrate that the three-stream system that develops after the first shell-crossing performs a self-oscillation due to the action of self-gravity.


## N_particle $=256^{\wedge} 3$ <br> L=200Mpc/h ^CDM

Neyrink ('I3)
power spectrum

$k[\mathrm{Mpc} / h]$
cross correlation coeff.


## Zel＇dovich近似の応用

## N 体シミュレーションの初期条件生成に有用

粒子を格子状に並べてZel＇dovich近似でずらす：$$
\boldsymbol{x}=\boldsymbol{q}+\boldsymbol{\Psi}(\boldsymbol{q}) \quad v=a \dot{\boldsymbol{x}}=a \dot{\Psi}(\boldsymbol{q})
$$

格子点の位置 変移場ベクトル
Zel＇dovich近似：

$$
\Psi(k) \simeq \frac{i k}{k^{2}} D_{+}(z) \delta_{0}(k)
$$



初期密度ゆらぎ

## 計算の流れ

I．フーリエ空間上にランダムな初期密度場を生成 $\delta_{0}(\boldsymbol{k})$
2．変移場ベクトルを計算： $\boldsymbol{\Psi}(\boldsymbol{k}) \xrightarrow{\text { FFT }} \boldsymbol{\Psi}(\boldsymbol{q})$
3．変移場ベクトルを使って粒子を移動：$\Psi(\boldsymbol{q}) \quad \dot{\Psi}(\boldsymbol{q})=\frac{\dot{D}_{+}(z)}{D_{+}(z)} \Psi(\boldsymbol{q})$

## Higher-order Lagrangian PT

 e.g,. Matsubara ('I5)```
PT expansion: \(\quad \mathbf{\Psi}(\boldsymbol{q}, t)=\boldsymbol{\Psi}^{(1)}(\boldsymbol{q}, t)+\boldsymbol{\Psi}^{(2)}(\boldsymbol{q}, t)+\boldsymbol{\Psi}^{(3)}(\boldsymbol{q}, t)+\cdots\)
```


## Under Einstein-de Sitter approximation: $\underset{\text { EdS }}{\boldsymbol{\Psi}}(\boldsymbol{q} ; a(t)) \longrightarrow \boldsymbol{\Psi}^{(n)}\left(\boldsymbol{q} ; D_{1}(t)\right)$

Longitudinal: $\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}-\frac{3}{2}\right) \Psi_{k, k}^{(n)}$

$$
\eta \equiv \ln D_{1}(t)
$$

$$
=-\sum_{m_{1}+m_{2}=n} \epsilon_{i j k} \epsilon_{i p q} \Psi_{j, p}^{\left(m_{1}\right)}\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}-\frac{3}{4}\right) \psi_{k, q}^{\left(m_{2}\right)} \text { vanished in ID }
$$

$$
-\frac{1}{2} \sum_{m_{1}+m_{2}+m_{3}=n} \epsilon_{i j k} \epsilon_{p q r} \Psi_{i, p}^{\left(m_{1}\right)} \Psi_{j, q}^{\left(m_{2}\right)}\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}-\frac{1}{2}\right) \Psi_{k, r}^{\left(m_{3}\right)}
$$

vanished in 2D
Transverse: $\quad \epsilon_{i j k}\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}\right) \Psi_{j, k}^{(n)}=-\sum_{m_{1}+m_{2}=n} \frac{\epsilon_{i j k} \Psi_{p, j}^{\left(m_{1}\right)}\left(\frac{\partial^{2}}{\partial \eta^{2}}+\frac{1}{2} \frac{\partial}{\partial \eta}\right) \Psi_{p, k}^{\left(m_{2}\right)} .}{\text { vanished in ID }}$

## Performance of Lagrangian PT

Saga，AT \＆Colombi，arXiv： 1805.08787
$\underset{\text {（Zel＇dovich近似解）}}{\text { 初期条件 }} \quad \boldsymbol{\Psi}(\boldsymbol{q})=a_{\mathrm{init}}\left(\begin{array}{c}\epsilon_{\mathrm{x}} \sin q_{x} \\ \epsilon_{\mathrm{y}} \sin q_{y} \\ \epsilon_{\mathrm{z}} \sin q_{z}\end{array}\right)$

10次まで計算

宇宙論的ヴラソフシミュ レーションと比較

## Results

Saga, AT \& Colombi, arXiv: |805.08787
Single density peak in a periodic boundary box
(sinusoidal function)
$\longrightarrow$ Shell-crossing happens at origin


## Vlasov simulation vs LPT






## Vlasov simulation vs LPT

シェクルロッシング時における比較
（原点で密度場発散）




## Vlasov simulation vs LPT

## 5th-order Lagrangian PT




## Vlasov simulation vs LPT

## Making use of convergence of LPT expansion

$x_{\text {LPT }}(\boldsymbol{q})$ at $n$-th order is found to be accurately fitted to

$$
a+\frac{1}{b+c \exp \left[d n^{e}\right]} \stackrel{n \rightarrow \infty}{\longrightarrow} a \quad \text { Extrapolation }
$$

at any Lagrangian position

$$
(a, \cdots, e: \text { fitting parameter })
$$



## Vlasov simulation vs LPT

## Extrapolation based on LPT




## After shell－crossing，

## quasi－ID collapse quasi－2D collapse 3D collapse



## マルチストリーム構造が発達（八ローが形成）

# Cosmological $N$-body simulations 

Directly solve equation of motion for $N$ particles
$\longrightarrow$ Run $N$-body simulation many times with a large number of particles in a huge box


To reduce $\mathrm{O}\left(\mathrm{N}^{\wedge} 2\right)$ operation for force calculation, $O(N \log N)$

- Tree algorithm
- Particle-Mesh algorithm (using FFT)

| For cosmological |
| :---: |
| study |$\quad N \sim 1,000^{\wedge} 3, L \sim 1,000 \mathrm{Mpc},>50$ runs

Still extensive but very useful for practical purposes : mock data analysis, locating 'galaxies' in dark matter halo, ...

## Tree-PM method for force calculation

In Fourier space,

$$
\phi_{k}=\phi_{k}^{\text {long }}+\phi_{k}^{\text {short }}
$$

$\phi_{k}^{\operatorname{long}}=\phi_{k} \exp \left(-\boldsymbol{k}^{2} r_{s}^{2}\right)$
$\phi_{k}^{\text {short }}=\phi_{k}\left[1-\exp \left(-\boldsymbol{k}^{2} r_{s}^{2}\right)\right] \longrightarrow \phi^{\text {short }}(\boldsymbol{x})=-G \sum_{i} \frac{m_{i}}{r_{i}} \operatorname{erfc}\left(\frac{r_{i}}{2 r_{s}}\right)$
$r_{i}=\min \left(\left|\boldsymbol{x}-\boldsymbol{r}_{i}-\boldsymbol{n} L\right|\right)$

- long-range: PM method with FFT
- short-range: Tree algorithm (Barnes-Hut oct-tree)
http://arborjs.org/docs/barnes-hut

Performance of each method is $\mathrm{O}(\mathrm{N} \log \mathrm{N})$


## Cosmological initial condition

For particle assigned on each grid:

' q ' is called Lagrangian coordinate (homogeneous mass dist)

leading order
(Zel'dovich approx.) $\Psi(\boldsymbol{k}) \simeq \frac{i \boldsymbol{k}}{k^{2}} D_{+}(z) \delta_{0}(\boldsymbol{k})$
initial density field (random)

## General procedure

Improved initial condition generator
I. generate random field $\delta_{0}(\boldsymbol{k})$ with Lagrangian PT (2LPT code)
2. calculate displacement field $\Psi(k) \xrightarrow{\text { FFT }} \Psi(q)$
3. move particles according to displacement field $\Psi(\boldsymbol{q}) \dot{\Psi}(\boldsymbol{q})=\frac{\dot{D}_{+}(z)}{D_{+}(z)} \Psi(\boldsymbol{q})$
オイラー的摂動論

## Perturbation theory (PT)

Theory of large-scale structure based on gravitational instability Juszkiewicz ('8I), Vishniac ('83), Goroff et al. ('86), Suto \& Sasaki ('9l), Jain \& Bertschinger ('94), ...

Cold dark matter + baryons = pressureless \& irrotational fluid

$$
\frac{\partial \delta}{\partial t}+\frac{1}{\mathrm{a}} \vec{\nabla} \cdot[(1+\delta) \vec{v}]=0
$$

| Basic <br> eqs. | $\frac{\partial \overrightarrow{\mathrm{v}}}{\partial t}+\frac{\dot{a}}{a} \overrightarrow{\mathrm{v}}+\frac{1}{a}(\overrightarrow{\mathrm{v}} \cdot \vec{\nabla}) \overrightarrow{\mathrm{v}}=-\frac{1}{a} \vec{\nabla} \Phi$ |
| :---: | :--- |
|  | $\frac{1}{a^{2}} \nabla^{2} \Phi=4 \pi G \bar{\rho}_{\mathrm{m}} \delta$ |

Single-stream approx. of collisionless Boltzmann eq.
standard PT
$|\delta| \ll 1$

$$
\delta=\delta^{(1)}+\delta^{(2)}+\delta^{(3)}+\cdots \quad\left\langle\delta(\boldsymbol{k} ; t) \delta\left(\boldsymbol{k}^{\prime} ; t\right)\right\rangle=(2 \pi)^{3} \delta_{\mathrm{D}}\left(\boldsymbol{k}+\boldsymbol{k}^{\prime}\right) P(|\boldsymbol{k}| ; t)
$$

## Equations of motion

$$
\begin{aligned}
& \partial_{\tau} \delta+\partial_{i}\left[(1+\delta) v^{i}\right]=0, \\
& \partial_{\tau} v^{i}+\mathcal{H} v_{l}^{i}+\partial^{i} \phi+v_{l}^{j} \partial_{j} v^{i}=0 \\
& \triangle \phi=\frac{3}{2} \mathcal{H}^{2} \Omega_{m} \delta .
\end{aligned}
$$

T: conformal time
$(a d T=d t)$

Fourier expansion

$$
\partial_{\tau} \delta(\boldsymbol{k}, \tau)+\theta(\boldsymbol{k}, \tau)=-\int_{\boldsymbol{q}} \alpha(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}) \theta(\boldsymbol{q}, \tau) \delta(\boldsymbol{k}-\boldsymbol{q}, \tau)
$$

$$
\theta \equiv \nabla \cdot \boldsymbol{v}
$$

$$
\partial_{\tau} \theta(\boldsymbol{k}, \tau)+\mathcal{H} \theta(\boldsymbol{k}, \tau)+\frac{3}{2} \Omega_{m} \mathcal{H}^{2} \delta(\boldsymbol{k}, \tau)
$$

$$
=-\int_{\boldsymbol{q}} \beta(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}) \theta(\boldsymbol{q}, \tau) \theta(\boldsymbol{k}-\boldsymbol{q}, \tau)
$$

$$
\alpha\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \equiv \frac{\boldsymbol{q}_{1} \cdot\left(\boldsymbol{q}_{1}+\boldsymbol{q}_{2}\right)}{q_{1}^{2}}, \quad \beta\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \equiv \frac{1}{2}\left(\boldsymbol{q}_{1}+\boldsymbol{q}_{2}\right)^{2} \frac{\boldsymbol{q}_{1} \cdot \boldsymbol{q}_{2}}{q_{1}^{2} q_{2}^{2}} .
$$

## Standard perturbation theory

$$
\delta(\boldsymbol{k}, a)=\sum_{i=1}^{\infty} \delta_{(i)}(\boldsymbol{k}, a), \quad \theta(\boldsymbol{k}, a)=-\mathcal{H} f(a) \sum_{i=1}^{\infty} \theta_{(i)}(\boldsymbol{k}, a)
$$

$$
f(a) \equiv d \ln D_{1} / d \ln a
$$

Adopting the E-dS approximation,
$\mathrm{D}_{\mathrm{I}}(\mathrm{a})$ : Linear growth factor

$$
\begin{gathered}
\delta_{(n)}(\boldsymbol{k}, a)=\underline{D_{1}^{n}(a)} \delta_{n}(\boldsymbol{k}), \quad \theta_{(n)}(\boldsymbol{k}, a)=\underline{D_{1}^{n}(a)} \theta_{n}(\boldsymbol{k}) . \\
\delta_{n}(\boldsymbol{k})=\int_{\boldsymbol{q}_{1}} \ldots \int_{\boldsymbol{q}_{n}}(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{k}-\boldsymbol{q}_{1} \ldots-\boldsymbol{q}_{n}\right) F_{n}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right) \delta_{0}\left(\boldsymbol{q}_{1}\right) \ldots \delta_{0}\left(\boldsymbol{q}_{n}\right) \\
\theta_{n}(\boldsymbol{k})=\int_{\boldsymbol{q}_{1}} \ldots \int_{\boldsymbol{q}_{n}}(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{k}-\boldsymbol{q}_{1} \ldots-\boldsymbol{q} /\right. \text { Gaussian) } \\
\text { standard PT kernel }\left(F_{1}=G_{1}=1\right)
\end{gathered}
$$

## Recursion relation for PT kernels

$$
\mathcal{F}_{a}^{(n)}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right) \equiv\left[\begin{array}{c}
F_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right) \\
G_{n}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right)
\end{array}\right]
$$

$$
\mathcal{F}_{a}^{(n)}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n}\right)=\sum_{m=1}^{n-1} \sigma_{a b}^{(n)} \gamma_{b c d}\left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2}\right) \mathcal{F}_{c}^{(m)}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{m}\right) \mathcal{F}_{d}^{(n-m)}\left(\boldsymbol{k}_{m+1}, \cdots, \boldsymbol{k}_{n}\right)
$$

$$
\begin{aligned}
\boldsymbol{q}_{1} & =\boldsymbol{k}_{1}+\cdots+\boldsymbol{k}_{m} \\
\boldsymbol{q}_{2} & =\boldsymbol{k}_{m+1}+\cdots+\boldsymbol{k}_{n} \\
\sigma_{a b}^{(n)} & =\frac{1}{(2 n+3)(n-1)}\left(\begin{array}{cc}
2 n+1 & 2 \\
3 & 2 n
\end{array}\right)
\end{aligned}
$$

$$
\gamma_{a b c}\left(\boldsymbol{k}_{1}, \boldsymbol{k}_{2}\right)= \begin{cases}\frac{1}{2}\left\{1+\frac{\boldsymbol{k}_{2} \cdot \boldsymbol{k}_{1}}{\left|k_{2}\right|^{2}}\right\} ; & (a, b, c)=(1,1,2) \\ \frac{1}{2}\left\{1+\frac{\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{2}}{\mid k_{1}}\right\} ; & (a, b, c)=(1,2,1) \\ \frac{\left(\boldsymbol{k}_{1} \cdot \boldsymbol{k}_{1}\right)\left|\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right|^{2}}{2\left|k_{1}\right|^{2}\left|k_{2}\right|^{2}} ; & (a, b, c)=(2,2,2) \\ 0 ; & \text { otherwise }\end{cases}
$$

Note-. repetition of the same subscripts (a,b,c) indicates the sum over all multiplet components

PT kernels constructed from recursion relation should be symmetrized

## Power spectrum

$$
\left\langle\delta\left(\boldsymbol{k}_{1}, a\right) \delta\left(\boldsymbol{k}_{2}, a\right)\right\rangle \equiv(2 \pi)^{3} \delta_{D}^{(3)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right) P\left(k_{1}, a\right)
$$

$$
P_{S P T}(k)=P_{\text {lin }}(k)+P_{22}(k)+P_{13}(k)+\text { higher order loops } .
$$

$$
\begin{aligned}
& P_{22}(k)=2 \int_{\boldsymbol{q}} P_{l i n}(q) P_{l i n}(|\boldsymbol{k}-\boldsymbol{q}|) F_{2}^{2}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q}), \\
& P_{13}(k)=6 P_{l i n}(k) \int_{\boldsymbol{q}} P_{l i n}(q) F_{3}(\boldsymbol{k}, \boldsymbol{q},-\boldsymbol{q}),
\end{aligned}
$$



## Next-to-next-to leading order

up to 2-loop order

$$
P^{(m n)} \simeq\left\langle\delta^{(m)} \delta^{(n)}\right\rangle
$$

$$
P(k)=\underline{\underline{P^{(11)}(k)}}+\left(P_{\text {Linear (tree) }}^{\text {I-loop }}=\frac{\left.P^{(22)}(k)+P^{(13)}(k)\right)}{\text { 2-loop }}+\left(P^{(33)}(k)+P^{(24)}(k)+P^{(15)}(k)\right)+\cdots\right.
$$



Crocce \& Scoccimarro ('06)


Calculation involves multi-dimensional numerical integration

## Comparison with simulations

> Standard PT qualitatively explains scale-dependent nonlinear growth, however,

## |-loop:

overestimates simulations

## 2-loop :

overestimates at high-z, while it turn to underestimate at low-z

Standard PT produces illbehaved PT expansion !!
... need to be improved


AT et al. ('09)

## Density field in standard PT



Gaussian smoothing (IOMpc/h)



$\mathbf{x}\left[\mathbf{h}^{-1} \mathbf{M p c}\right] \quad$ AT, Nishimichi \& Jeong (to appear soon)

## Density field in standard PT




Gaussian smoothing (IOMpc/h)

$\mathbf{x}\left[\mathbf{h}^{-1} \mathbf{M p c}\right] \quad$ AT, Nishimichi \& Jeong (to appear soon)

# ID density field in standard PT 

Gaussian smoothing (IOMpc/h)



AT, Nishimichi \& Jeong (to appear soon)



## Correlation between N-body and SPT

Gaussian smoothing (IOMpc/h)







$\delta_{\mathrm{N}-\text { body }}$
AT, Nishimichi \& Jeong (to appear soon)

## Improving PT predictions

Basic Reorganizing standard PT expansion by introducing idea non-perturbative statistical quantities

$$
\delta_{0}(\boldsymbol{k})
$$

initial density field (Gaussian)
Initial power spectrum

$$
P_{0}(k)
$$

from linear theory
(CMB Boltzmann code)

$$
\delta(\boldsymbol{k} ; z)
$$

Evolved density field (non-Gaussian)
Observables

$$
\begin{aligned}
& P(k ; z) \\
& B\left(k_{1}, k_{2}, k_{3} ; z\right)
\end{aligned}
$$

Nonlinear $T\left(k_{1}, k_{2}, k_{3}, k_{4} ; z\right)$ mapping
of dark matter/galaxies/halos

Concept of 'propagator' in physics/mathematics may be useful

## Propagator in physics

## - Green's function in linear differential equations

- Probability amplitude in quantum mechanics

Schrödinger Eq.

$$
\begin{aligned}
& \left(-i \hbar \frac{\partial}{\partial t}+H_{x}\right) \psi(x, t)=0 \quad G\left(x, t ; x^{\prime}, t^{\prime}\right) \equiv \frac{\delta \psi(x, t)}{\delta \psi\left(x^{\prime}, t^{\prime}\right)} \\
& \left(-i \hbar \frac{\partial}{\partial t}+H_{x}\right) G\left(x, t ; x^{\prime}, t^{\prime}\right)=-i \hbar \delta_{D}\left(x-x^{\prime}\right) \delta_{D}\left(t-t^{\prime}\right)
\end{aligned}
$$

$$
\downarrow \psi(x, t)=\int_{-\infty}^{+\infty} d x^{\prime} G\left(x, t ; x^{\prime}, t^{\prime}\right) \psi\left(x^{\prime}, t^{\prime}\right) ; \quad t>t^{\prime}
$$

## Cosmic propagators

Propagator should carry information on non-linear evolution \& statistical properties

Evolved (non-linear) density field
Crocce \& Scoccimarro ('06)

$$
\left\langle\frac{\delta \delta_{\mathrm{m}}(\boldsymbol{k} ; t)}{\left.\delta \delta_{0}\left(\boldsymbol{k}^{\prime}\right)\right)}\right\rangle \equiv \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \Gamma^{(1)}(k ; t) \text { Propagator }
$$

Initial density field
Contain statistical information on full-nonlinear evolution (Non-linear extension of Green's function)

## Multi-point propagators

Bernardeau, Crocce \& Scoccimarro ('08) Matsubara ('II) $\longrightarrow$ integrated PT

## As a natural generalization,

Multi-point propagator
$\left\langle\frac{\delta^{n} \delta_{\mathrm{m}}(\boldsymbol{k} ; t)}{\delta \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta \delta_{0}\left(\boldsymbol{k}_{n}\right)}\right\rangle=(2$
With this multi-point prop.

- Building blocks of a new perturbative theory (PT) expansion --....... Г-expansion or Wiener-Hermite expansion
- A good convergence of PT expansion is expected (c.f. standard PT)

$$
P(k ; t)=\left[\Gamma^{(1)}(k ; t)\right]^{2} P_{0}(k)+2 \int \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}}\left[\Gamma^{(2)}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q} ; t)\right]^{2} P_{0}(q) P_{0}(|\boldsymbol{k}-\boldsymbol{q}|)
$$

$$
+6 \int \frac{d^{6} \boldsymbol{p} d^{3} \boldsymbol{q}}{(2 \pi)^{6}}\left[\Gamma^{(3)}(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q} ; t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}|)+\cdots
$$



## Bispectrum

$B\left(k_{1}, k_{2}, k_{3}\right)=2 \Gamma^{(2)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \Gamma^{(1)}\left(k_{1}\right) \Gamma^{(1)}\left(k_{2}\right) P_{0}\left(k_{1}\right) P_{0}\left(k_{2}\right)+$ cyc.

$$
\begin{aligned}
& +\left[8 \int d^{3} q \Gamma^{(2)}\left(\mathbf{k}_{1}-\mathbf{q}, \mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{k}_{2}+\mathbf{q},-\mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{q}-\mathbf{k}_{1},-\mathbf{k}_{2}-\mathbf{q}\right) P_{0}\left(\left|\mathbf{k}_{1}-\mathbf{q}\right|\right) P_{0}\left(\left|\mathbf{k}_{2}+\mathbf{q}\right|\right) P_{0}(q)\right. \\
& \left.+6 \int d^{3} q \Gamma^{(3)}\left(-\mathbf{k}_{3},-\mathbf{k}_{2}+\mathbf{q},-\mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{k}_{2}-\mathbf{q}, \mathbf{q}\right) \Gamma^{(1)}\left(\mathbf{k}_{3}\right) P_{0}\left(\left|\mathbf{k}_{2}-\mathbf{q}\right|\right) P_{0}(q) P_{0}\left(k_{3}\right)+\text { cyc. }\right]
\end{aligned}
$$



## Generic property of propagators

Crocce \& Scoccimarro '06, Bernardeau et al. '08

$$
\Gamma^{(n)} \xrightarrow{k \rightarrow+\infty} s F_{n}\left(\boldsymbol{k}_{1}, \cdots \boldsymbol{k}_{n}\right) e^{-k^{2} \sigma_{\mathrm{v}}^{2} / 2} ; \quad \sigma_{\mathrm{v}}^{2}=\int \frac{d q}{6 \pi^{2}} P_{\theta \theta}(q)
$$


$\Gamma^{(2)}\left(k_{1}, k_{2}, k_{3}\right)$


## Constructing regularized propagators

- UV property (k >>I) :

$$
\Gamma^{(n)} \xrightarrow{k \rightarrow+\infty} \Gamma_{\text {tree }}^{(n)} e^{-k^{2} \sigma_{\mathrm{v}}^{2} / 2} ; \quad \sigma_{\mathrm{v}}^{2}=\int \frac{d q}{6 \pi^{2}} P_{\theta \theta}(q)
$$

Bernardeau, Crocce \& Scoccimarro ('08), Bernardeau,Van de Rijt,Vernizzi ('I I )

- IR behavior $(\mathrm{k} \ll \mathrm{I})$ can be described by standard PT calculations :

$$
\Gamma^{(n)}=\Gamma_{\text {tree }}^{(n)}+\Gamma_{1-\text { loop }}^{(n)}+\Gamma_{2-\text { loop }}^{(n)}+\cdots
$$

Importantly, each term behaves like $\Gamma_{p-\text { loop }}^{(n)} \stackrel{k \rightarrow+\infty}{\longrightarrow} \frac{1}{p!}\left(-\frac{k^{2} \sigma_{v}^{2}}{2}\right)^{p} \Gamma_{\text {tree }}^{(n)}$
A regularization scheme that reproduces both UV \& IR behaviors Bernardeau, Crocce \& Scoccimarro ('I 2)

# Regularized propagator 

Bernardeau, Crocce \& Scoccimarro ('I2)
A global solution that satisfies both UV $(\mathrm{k} \gg \mathrm{I}) \& I R(\mathrm{k} \ll \mathrm{I})$ properties:

$$
\Gamma_{\text {reg }}^{(n)}=\left[\Gamma_{\text {tree }}^{(n)}\left\{1+\frac{k^{2} \sigma_{\mathrm{v}}^{2}}{2}\right\}+\Gamma_{1-\text { loop }}^{(n)}\right] \exp \left\{-\frac{k^{2} \sigma_{\mathrm{v}}^{2}}{2}\right\} ; \quad \sigma_{\mathrm{v}}^{2}=\int \frac{d q}{6 \pi^{2}} P_{\theta \theta}(q)
$$

counter term
IR behavior is valid at I-loop level
Precision of IR behavior can be systematically improved by including higher-loop corrections and adding counter terms
e.g., For IR behavior valid at 2-loop level,

$$
\Gamma_{\text {reg }}^{(n)}=\left[\Gamma_{\text {tree }}^{(n)}\left\{1+\frac{k^{2} \sigma_{v}^{2}}{2}+\frac{1}{2}\left(\frac{k^{2} \sigma_{v}^{2}}{2}\right)^{2}\right\}+\Gamma_{1-\text { loop }}^{(n)}\left\{1+\frac{k^{2} \sigma_{v}^{2}}{2}\right\}+\Gamma_{2-\text { loop }}^{(n)}\right] \exp \left\{-\frac{k^{2} \sigma_{v}^{2}}{2}\right\}
$$

## Propagators in N-body simulations

 compared with 'Regularized' propagators constructed analytically

Bernardeau, AT \& Nishimichi ('I2)


Bernardeau et al. ('I2)

# RegPT: fast PT code for $P(k) \& \xi(r)$ 

(regularized)
A public code based on multi-point propagators at 2-loop order http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/regpt_code.html



AT, Bernardeau, Nishimichi \& Codis (' 12 )

# Why improved PT works well? 

AT, Bernardeau, Nishimichi, Codis ('।2) AT et al. ('09)

- All corrections become comparable at low-z.
- Positivity is not guaranteed.

Corrections are positive \& localized, shifted to higher-k for higher-loop

$\mathrm{k}\left[\mathrm{h} \mathrm{Mpc}{ }^{-1}\right]$

$\mathrm{k}\left[\mathrm{h} \mathrm{Mpc}{ }^{-1}\right]$

## RegPT in modified gravity

Good convergence is ensured by
a generic damping behavior in propagators $\Gamma^{(n)} \xrightarrow{k \rightarrow \infty} \Gamma_{\text {tree }}^{(n)} e^{-k^{2} \sigma_{\mathrm{d}}^{2} / 2}$ Even in modified gravity, well-controlled expansion with RegPT


N-body data: Baojiu Li


AT, Nishimichi, Bernardeau,et al.('I4)

