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自己紹介
専門：観測的宇宙論

宇宙の構造形成の理論をベースに、宇宙の大規模構造など
の観測から宇宙論的制限を得るための理論・観測的研究

非線形重力進化が進んだ宇宙の大規模構造の精密理論計算
とその観測的応用

摂動論的手法を駆使した

poor convergence of standard PT expansion, since
the low-k behavior of regularized propagators heav-
ily relies on the standard PT treatment. To be spe-

cific, the convergence of !ð1Þ
reg is the main source of

this discrepancy. Indeed, if !ð1Þ
reg is computed at one-

loop order only, the power spectrum is enhanced, and
then N-body results at low k lie in between the two
predictions. The impact of the high-order PT correc-
tions to the two-point propagator are specifically
studied in a separate publication, [38].

(ii) Another discrepancy can be found in the high-z
results, which temporally overshoot the N-body
results at mid-k regime (k# 0:2– 0:3hMpc$1). It
is unlikely to be due to a poor convergence of
standard PT expansion. We rather think that the
performances of the N-body simulations might be
responsible for this (small) discrepancy. We have
tested several runs with different resolutions, and
found that the low-resolution simulation with a
small number of particles tends to underestimate
the power at high z. Possible reason for this comes
from the precision of force calculation around the
intervening scales, where the tree and particle-mesh
algorithms are switched, and we suspect that the
discrepancy is mainly attributed to the inaccuracy of

the tree algorithm. Though the intervening scale is
usually set at a sufficiently small scale, with a low-
resolution simulation, it may affect the large-scale
dynamics with noticeable effects at higher redshifts.
Systematic studies on the convergence and resolu-
tion of N-body simulations will be reported else-
where [42].

Apart from the tiny systematics at subpercent level,
REGPT approach can give a reliable power spectrum pre-
diction at rather wider range, which entirely covers the
relevant scales of BAOs at z * 0:35. As we will see later in
Sec. VI B, the applicable range of the REGPT calculation
remains wide enough even in other cosmological models,
and can be empirically described with the criterion (42).

C. Correlation function

We next consider the two-point correlation function,
which can be computed from the power spectrum as

!ðrÞ ¼
Z dkk2

2"2 PðkÞ sinðkrÞ
kr

: (29)

In Fig. 10, left panel focuses on the behaviors around the
baryon acoustic peak, while right panel shows the global
shape of the two-point correlation function plotted in loga-
rithmic scales, for which !ðrÞ has been multiplied by the

FIG. 9 (color online). Comparison of power spectrum results between N-body simulations and REGPT calculations. In each panel, the
results at z ¼ 3, 2, 1, and 0.35 are shown (from top to bottom). Left panel shows the ratio of power spectrum to the smooth linear
spectrum, PðkÞ=Pno$wiggleðkÞ, where the reference spectrum Pno$wiggleðkÞ is calculated from the no-wiggle formula of the linear

transfer function in Ref. [47]. Solid lines are the REGPT results, while dotted lines represent the linear theory predictions. Right panel
plots the difference between N-body and REGPT results normalized by the no-wiggle spectrum, i.e., ½PN$bodyðkÞ $
PRegPTðkÞ'=Pno$wiggleðkÞ. In each panel, the vertical arrows respectively indicate the maximum wavenumber below which a percent-

level agreement with N-body simulation is achieved with Lagrangian resummation theory [25,48] and closure theory [22,29],
including the PT corrections up to two-loop order.
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Figure 1. The black filled circles with error bars are the observed multipole spectrum, monopole (top), quadrupole (middle), and
hexadecapole (bottom) moment of the SDSS LRG sample. Solid curve in each panel is the best-fitted curve, whose details are described
in Section 5. The theretical curves are ploted in the range of the wavenumbers k < kmax = 0.2[h/Mpc], including the validity of our
theoretical formula. In our fitting with the theoretical model, we used the data in the range of the wavenumbers k < kmax = 0.2[h/Mpc],
which include 60 data points, as described in Section 5.

nonlinear redshift-space distortions (Matsubara 2008, Reid & White 2011, Seljak & McDonald, ...), we adopt the model given

by (Taruya, Nishimichi & Saito 2010) ← remove parenthesis(hereafter, TNS model):

P s(k, µ) = DFoG(kµfσv)
n

PKaiser(k, µ; f) + A(k, µ; f) + B(k, µ; f)
o

, (8)

where σv is a nuisance parameter which is related to the one-dimensional velocity dispersion. The function DFoG(kµfσv)

characterizes the power spectrum suppression by the Finger-of-God effect, for which we adopt the Gaussian form:

DFoG(x) = exp(−x2). (9)

The function, PKaiser(k, µ), is the nonlinear genelarization of the Kaiser term given by (Scoccimarro 2004)

PKaiser(k, µ; f) = Pδδ(k) + 2fµ2Pδθ(k) + f2µ4Pθθ(k). (10)

Here, the functions Pδδ(k), Pθθ(k), and Pδθ(k) are respectively the auto-power spectra of density and velocity divergence, and

their cross-power spectrum. The velocity divergence, θ, is defined by θ ≡ −∇v/(faH), and the f is the linear growth rate

defined by f = d ln D+/d ln a with D+ being the linear growth factor.

The main characteristic of the model (8) is the two additional terms A and B, which represent the higher-order coupling

between velocity and density fields, usually ignored in a phenomenological model of redshift-space distortions. These corrections

have beeen properly derived based on the low-k expansion from the exact expression of redshift-space power spectrum,

c⃝ 0000 RAS, MNRAS 000, 000–000
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Planck Collaboration: Cosmological parameters
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Fig. 14. Constraints on the growth rate of fluctuations from
various redshift surveys in the base-⇤CDM model: dark
cyan, 6dFGS and velocities fron SNe Ia (Huterer et al. 2017);
green, 6dFGRS (Beutler et al. 2012); purple square, SDSS
MGS (Howlett et al. 2015); cyan cross, SDSS LRG (Oka et al.
2014); dark red, GAMA (Blake et al. 2013); red, BOSS
DR12 (Alam et al. 2017); blue, WiggleZ (Blake et al. 2012);
olive, VIPERS (Pezzotta et al. 2017); dark blue, FastSound
(Okumura et al. 2016); and orange, BOSS DR14 quasars
(Zarrouk et al. 2018). Where measurements are reported in cor-
relation with other variables, we here show the marginalized pos-
terior means and errors. Grey bands show the 68 % and 95 %
confidence ranges allowed by Planck TT,TE,EE+lowE+lensing.

d ln D/d ln a. For ⇤CDM, d ln D/d ln a ⇡ ⌦0.55
m (z). We follow

PCP15, defining

f �8 ⌘

h
�(vd)

8 (z)
i2

�(dd)
8 (z)

, (29)

where �(vd)
8 is the density-velocity correlation in spheres of ra-

dius 8 h
�1Mpc in linear theory.

Measuring f �8 requires modelling nonlinearities and scale-
dependent bias and is considerably more complicated than es-
timating the BAO scale from galaxy surveys. One key problem
is deciding on the precise range of scales that can be used in
an RSD analysis, since there is a need to balance potential sys-
tematic errors associated with modelling nonlinearities against
reducing statistical errors by extending to smaller scales. In addi-
tion, there is a partial degeneracy between distortions caused by
peculiar motions and the Alcock-Paczynski e↵ect. Nevertheless,
there have been substantial improvements in modelling RSDs in
the last few years, including extensive tests of systematic errors
using numerical simulations. Di↵erent techniques for measur-
ing f �8 are now consistent to within a few percent (Alam et al.
2017).

Figure 14, showing f �8 as a function of redshift, is an up-
date of figure 16 from PCP15. The most significant changes from
PCP15 are the new high precision measurements from BOSS
DR12, shown as the red points. These points are the “consen-
sus” BOSS D12 results from Alam et al. (2017), which aver-
ages the results from four di↵erent ways of analysing the DR12
data (Beutler et al. 2017; Grieb et al. 2017; Sánchez et al. 2017;
Satpathy et al. 2017). These results are in excellent agreement

with the Planck base ⇤CDM cosmology (see also Fig. 15) and
provide the tightest constraints to date on the growth rate of fluc-
tuations. We have updated the VIPERS constraints to those of
the second public data release (Pezzotta et al. 2017) and added
a data point from the Galaxy and Mass Assembly (GAMA) red-
shift survey (Blake et al. 2012). Two new surveys have extended
the reach of RSD measurements (albeit with large errors) to
redshifts greater than unity: the deep FASTSOUND emission
line redshift survey (Okumura et al. 2016); and the BOSS DR14
quasar survey (Zarrouk et al. 2018). We have also added a new
low redshift estimate of f �8 from Huterer et al. (2017) at an ef-
fective redshift of ze↵ = 0.023, which is based on correlating
deviations from the mean magnitude-redshift relation of SNe in
the Pantheon sample with estimates of the nearby peculiar veloc-
ity field determined from the 6dF Galaxy Survey (Springob et al.
2014). As can be seen from Fig. 14, these growth rate measure-
ments are consistent with the Planck base-⇤CDM cosmology
over the entire redshift range 0.023 < ze↵ < 1.52.

Since the BOSS-DR12 estimates provide the strongest con-
straints on RSDs, it is worth comparing these results with Planck

in greater detail. Here we use the “full-shape consensus” re-
sults17 on DV , f �8, and FAP for each of the three redshift bins
from Alam et al. (2017) and the associated 9⇥ 9 covariance ma-
trix, where FAP is the Alcock-Paczinski parameter

FAP(z) = DM(z)
H(z)

c
. (30)

Figure 15 shows the constraints from BOSS-DR12 on f �8 and
FAP marginalized over DV . Planck base-⇤CDM constraints are
shown by the red and green contours. For each redshift bin,
the Planck best-fit values of f �8 and FAP lie within the 68 %
contours from BOSS-DR12. Figure 15 highlights the impres-
sive consistency of the base-⇤CDM cosmology from the high
redshifts probed by the CMB to the low redshifts sampled by
BOSS.

5.4. The Hubble constant

Perhaps the most controversial tension between the Planck

⇤CDM model and astrophysical data is the discrepancy with
direct measurements of the Hubble constant H0. PCP13 re-
ported a value of H0 = (67.3 ± 1.2) km s�1Mpc�1 for the
base-⇤CDM cosmology, substantially lower that the distance-
ladder estimate of H0 = (73.8 ± 2.4) km s�1Mpc�1 from
the SH0ES18 project (Riess et al. 2011) and other H0 stud-
ies (e.g., Freedman et al. 2001, 2012). Since then, additional
data acquired as part of the SH0ES project (Riess et al. 2016;
Riess et al. 2018a, hereafter R18) has exacerbated the tension.
R18 conclude that H0 = (73.48± 1.66) km s�1Mpc�1, compared
to our Planck TT,TE,EE+lowE+lensing estimate from Table 1
of H0 = (67.27 ± 0.60) km s�1Mpc�1. Using Gaia parallaxes
Riess et al. (2018b) recently slightly tightened their measure-
ment19 to H0 = (73.52 ± 1.62) km s�1Mpc�1. Interestingly, the
central values of the SH0ES and Planck estimates have hardly

17When using RSDs to constraint dark energy in Sect. 7.4, we use the
alternative DM, H, and f �8 parameterization from Alam et al. (2017)
for consistency with the DR12 BAO-only likelihood that we use else-
where.

18SN, H0, for the Equation of State of dark energy.
19By default in this paper (and in the PLA) we use the Riess et al.

(2018a) number (available at the time we ran our parameter chains)
unless otherwise stated; using the updated number would make no sig-
nificant di↵erence to our conclusions.
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観測的宇宙論の基盤をなす宇宙の構造形成の理論と、観測
から宇宙の成り立ち・進化を探るための方法を学ぶ

宇宙の標準モデル（ΛCDMモデル）
にもとづく宇宙の構造形成

非一様宇宙の観測

非線形性が進んだ構造形成の理論的記述
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宇宙論の観測対象
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Figure 5. X-ray surface brightness distribution in the 0.1–2.4 keV band from
ROSAT X-ray satellite. The contours of the mass map are overlaid with
FWHM = 8.′3, taking into account the LSS lensing model. The contour level
starts at 1σ and increases in steps of 1σ .
(A color version of this figure is available in the online journal.)

the model does not perfectly describe the full LSS lensing
effect. Three other peaks associated with the known background
objects (Table 2) are detected with the above conditions. One is
the background object “I” and two peaks are around the object
“F” (see Figure 3). These objects are likely to be groups because
the lensing signals are stronger than what is expected from the
luminosity of a single galaxy. Furthermore, there is a possibility
that background groups are accidentally superimposed with
cluster subhalos, giving a systematic bias on mass estimates
of subhalos. This point is discussed in Section 3.4.1.

Next, we measure the model-independent projected masses
(Clowe et al. 2000, see also Appendix C) for shear-selected
subhalo candidates. This measurement has several important
advantages. First, a large number of background galaxies are
available, because a projected mass within a circular aperture
radius is computed by integrating source galaxies outside the
radius. The measured projected mass is a cumulative function
of radius. Thus, this approach suppresses the random noise
relevant to the intrinsic ellipticity, compared to a tangential
distortion profile, which averages the tangential component
of all background galaxies residing in radial bins. Second,
since the measurement subtracts the background mass density

surrounding subhalos, the contribution of the main cluster
mass distribution to subhalo masses is excluded. Third, the
mass density of subhalos is expected to be close to zero
outside of the tidal radius, and the measured aperture mass
corresponds to the subhalo mass itself. If the mass density
profile follows the universal NFW profile (Navarro et al. 1996,
1997) without any truncation radii, the aperture mass is higher
than the spherical one (Okabe et al. 2010b). As expected from
tidal destruction, the radial profile of the projected mass is
saturated outside the truncation radii, rt. We measure projected
masses for all the candidates. Since the smoothing kernel for
the mass reconstructions gives rise to centroid uncertainties of
the candidates, we determine the central position by choosing
maximal lensing signals within a 8.′ × 8.′ box where the center
is aligned with the map peak position. For accurate mass
measurements of subhalos with a variety of sizes, it is important
to explore truncation radii where the projected mass profile is
saturated. We systematically compute projected mass profiles
by changing the background annulus and then statistically
determining the truncation radii. Here, the inner radius changes
from 0.′7 to 14.′5 in steps of 0.′2 and the width is fixed at 3.′. The
projected mass M2D is computed from saturated values, taking
into account the error covariance matrix. The measurement
method is detailed in Appendix C. The same analysis was
repeated for different background widths which showed that the
result does not significantly change. Mass measurements used a
considerably large number of source galaxies (4×103–2×104).
The number is comparable or less than that for main clusters at
z ∼ 0.2 (e.g., Okabe et al. 2010b) for which the background
number densities are ng ∼ 5–20 (arcmin−2). Less massive
subhalos which are detected inside more massive ones should
be excluded in order to avoid double-counting these subhalos.
We count the ith subhalo using two conditions of the radius
rt,i > rt,j and the subhalo mass M2D,i > M2D,j (i ̸= j ). The
number of candidates is then reduced from 49 to 39 using this
procedure. As mentioned above, the LSS model fails to fully
explain the lensing signals of background systems, especially on
group scales. Furthermore, since there is a possibility to detect
mass structures behind the cluster, we conservatively select the
candidates hosting spectroscopically identified member galaxies
within their truncation radii as the cluster subhalos. Having
applied these limitations, 32 peaks are identified as dark matter
subhalos. Three candidates are associated with the background
systems (Table 2). Four candidates have no optical counter:
they are located around ∼70.′ in the south-east direction and the
north-west direction, respectively.

These 32 subhalos are labeled by integers, in the order of
right ascension. The resulting subhalo masses, M2D, range
from ∼2 × 1012 h−1 M⊙ to ∼5 × 1013 h−1 M⊙ (Table 3).
As shown in Figure 6, the radial profiles of the projected mass
clearly show saturation at some outer radii. The subhalos are
widely distributed from the northeast to the southwest in the sky
(Figure 3). Interestingly, the direction connecting between the
Coma cluster and A1367 which are parts of the Coma superclus-
ter (Gregory & Thompson 1978) agrees roughly with the sub-
halo distributions. Several massive subhalos are associated with
well-known, spectroscopically identified groups in the cluster
(e.g., Mellier et al. 1988; Adami et al. 2005). Galaxies or groups
associated with subhalos are summarized with references in
Table 3. The cD galaxies, NGC 4874 and NGC 4889, are as-
sociated with subhalos “21” and “24,” respectively. The mean
mass ratio reported in this paper compared to the previous pa-
per for overlapping subhalos is ⟨Mnew/Mold⟩ = 1.02 ± 0.54.
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マイクロ波背景放射
銀河のクラスタリング

銀河 銀河団

観測対象：宇宙膨張、ゆらぎの進化の情報を担う天体（現象）

Ia型超新星
セファイド変光星

ライマンαの森 (~Gpc)
大スケール小スケール

(~kpc)
（クェーサー吸収線系）



宇宙に広がる「ゆらぎ」
宇宙マイクロ波背景放射

絶対温度2.7Kの黒体放射だが
わずかに温度ムラがある

網目状構造の非一様な空間分布
（大規模構造）

銀河分布
(SDSS main galaxies) (Planck)



「ゆらぎ」のもつ統計的性質
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パワースペクトル
宇宙マイクロ波背景放射 宇宙の大規模構造

P (k) =
1

(2�)3
�

|�k|=k

|�(�k)|2

Planck Collaboration: The cosmological legacy of Planck

Fig. 9. Planck CMB power spectra. These are foreground-subtracted, frequency-averaged, cross-half-mission angular power spectra
for temperature (top), the temperature-polarization cross-spectrum (middle), the E mode of polarization (bottom left) and the lensing
potential (bottom right). Within ⇤CDM these spectra contain the majority of the cosmological information available from Planck,
and the blue lines show the best-fitting model. The uncertainties of the TT spectrum are dominated by sampling variance, rather than
by noise or foreground residuals, at all scales below about ` = 1800 – a scale at which the CMB information is essentially exhausted
within the framework of the ⇤CDM model. The T E spectrum is about as constraining as the TT one, while the EE spectrum still
has a sizeable contribution from noise. The lensing spectrum represents the highest signal-to-noise ratio detection of CMB lensing
to date, exceeding 40�. The anisotropy power spectra use a standard binning scheme (which changes abruptly at ` = 30), but are
plotted here with a multipole axis that goes smoothly from logarithmic at low ` to linear at high `.
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Planck 2018 results 1

小角度

•空間パターンを波として調和関数展開
• いろんな波の振幅をスペクトル表示

大角度

BOSS 
(SDSS DR9)

小スケール  1/波長 [h/Mpc]      大スケール
特徴的なふるまいがみえる



宇宙の構造形成
様々な天体分布やマイクロ波背景放射に見られる「ゆらぎ」
とその統計的性質

宇宙膨張と重力の影響を受けて時間発展してきた
•宇宙初期の小さなゆらぎが
•ゆらぎの祖先は共通

（非一様性・非等方性）

統一描像による見解

パワースペクトルの振る舞いに現れる

「ゆらぎ」の時間進化を理論的に記述することで（構造形成
の理論）、観測から宇宙論に対する様々情報を引き出せる



宇宙の進化史

38万年  138億年

元素
合成

バリ
オン
生成
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ョン

ダー
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初代
星・
初代
銀河

現在ビッ
グバ
ン

大規模構造
(銀河・銀河団)

宇宙マイクロ波
背景放射

光の
最終
散乱
面プランク衛星

加速膨張！

原始ゆらぎ
の生成

重力不安定



構造形成の理論

•  宇宙初期の物質進化：

•  重力不安定性による構造進化：
地平線スケールを超えるゆらぎの進化

光と物質（電子）の電磁相互作用

これらの効果を考慮した非平衡進化過程の時間発展を解けば、

に対する定量的な予言が可能

• 宇宙の大規模構造
• 宇宙マイクロ波背景放射のゆらぎ

（1980年代末～1990年代初頭に確立）

輻射～物質・暗黒エネルギー優勢期における膨張宇宙のもとで

（一般相対論にもとづく）



線形理論のもとづく予言
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�bh2smear overall 
shape

�

大角度 小角度
小スケール大スケール

様々なパラメーターに依存している（宇宙論パラメーター）
温度ゆらぎの

角度パワースペクトル
質量密度ゆらぎの
パワースペクトル



標準宇宙モデル
観測との比較を経て

宇宙論パラメーターが決定され、宇宙の成り立ち・進化
に関する「標準モデル」が確立 →ΛCDM モデル

• 宇宙がほぼ平坦

• 原始密度ゆらぎの性質はインフレーション仮説を支持
• 宇宙の年齢は138億年

• 宇宙の物質・エネルギー組成が確定

5%

26%

69%

暗黒エネルギー
（宇宙定数）暗黒物質

原子などの通常の物質
（バリオン）

（スケール不変に近い断熱ゆらぎ）



（冷たい）暗黒物質

• 通常の物質とは重力を介してのみ相互作用する
• 光も電波も出さない物質 未発見の素粒子が候補

暗黒物質の存在自体は 1934年から
すでに指摘

F. Zwicky

かみのけ座銀河団の質量の
運動学的見積もり

銀河の回転曲線や重力レンズ現象
• 構造形成の観点から「冷たい」ことが要請

（速度分散が小さい）



暗黒エネルギー
• 負の圧力を伴う未知のエネルギー体

• 宇宙を一様に覆い尽くしている（ようだ）

（=斥力として働く）

アインシュタインが導入した宇宙定数と似ている
一般相対論で静的宇宙を実現するため、1917年に

実は不安定 → 加速膨張



Ia型超新星の観測
宇宙が加速膨張しているという事実は、Ia型超新星の光度曲線
を標準光源として使った観測から得られていた

明るい→近い

暗い→遠い

S.Paulmutter B.P. Schmidt A.G. Riess

2011年ノーベル物理学賞
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標準モデルを超える
研究の進展により謎が深まってしまった

さらに、検証が必要な仮説・仮定：
✓ 宇宙は大域的に一様・等方
✓ 宇宙論スケールで一般相対論が成り立つ
✓ ニュートリノの質量はゼロ
✓ 原始ゆらぎはガウス統計に従う

今後の大規模構造の観測から
ΛCDMモデルからのずれを突き止める

ただし、加速膨張の性質自体、よくわかっていない
（宇宙定数でいいのか？）



extended Baryon Oscillation 
Spectroscopic Survey

eBOSS

2.5m2014~

DESI

Dark Energy 
Spectroscopic Instrument 4m2018+

HETDEX

2018
Hobby-Eberly Telescope Dark 

Energy EXperiment

10m

DES

Dark Energy Survey

2013~

4m

WFIRST

Wide Field InfraRed Survey Telescope

2.4m
2020’s

1.2m

Euclid

2021+
Large Synoptic Survey Telescope

8.4m

LSST 2021

世界規模で進む大規模銀河サーベイ



すばる望遠鏡による宇宙論観測

HyperSuprime-CamPrime Focus Spectrograph

(口径8.2m)

分光器

メトロロジ
カメラ

ファイバー
システム

（超広視野カメラ）（超広視野多天体分光器）

Subaru Measurements of Imaging and Redshifts
SuMIRe 2014~



（弱い）重力レンズ効果
手前に存在する暗黒物質の質量分布により遠方の背景銀河
のイメージが歪む現象

コスミックシア

a

b

銀河の歪み具合（楕円率）
=幾何学的重み×密度ゆらぎの振幅

時間

イメージの歪みの空間相関から宇宙論的情報を引き出せる



Subaru HSC 1year result 

(クレジット：HSC Project/東京大学)

https://www.subarutelescope.org/Pressrelease/2018/09/25/j_index.html

(z=0.25)

(z=0.625)
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state and non-zero neutrino mass.

This paper is organized as follows. In Section 2, we briefly
describe the HSC first-year shear catalog that is used in our cos-
mic shear analysis. In Section 3, we describe and validate the
pseudo-C` method to estimate unbiased cosmic shear spectra
from finite-sky non-uniform data. In Section 4, we also show
our measurements of tomographic cosmic shear spectra using
the HSC first-year shear catalog. Section 5 summarizes model
ingredients for our cosmological analysis, including predictions
of cosmic shear signals and covariance and our methods to take
account of various systematics in cosmic shear analysis. Our
cosmological constraints and their robustness to different sys-
tematics are presented in Section 6. Finally we give our conclu-
sions in Section 7.

Since the cosmological likelihoods for the final Planck data
release (Planck Collaboration et al. 2018) are not yet available
at the time of writing this paper, throughout this paper we use
Planck 2015 CMB results (Planck Collaboration et al. 2016) for
the comparison and the joint analysis with our HSC first-year
cosmic shear measurement. We use the joint TT, EE, BB, and
TE likelihoods for ` between 2 and 29 and the TT likelihood
for ` between 30 and 2508, commonly referred to as Planck

TT + lowP (Planck Collaboration et al. 2016). We do not use
CMB lensing results, which contain information on the growth
of structure and the expansion history of the Universe at late
stages, except when we combine our joint analysis result with
distance measurements using baryonic acoustic oscillations and
Type Ia supernovae (Section 6.4).

Throughout this paper we quote 68% credible intervals for
parameter uncertainties unless otherwise stated.

2 HSC first-year shear catalog

Hyper Suprime-Cam (HSC) is a wide-field imaging camera
with 1.5 deg diameter field-of-view mounted on the prime focus
of the 8.2-meter Subaru telescope (Miyazaki et al. 2012, 2015,
2018). The HSC survey is using 300 nights of Subaru time over
6 years to conduct a multi-band wide-field imaging survey with
HSC. The HSC survey consists of three layers; Wide, Deep and
UltraDeep. The Wide layer, which is specifically designed for
weak lensing cosmology, aims at covering 1400 square degrees
of the sky with five broadbands, grizy, with a 5� point-source
depth of r ⇡ 26 (Aihara et al. 2018b). Since i-band images are
used for galaxy shape measurements for weak lensing analysis,
i-band images are preferentially taken when the seeing is better.
As a result, we achieve a median PSF FWHM of ⇠ 0.

00
58 for the

i-band images used to construct the HSC first-year shear cata-
log. The details of the software pipeline used to reduce the data
are given in Bosch et al. (2018), and particulars about the ac-
curacy of the photometry and the performance of the deblender
are characterized using a synthetic imaging pipeline in Huang

et al. (2018) and Murata et al. (in prep.), respectively. The
HSC Subaru Strategic Program (SSP) Data Release 1 (DR1),
based on data taken using 61.5 nights between March 2014 and
November 2015, has been made public (Aihara et al. 2018a).

The HSC first-year shear catalog (Mandelbaum et al. 2018)
is based on about 90 nights of HSC Wide data taken from
March 2014 to April 2016, which is larger than the public HSC
DR1 data. We apply a number of cuts to construct a shape
catalog for weak lensing analysis which satisfies the require-
ments for carrying out first year key science (see Mandelbaum
et al. 2018, for more details). For instance, we restrict our
analysis to the regions of sky with approximately full depth
in all 5 filters to ensure the homogeneity of the sample. We
also adopt a cmodel magnitude cut of i < 24.5 (see Bosch
et al. 2018 for definition of cmodel magnitude in the con-
text of HSC), which is conservative given that the magnitude
limit of the HSC is i ⇠ 26.4 (5� for point sources; Aihara
et al. 2018a). We remove galaxies with PSF modeling fail-
ures and those located in disconnected regions. Regions of
sky around bright stars (⇠ 16% of the total area) are masked
(Mandelbaum et al. 2018). As a result, the final weak lens-
ing shear catalog covers 136.9 deg2 that consists of 6 dis-
joint patches: XMM, GAMA09H, GAMA15H, HECTOMAP,
VVDS, and WIDE12H. Mandelbaum et al. (2018) and Oguri
et al. (2018) performed extensive null tests of the shear cata-
log to show that the shear catalog satisfies the requirements of
HSC first-year science for both cosmic shear and galaxy-galaxy
lensing.

The shapes of galaxies are estimated on the i-band coad-
ded images using the re-Gaussianization PSF correction method
(Hirata & Seljak 2003). An advantage of this method is that it
has been applied extensively to Sloan Digital Sky Survey data,
and thus the systematics of the method are well understood
(Mandelbaum et al. 2005, 2013). In this method, the shape of a
galaxy image is defined as

e= (e1, e2) =
1� (b/a)

2

1+ (b/a)2
(cos2�,sin2�), (1)

where b/a is the observed minor-to-major axis ratio and � is
the position angle of the major axis with respect to the equa-
torial coordinate system. The shear of each galaxy, �(obs), is
estimated from the measured ellipticity e as follows:

�(obs)
=

1

1+ hmi

⇣
e
2R � c

⌘
, (2)

where R represents the responsivity that describes the response
of our ellipticity definition to a small shear (Kaiser et al. 1995;
Bernstein & Jarvis 2002) and is given by

R= 1�he2rmsi . (3)

Here erms is the intrinsic root mean square (RMS) ellipticity per
component. The symbols h···i denote a weighted average where
each galaxy carries a weight w defined as the inverse variance

Ellipticity of each object :
b
a ϕ

異なる時刻の重力
レンズ効果を測定

測光赤方偏移の
情報を使って、
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Fig. 4. Comparison of the measured tomographic shear power spectra with our theoretical model with best-fit values for the fiducial ⇤CDM model. Best-fit
IA power spectra of CGG (dotted), �CGI (short dashed), and CII (long dashed) as well as power spectra arising from PSF leakage and PSF model error
[equation (11)] (dash-dotted) are also plotted. The redshift range of zbest in each tomographic bin is =[0.3,0.6], [0.6,0.9], [0.9,1.2], and [1.2,1.5] from 1
to 4. The right-bottom panel shows the measured non-tomographic cosmic shear power spectrum and the model spectra with the best-fit values from the
tomographic analysis. The CII term is so small that it is absent from all panels except for 11.

parameters account for parameters that are dominated by the
parameters whose posteriors are driven by data rather than the
priors. We find that Ne↵ is 3.1, which results in DOF of 56.9.
The difference between Ne↵ and the total number of parame-
ters in our model reflects the fact that a number of our model
parameters are prior-dominated.

We find that our model well reproduces the observed power
spectra quite well. Our maximum-likelihood case in the fiducial
⇤CDM model has a minimum �

2 of 45.4 for 56.9 DOF (p-value
is 0.86), which is a very acceptable fit5. Using the covariance

5 Our choice of using Neff to compute the degrees of freedom is different
from the choice of using the total number of parameters made by contem-
porary weak lensing analyses (Troxel et al. 2017). Regardless of which
definition we use, it does not change our conclusion about the goodness of
fit. For instance, even if we conservatively include all parameters without

assuming Planck cosmology, the total signal-to-noise ratio in
the four bin tomographic lensing spectra is 15.6 in the fiducial
range of multipoles. The signal-to-noise ratios of the cosmic
shear auto spectra in individual redshift bins are 4.9, 9.2, 12.3,
and 11.5 from the lowest to the highest redshift bins, respec-
tively. Although the number of source galaxies in the higher
redshift bins is less than in the lower redshift bins, the signal-
to-noise ratios of the measurements are higher due to the higher
amplitudes of the cosmic shear power spectra.

We derive marginalized posterior contours in the ⌦m-�8

plane from our tomographic cosmic shear power spectrum anal-
ysis in the fiducial ⇤CDM model. Constraints from cosmic
shear are known to be degenerate in the ⌦m-�8 plane. Cosmic

the Gaussian priors to Neff , we have 53 DOF and the resulting p-value is
0.76, which is also a very acceptable fit.

6 Publications of the Astronomical Society of Japan, (2014), Vol. 00, No. 0

Table 1. Summary of properties of individual tomographic bins.⇤

bin number z range zmed Ng ng [arcmin�2] ng,e↵ [arcmin�2] he2rmsi1/2

1 0.3 – 0.6 0.446 2842635 5.9 5.4 0.394
2 0.6 – 0.9 0.724 2848777 5.9 5.3 0.395
3 0.9 – 1.2 1.010 2103995 4.3 3.8 0.404
4 1.2 – 1.5 1.300 1185335 2.4 2.0 0.409

All 0.3 – 1.5 0.809 8980742 18.5 16.5 0.398

⇤We show redshift ranges (z range), median redshifts (zmed), total numbers of source galaxies (Ng), raw number densities (ng), effective number densities (Chang et al.
2013) (ng,eff ) and the mean intrinsic RMS ellipticity per component (he2rmsi

1/2), which is related to shear by equation (2), in our tomographic samples. Source galaxies
are assigned into four tomographic bins using photo-z best estimates, zbest, derived by the Ephor AB photo-z code (see text for details). Both zmed and he2rmsi are a
weighted average [equation (4)]

Table 2. Comparison of lensing catalog properties of KiDS-450 (Hildebrandt et al. 2017), DES Y1 (Troxel et al. 2017), and HSC Y1 (this
paper) used for cosmic shear analyses.⇤

survey catalog area [deg2] No. of galaxies ng,e↵ [arcmin�2] z range tomography
KiDS-450 450 14.6M 6.85 0.1 – 0.9 4 bins
DES Y1 1321 26M 5.14 0.2 – 1.3 4 bins
HSC Y1 137 9.0M 16.5 0.3 – 1.5 4 bins

⇤We compare the survey area, the number of galaxies after cuts for cosmic shear analysis, the effective number density, the redshift range, and the number of bins in
tomographic analysis.

from bright star masks, survey boundaries, non-uniform survey
depths, and non-uniform galaxy shape weights. The observed
shear field is given by the weighted sum of shear values over
galaxies in each sky pixel as

�(obs)
(✓) =W (✓)�(true)

(✓), (5)

where W (✓) represents the survey window defined as the sum
of shear weights in each pixel. When a sky position ✓ is outside
the survey area or masked due to a bright star, W (✓) is set to
zero. We define a rectangular-shape region enclosing each of
the six HSC patches and then perform the Fourier transforma-
tion of the observed shear field, �obs, with typical pixel scale
of about 0.88 arcmin, which is much smaller than the scales we
use in our cosmological analysis. The power spectrum obtained
simply from the amplitude of the Fourier-transformed shear
field is biased due to the convolution with the mask field W .
We apply the pseudo-C` method to obtain unbiased estimates
of the cosmic shear power spectrum by correcting for the con-
volution with the survey window (Hikage et al. 2011; Kitching
et al. 2012; Hikage & Oguri 2016; Asgari et al. 2018). This
method has also been commonly used in CMB analyses (Kogut
et al. 2003; Brown et al. 2005). The details of the method may
be found in Appendix 1. In short, the dimensionless binned
lensing power spectrum C(true)

b
corrected for the masking effect

is given by

C(true)
b

=M�1
bb0

|`|2`
0
bX

`

Pb0`(C
(obs)
` �hN`iMC), (6)

where Mbb0 is the mode coupling matrix of binned spectra,

which is related to the survey window W by equation (A7),
C(obs)

` is the pseudo-spectrum (masked spectrum) that we can
directly measure from the Fourier transform of �obs, and Pb` =

`
2
/2⇡ is a conversion factor to the dimensionless power spec-

trum. The sum is over all Fourier modes in the given ` bin (`0b).
In order to remove the shot noise, we randomly rotate orien-
tations of individual galaxies to estimate the shot noise power
spectrum N`, and subtract it from C(obs)

` . Specifically, we use
10000 Monte Carlo simulations with random galaxy orienta-
tions to estimate the convolved noise spectrum hN`iMC. We
use 15 logarithmically equal bins in the range 60  `  6500,
although we restrict ourselves to a narrower range for our cos-
mological inferences.

While the validity and accuracy of our pseudo-C` method
have been studied in depth in previous work (Hikage et al.
2011; Hikage & Oguri 2016), we explicitly check the accuracy
of the pseudo-C` method for the HSC first-year shear catalog
by applying the method to the HSC mock shear catalogs pre-
sented in Oguri et al. (2018). The mock shear catalogs have
the same survey geometry and spatial inhomogeneity as the real
HSC first-year data, and include random realizations of cos-
mic shear from the all-sky ray-tracing simulation presented in
Takahashi et al. (2017). These realistic mock catalogs allow
us to check the accuracy of the pseudo-C` method in correct-
ing for the masking effect, as well as the accuracy of our an-
alytic estimate of the covariance matrix as we will discuss be-
low. The results of the test with the HSC mock shear catalogs
are also presented in Appendix 1. We find that our pseudo-C`

method recovers the input cosmic shear power spectrum within

異なる赤方偏移間の相関
から、ゆらぎの構造進化
と宇宙膨張を制限

Multipole Multipole(ℓ ∼ π/θ)

Cℓ =
1

2ℓ + 1

ℓ

∑
m=−ℓ

|eℓm |2

e( ⃗θ ) = ∑
ℓ,m

eℓm Yℓm( ⃗θ )
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Fig. 5. Marginalized posterior contours in the ⌦m-�8 plane (left) and in the ⌦m-S8(↵ = 0.45) plane (right), where S8(↵) ⌘ �8(⌦m/0.3)↵, in the fiducial
⇤CDM model. Both 68% and 95% credible levels are shown. For comparison, we plot cosmic shear results from KiDS-450 with correlation function (CF)
estimators (Hildebrandt et al. 2017) and with quadratic estimators (QE) (Köhlinger et al. 2017) and DES Y1 (Troxel et al. 2018) with the same set of cosmological
parameters and priors as adopted in this paper, as well as WMAP9 (Hinshaw et al. 2013) (yellow) and Planck 2015 CMB constraints without CMB lensing (Planck
Collaboration et al. 2016) (purple).

Fig. 6. The 68% credible interval on S8(↵ = 0.5) from the HSC first-year data in the ⇤CDM model as well as from several literature.
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cosmological constraints from the HSC first year data. By car-
rying out a linear fit of the logarithm of the posterior samples
of ⌦m and �8, we find that the tightest constraints for S8 are
obtained with ↵ = 0.45. However, the previous studies by
DES (Troxel et al. 2017) and KiDS (Hildebrandt et al. 2017;
Köhlinger et al. 2017) have presented constraints on S8 with
↵ = 0.5. To present best constraints as well as constraints that
can be directly compared with these previous cosmic shear re-
sults, in this paper we present our results of S8 both for ↵=0.45

and ↵= 0.5.

In Figure 5, we show our marginalized constraints in ⌦m-
�8 and ⌦m-S8(↵ = 0.45) planes. As expected, there is no
strong correlation between ⌦m and S8. We find S8(↵=0.45)=

0.800
+0.029
�0.028 and ⌦m = 0.162

+0.086
�0.044. Our HSC first-year cos-

mic shear analysis places a 3.6% fractional constraint on S8,

which is comparable to the results of DES (Troxel et al. 2017)
and KiDS (Hildebrandt et al. 2017). For comparison, we find a
slightly degraded constraint on S8(↵ = 0.5) = 0.780

+0.030
�0.033 for

↵ = 0.5. We compare our constraints in the ⌦m-�8 and ⌦m-
S8(↵ = 0.5) planes with cosmic shear results from DES Y1
(Troxel et al. 2018) and also from KiDS-450 with two differ-
ent methods, correlation functions (CF; Hildebrandt et al. 2017)
and quadratic estimators (QE; Köhlinger et al. 2017). Note that
the plotted results from DES Y1 use the same set of cosmo-
logical parameters and priors as adopted in this paper, and are
different from the fiducial constraints in Troxel et al. (2018).
For the KiDS results, we show the same constraints as shown in
the literature but not corrected for the noise covariance (Troxel
et al. 2018). Figure 6 compares the values of S8(↵ = 0.5) and
their 1-� errors among recent cosmic shear studies. We find
that there is no significant difference between the S8 values ob-
tained by these independent studies. Our result for S8 is smaller
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銀河赤方偏移サーベイ

http://www.sdss.org/press-releases/astronomers-map-a-record-
breaking-1-2-million-galaxies-to-study-the-properties-of-dark-energy/

120,000 galaxies

赤方
偏移

赤方偏移を使うと奥行きの情報が得られる
→大規模構造の３次元情報



バリオン音響振動 (BAO)
• 原始バリオン-光子流体の音響振動スケール (~150Mpc)

(⇔ CMBの音響ピークのスケール)
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥Bm(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2hMpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
X

n

W (ki, kn)P (kn)m �W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2⌃2
nl/2 + 1, (34)

where the damping scale ⌃nl is a fitted parameter. We assume
a Gaussian prior on ⌃nl with width ±2h�1 Mpc, centred on
8.24h�1 Mpc for pre-reconstruction fits and 4.47h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c� 2011 RAS, MNRAS 000, 2–33

BAO in SDSS-III BOSS galaxies 21

Figure 15. As Figure 15, but for the DR11 LOWZ correlation function
transformed as defined by Eq. 46 with a = 0.39 and b = 0.04. As before,
these error bars are nearly independent, with a worst case of 12 per cent
and an r.m.s. of 3.4 per cent in the off-diagonal elements of the reduced
covariance matrix.

Figure 16. The CMASS BAO feature in the measured reconstructed power
spectrum of each of the BOSS data releases, DR9, DR10, and DR11. The
data are displayed with points and error-bars and the best-fit model is dis-
played with the curves. Both are divided by the best-fit smooth model. We
note that a finer binning was used in the DR9 analysis.

noted that transformations based on the symmetric square root of
the Fisher matrix had surprisingly compact support for their power
spectrum analysis. When we formed this matrix for the DR11
CMASS correlation function, we found that the first and second
off-diagonal terms are nearly constant and that subsequent off-
diagonals are small. This suggests that a basis transform of the pen-
tadiagonal form

X(si) =
xi � a (xi�1 + xi+1)� b (xi�2 + xi+2)

1� 2a� 2b
(46)

will approach a diagonal form. Here, xi = s2i ⇠0(si) and si is the

Figure 17. The BAO feature in the measured power spectrum of the DR11
reconstructed CMASS (top) and LOWZ (bottom) data. The data are dis-
played with black circles and the best-fit model is displayed with the curve.
Both are divided by the best-fit smooth model.

bin center of measurement bin i. We introduce the 1 � 2a � 2b
factor so as to normalize X such that it returns X = x for constant
x. For the first two and last two bins, the terms beyond the end of
the range are omitted and the normalization adjusted accordingly.

We find that for DR11 CMASS after reconstruction, values
of a = 0.3 and b = 0.1 sharply reduce the covariances between
the bins. The reduced covariance matrices for ⇠(r) and X(r) are
shown in Figure 13. The bins near the edge of the range retain some
covariances, but the off-diagonal terms of the central 10⇥ 10 sub-
matrix of the reduced covariance matrix have a mean and r.m.s. of
0.008 ± 0.044, with a worst value of 0.11. For display purposes,
this is a good approximation to a diagonal covariance matrix, yet
the definition of X(s) is well localized and easy to state. For com-
parison, the reduced covariance matrix of s2⇠0 has typical first off-
diagonals values of 0.8 and second off-diagonals values of 0.6.

We display this function in Figure 14. One must also trans-
form the theory to the new estimator: we show the best-fit BAO
models with and without broadband marginalization, as well as the
best-fit non-BAO model without broadband marginalization. The
presence of the BAO is clear, but now the error bars are representa-
tive. For example, the significance of the detection as measured by
the ��2 of the best-fit BAO model to the best-fit non-BAO model
is 69.5 using only the diagonal of the covariance matrix of X , as
opposed to 74 with the full covariance matrix. We do not use this
transformation when fitting models, but we offer it as a pedagogical
view.

The same result is shown for DR11 LOWZ post-
reconstruction in Figure 15. Here we use a = 0.39 and b = 0.04.
The level of the off-diagonal terms is similarly reduced, with an
r.m.s. of 3.4 per cent and a worst value of 12 per cent.

It is expected that the best values of a and b will depend on
the data set, since data with more shot noise will have covariance
matrices of the correlation function that are more diagonally dom-
inant. Similarly, the choice of a pentadiagonal form may depend

c� 2014 RAS, MNRAS 000, 2–38
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BOSS anisotropic clustering 3

et al. (2012), who measured the RSD and AP simultaneously in
the BOSS CMASS DR9 sample, achieving a 15 per cent mea-
surement of growth, 2.8 per cent measurement of angular diame-
ter distance, and 4.6 per cent measurement of the expansion rate
at z = 0.57. Using these estimates Samushia et al. (2013) derived
strong constraints on modified theories of gravity (MG) and DE
model parameters. In this paper we perform a similar analysis on
the CMASS DR11 sample, which covers roughly three times the
volume of DR9.

This paper is organised as follows. In section 2 we describe
the data used in the analysis. Section 3 explains how the two-
dimensional correlation function is estimated from the data. Sec-
tion 4 shows how we derive the estimates of the covariance ma-
trix for our measurements. In section 5 we describe the theoretical
model used to fit the data. Section 6 presents and discusses our
main results – the estimates of growth rate, distance-redshift rela-
tionship and the expansion rate from the measurements. Section 7
uses these estimates to constrain parameters in the ⇤CDM model
assuming General Relativity (⇤CDM-GR) and possible deviations
from this standard model. We conclude and discuss our results in
section 8.

Our measurements require the adoption of a cosmological
model in order to convert angles and redshifts into comoving dis-
tances. As in Anderson et al. (2013) we adopt a spatially-flat
⇤CDM cosmology with ⌦m = 0.274 and h = 0.7 for this purpose.
For ease of comparison across analyses, we follow Anderson et al.
(2013) and also report our distance constraints relative to a model
with ⌦m = 0.274, h = 0.7, and ⌦bh2 = 0.0224, for which the BAO
scale rd = 149.31 Mpc.

2 THE DATA

The SDSS-III project (Eisenstein et al. 2011) uses a dedicated 2.5-
m Sloan telescope (Gunn et al. 2013) to perform spectroscopic
follow-up of targets selected from images made using a now-retired
drift-scanning mosaic CCD camera (Gunn et al. 2006) that imaged
the sky in five photometric bands (Fukugita et al. 1996) to a limit-
ing magnitude of r ' 22.5. The BOSS (Dawson et al. 2013) is the
part of SDSS-III that will measure spectra for 1.5 million galaxies
and 160.000 quasars over a quarter of the sky.

We use the DR11 CMASS sample of galaxies (Anderson et al.
2013; Smee et al. 2013; Bolton et al. 2012). This lies in the redshift
range of 0.43 < z < 0.70 and consists of 690826 galaxies covering
8498 square degrees (effective volume of 6.0 Gpc3).

Figure 1 shows the redshift distribution of galaxies in our
sample. The number density is of order of 10�4 peaking at n̄ '
4 ⇥ 10�4h3 Mpc�3.

3 THE MEASUREMENTS

We measure the correlation function of galaxies in the CMASS
sample defined as the ensemble average of the product of over-
densities in the galaxy field separated by a certain distance r

⇠(r) ⌘ h�g(r0)�g(r0 + r)i. (4)

The overdensity as a function of r is given by

�g(r) =
ng(r) � n̄g(r)

n̄g(r)
, (5)

where n̄g(r) is expected average density of galaxies at a position r
and ng(r) is an observed number density.

Figure 1. The number density of CMASS DR11 galaxies in redshift bins
of �z = 0.01 in northern and southern Galactic hemispheres, computed
assuming our fiducial cosmology.

Figure 2. The two-dimensional correlation function of DR11 sample mea-
sured in bins of 1h�1

⇥ 1h�1 Mpc2. We use first two Legendre multipoles of
the correlation function in our study rather than the two-dimensional corre-
lation function displayed here.

We estimate the correlation function using the Landy-Szalay
minimum-variance estimator (Landy & Szalay 1993)

⇠̂(�ri) =
DD(�ri) � 2DR(�ri) + RR(�ri)

RR(�ri)
, (6)

where DD(�ri) is the weighted number of galaxy pairs whose sep-
aration falls within the �ri bin, RR(�ri) is number of similar pairs
in the random catalogue and DR(�ri) is the number of cross-pairs
between the galaxies and the objects in the random catalogue.

Figure 2 shows the two-dimensional correlation function of
DR11 sample measured in bins of 1h�1

⇥1h�1 Mpc2. Both the “BAO
ridge” (a ring of local maxima at approximately 100h�1 Mpc) and
the RSD signal (LOS “squashing” of the correlation function) are
detectable by eye.

The random catalogue is constructed by populating the vol-
ume covered by galaxies with random points with zero correlation.
We use a random catalogue that has 50 times the density of galaxies
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重力理論のプローブ
線形成長因子

スケール因子

カイザー
公式

重力由来のゆらぎの成長を表すパラメーター

e.g., Linder (’08); Guzzo et al. (’08); Yamamoto et al. (’08); Percival & White (’09)

カイザー公式は重力理論にかかわらず成り立つ

;

宇宙論的スケールで相対論のテストに使える

�(S)(k) = (1 + f µ2
k) �(k) f ⌘ d lnD+

d ln a(Kaiser ’87)

（赤方偏移と）重力理論に応じて f の値は変わりうる

加速膨張の起源を探るヒントにもなる
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Fig. 20. Constraints on the growth rate of fluctuations, f�8, as a
function of redshift, compared to the predictions of the ⇤CDM
model constrained by Planck (from Planck Collaboration VI
2018). The f�8 measurements are: dark cyan, 6dFGS and
velocities from SNe Ia (Huterer et al. 2017); green, 6dFGRS
(Beutler et al. 2012); purple square, SDSS MGS (Howlett et al.
2015); cyan cross, SDSS LRG (Oka et al. 2014); dark red,
GAMA (Blake et al. 2013); red, BOSS DR12 (Alam et al.
2017); blue, WiggleZ (Blake et al. 2012); olive, VIPERS
(Pezzotta et al. 2017); dark blue, FastSound (Okumura et al.
2016); and orange, BOSS DR14 quasars (Zarrouk et al. 2018).
The agreement between the low-z measures and the ⇤CDM pre-
diction is very good, indicating that the model (constrained by
observations in the high-z Universe) correctly predicts the rate of
growth of large-scale structure observed in the nearby Universe.

4.3. Discord

While there are many measurements that are consistent with the
predictions of the ⇤CDM model fitted to Planck, there are also
some areas of discordance.

Within the Planck data themselves we find a preference
for a larger smoothing of the power spectrum at small scales
than the ⇤CDM model predicts (Planck Collaboration XVI
2014; Planck Collaboration XIII 2016; Planck Collaboration VI
2018). While at face value it might seem like this smoothing
is the sign of an excess amplitude of gravitational lensing, it
is also possible to fit these features through non-lensing related
e↵ects (see Planck Collaboration Int. LI 2017, for discussion).
The preference for these features is driven almost entirely by
the CMB spectra and not by the lensing reconstruction, which
is consistent with theoretical expectations. The peak smoothing
features are not statistically very significant (2–3�) and could
just be statistical fluctuations in the data. Further, the level of
significance depends upon choices made about the calibration
of the polarization channels, the sky fraction, and other analysis
choices, as discussed further in Planck Collaboration VI (2018).
This discrepancy may indicate that the best-fit parameters from
the primary CMB have fluctuated from their true values by a few
�, in which case the combination a↵orded by multiple probes
may be a more faithful measure.

We will discuss distance measurements using BAO in
Sect. 6.3. There we will see (Fig. 27) that the inferred an-
gular diameter distance to z' 2 from the auto- and cross-

Fig. 21. A compilation of measurements of H0 since 2000,
based on the historical data assembled by J. Huchra for
the NASA/HST Key Project on the Extragalactic Distance
Scale. The additional points since 2010 are from Riess et al.
(2011), Freedman et al. (2012), Rathna Kumar et al. (2015),
Riess et al. (2016), Bonvin et al. (2017), Dhawan et al. (2018),
and Riess et al. (2018a,b). The blue circles show “traditional”
measures of H0, while the cyan and red squares show H0 in-
ferred from fits to CMB data from WMAP (Bennett et al. 2011;
Hinshaw et al. 2013) and Planck. The (magenta) diamond shows
the standard siren measurement from Abbott et al. (2017a).
Inferences from the inverse distance ladder are discussed in the
text and Fig. 22. Note the tremendous increase in precision with
time, driven by improvements in methods and in data, and the
narrowing of the di↵erence between “high” and ‘’low” values of
H0.

correlation of Ly↵ measurements by the Baryon Oscillation
Spectroscopic Survey (BOSS) is discrepant with the ⇤CDM
predictions fit to Planck at about 2.3� (Bautista et al. 2017;
du Mas des Bourboux et al. 2017). Within the ⇤CDM family,
parameter changes that would improve agreement with the Ly↵
distances are highly disfavoured by Planck and the more ac-
curate, lower-redshift BAO measurements. Even within an ex-
tended class of models, it is very di�cult to fit the combina-
tion of comoving angular diameter distance, DM, and Hubble
distance, DH, inferred from the Ly↵ data (Aubourg et al. 2015).
This mild tension could be the result of either a statistical fluctu-
ation or as yet unrealized systematics in the Ly↵ measurements.
However the size of the discrepancy highlights the importance
of future measurements at these redshifts.

At lower redshift, some measures of the amplitude of clus-
tering prefer lower values than ⇤CDM normalized to Planck.
In particular the Köhlinger et al. (2017) analysis of the KiDS
cosmic-shear-only results constrains S 8 ⌘ �8(⌦m/0.3)0.5 to be
0.651 ± 0.058 (which was shifted upwards to 0.772 ± 0.034 in
an alternative analysis by Troxel et al. 2018). When combined
with galaxy data the results are 0.742 ± 0.035 or 0.800 ± 0.028
(Joudaki et al. 2018; van Uitert et al. 2018). The preferred value
from Planck plus BAO is 0.8102 ± 0.0060, which is 2.7�
higher, 1.1� higher, 1.9� higher, or basically consistent with
these results. The recent DES results (DES Collaboration et al.
2017) are consistent with both Planck and the earlier lensing re-
sults: S 8 = 0.782 ± 0.024 when analysed with the same fixed
neutrino mass assumption as Planck (Planck Collaboration VI
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Table 3. Minimum �2 values fitting the SPTpol spectra to the best-fit Planck and SPTpol ⇤CDM cosmologies (as described in
the text). Nb gives the number of band powers in each spectrum. The deviation of �2

min from the expectation h�2
mini = Ndof is given

by the columns labelled N�, where N� = (�2
min � Ndof)/

p
2Ndof , and Ndof = Nb � 8. The last two columns give �2

p for parameter
di↵erences (Eq. 25) and the associated PTEs.

Planck cosmology SPT cosmology

SPTpol spectrum Nb �2
min N� �2

min N� �2
p

PTE

T E + EE . . . . . . . . . . . . . . . . . . . . 112 146.1 2.91 137.4 2.31 9.85 0.08
T E . . . . . . . . . . . . . . . . . . . . . . . . . 56 71.4 2.38 70.3 2.27 3.38 0.64
EE . . . . . . . . . . . . . . . . . . . . . . . . . 56 67.3 1.96 61.4 1.37 8.21 0.15

where Cp is the covariance matrix for SPTpol parameters (we
neglect the errors in the Planck parameters, which are much
smaller). Values for �2

p
are given in Table 3 together with prob-

abilities to exceed (PTEs) computed from a �2 distribution with
five degrees of freedom. We find no evidence for any statisti-
cally significant inconsistency between the two sets of parame-
ters, even for the combined T E+EE SPTpol likelihood. We also
note that the parameter Ase

�2⌧ makes quite a large contribution to
�2

p
for the T E + EE and EE spectra, but is sensitive to possible

systematic errors in the SPTpol polarization e�ciency calibra-
tion (Henning et al. 2017, which, as discussed, is not well under-
stood). Varying the maximum multipole used in the SPTpol like-
lihood (`max), we find that the parameters of the SPTpol T E+EE

cosmology converge by `max = 2500; higher multipoles do not
contribute significantly to the SPTpol base-⇤CDM solution.

Henning et al. (2017) reported a trend for the parameters
of the base-⇤CDM cosmology to change as the SPTpol like-
lihood is extended to higher multipoles, which they suggested
may be an indication of new physics. However, this e↵ect is not
of high statistical significance and cannot be tested by the Planck

spectra, which become less sensitive than the SPTpol spectra
at multipoles >⇠ 1500. The consistency of the base-⇤CDM cos-
mology at high multipoles in polarization should become clearer
in the near future as more polarization data are accumulated by
ACTPol and SPTpol.

5. Comparison with other astrophysical data sets

5.1. Baryon acoustic oscillations

As in PCP13 and PCP15 baryon acoustic oscillation (BAO)
measurements from galaxy redshift surveys are used as the pri-
mary non-CMB astrophysical data set in this paper. The acous-
tic scale measured by BAOs, at around 147 Mpc, is much larger
than the scale of virialized structures. This separation of scales
makes BAO measurements insensitive to nonlinear physics, pro-
viding a robust geometrical test of cosmology. It is for this rea-
son that BAO measurements are given high weight compared
to other non-CMB data in this and in previous Planck papers.
BAO features in the galaxy power spectrum were first detected
by Cole et al. (2005) and Eisenstein et al. (2005). Since their dis-
covery, BAO measurements have improved in accuracy via a
number of ambitious galaxy surveys. As demonstrated in PCP13
and PCP15 BAO results from galaxy surveys have been consis-
tently in excellent agreement with the best-fit base-⇤CDM cos-
mology inferred from Planck. More recently, the redshift reach
of BAO measurements has been increased using quasar redshift
surveys and Lyman-↵ absorption lines detected in quasar spec-
tra.
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Fig. 11. Acoustic-scale distance measurements divided by the
corresponding mean distance ratio from Planck TT,TE,EE
+lowE+lensing in the base-⇤CDM model. The points, with
their 1� error bars are as follows: green star, 6dFGS
(Beutler et al. 2011); magenta square, SDSS MGS (Ross et al.
2015); red triangles, BOSS DR12 (Alam et al. 2017); small
blue circles, WiggleZ (as analysed by Kazin et al. 2014);
large dark blue triangle, DES (DES Collaboration 2017c); cyan
cross, DR14 LRG (Bautista et al. 2017b); red circle, SDSS
quasars (Ata et al. 2017); and orange hexagon, BOSS Lyman-
↵ (du Mas des Bourboux et al. 2017). The green point with ma-
genta dashed line is the 6dFGS and MGS joint analysis result
of Carter et al. (2018). All ratios are for the averaged distance
DV(z), except for DES and BOSS Lyman-↵, where the ratio plot-
ted is DM (results for H(z) are shown separately in Fig. 16). The
grey bands show the 68 % and 95 % confidence ranges allowed
for the ratio DV(z)/rdrag by Planck TT,TE,EE+lowE+lensing
(bands for DM/rdrag are very similar).

Figure 11 summarizes the latest BAO results, updating fig-
ure 14 of PCP15. This plot shows the acoustic-scale distance
ratio DV(z)/rdrag measured from surveys with e↵ective redshift
z, divided by the mean acoustic-scale ratio in the base-⇤CDM
cosmology using Planck TT,TE,EE+lowE+lensing. Here rdrag is
the comoving sound horizon at the end of the baryon drag epoch
and DV is a combination of the comoving angular diameter dis-
tance DM(z) and Hubble parameter H(z):

DV(z) =
"
D

2
M(z)

cz

H(z)

#1/3
. (26)

21

銀河サーベイからの制限

Planck Collaboration: Cosmological parameters

500 1000 1500 2000 2500
Multipole �

�
50

�
25

0
25

50

�
D

T
T

�
[µ

K
2
]

100�100 foregrounds

143�143

143�217

217�217

Fig. 13. Changes in the CMB TT spectrum and foreground
spectra, between the best-fitting AL model and the best-fitting
base ⇤CDM model to the Planck TT+lowP data. Blue lines
show the di↵erence between the AL model and ⇤CDM (solid),
and the same, but with AL set to unity (dashed) to show the
changes in the spectrum arising from di↵erences in the other
cosmological parameters. Also shown are the changes in the
best-fitting foreground contributions to the four frequency cross-
spectra between the AL model and the ⇤CDM model. The data
points (with ±1� errors) are the di↵erences between the high-
` maximum-likelihood frequency-averaged CMB spectrum and
the best-fitting ⇤CDM model to the Planck TT+lowP data (as
in Fig. 1). Note that the changes in the CMB spectrum and the
foregrounds should be added when comparing to the residuals in
the data points.

for base ⇤CDM is AL = 1. The results of such an analysis for
models with variable AL is shown in Fig. 12. The marginalized
constraint on AL is

AL = 1.22 ± 0.10 (68%,Planck TT+lowP) . (22)

This is very similar to the result from the 2013 Planck data re-
ported in PCP13. The persistent preference for AL > 1 is dis-
cussed in detail there. For the 2015 data, we find that ��2 = �6.4
between the best-fitting ⇤CDM+AL model and the best-fitting
base ⇤CDM model. There is roughly equal preference for high
AL from intermediate and high multipoles (i.e., the Plik likeli-
hood; ��2 = �2.6) and from the low-` likelihood (��2 = �3.1),
with a further small change coming from the priors.

Increases in AL are accompanied by changes in all other pa-
rameters, with the general e↵ect being to reduce the predicted
CMB power on large scales, and in the region of the second
acoustic peak, and to increase CMB power on small scales (see
Fig. 13). A reduction in the high-` foreground power compen-
sates the CMB increase on small scales. Specifically, ns is in-
creased by 1 % relative to the best-fitting base model and As is
reduced by 4 %, both of which lower the large-scale power to
provide a better fit to the measured spectra around ` = 20 (see
Fig. 1). The densities !b and !c respond to the change in ns, fol-
lowing the usual ⇤CDM acoustic degeneracy, and Ase�2⌧ falls
by 1 %, attempting to reduce power in the damping tail due to
the increase in ns and reduction in the di↵usion angle ✓D (which
follows from the reduction in !m). The changes in As and Ase�2⌧

lead to a reduction in ⌧ from 0.078 to 0.060. With these cos-
mological parameters, the lensing power is lower than in the

base model, which additionally increases the CMB power in the
acoustic peaks and reduces it in the troughs. This provides a poor
fit to the measured spectra around the fourth and fifth peaks, but
this can be mitigated by increasing AL to give more smoothing
from lensing than in the base model. However, AL further in-
creases power in the damping tail, but this is partly o↵set by
reduction in the power in the high-` foregrounds.

The trends in the TT spectrum that favour high AL have a
similar pull on parameters such as curvature (Sect. 6.2.4) and
the dark energy equation of state (Sect. 6.3) in extended models.
These parameters a↵ect the late-time geometry and clustering
and so alter the lensing power, but their e↵ect on the primary
CMB fluctuations is degenerate with changes in the Hubble con-
stant (to preserve ✓⇤). The same parameter changes as those in
AL models are found in these extended models, but with, for ex-
ample, the increase in AL replaced by a reduction in ⌦K . Adding
external data, however, such as the Planck lensing data or BAO
(Sect. 5.2), pull these extended models back to base ⇤CDM.

Finally, we note that lensing is also detected at lower signif-
icance in the polarization power spectra (see Fig. 12):

AL = 0.98+0.21
�0.24 (68%,Planck TE+lowP) ; (23a)

AL = 1.54+0.28
�0.33 (68%,Planck EE+lowP) . (23b)

These results use only polarization at low multipoles, i.e. with
no temperature data at multipoles ` < 30. These are the first de-
tections of lensing in the CMB polarization spectra, and reach
almost 5� in T E. We caution the reader that the AL constraints
from EE and low-` polarization are rather unstable between
high-` likelihoods, because of di↵erences in the treatment of the
polarization data (see Fig. 12, which compares constraints from
the Plik and CamSpec polarization likelihoods). The result of
replacing Plik with the CamSpec likelihood is AL = 1.19+0.20

�0.24,
i.e., around 1� lower than the result from Plik reported in
Eq. (23b). If we additionally include the low-` temperature data,
AL from T E increases:

AL = 1.13 ± 0.2 (68%,Planck TE+lowT,P) . (24)

The pull to higher AL in this case is due to the reduction in TT
power in these models on large scales (as discussed above).

5.2. Baryon acoustic oscillations

Baryon acoustic oscillation (BAO) measurements are geometric
and largely una↵ected by uncertainties in the nonlinear evolu-
tion of the matter density field and other systematic errors that
may a↵ect other types of astrophysical data. As in PCP13, we
therefore use BAO as a primary astrophysical dataset to break
parameter degeneracies from CMB measurements.

Figure 14 shows an updated version of figure 15 from
PCP13. The plot shows the acoustic-scale distance ratio
DV(z)/rdrag measured from a number of large-scale struc-
ture surveys with e↵ective redshift z, divided by the mean
acoustic-scale ratio in the base ⇤CDM cosmology using Planck
TT+lowP+lensing. Here rdrag is the comoving sound horizon at
the end of the baryon drag epoch and DV is a combination of the
angular diameter distance DA(z) and Hubble parameter H(z),

DV(z) =
"
(1 + z)2D2

A(z)
cz

H(z)

#1/3
. (25)

The grey bands in the figure show the ±1� and ±2� ranges
allowed by Planck in the base ⇤CDM cosmology.
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥Bm(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2hMpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
X

n

W (ki, kn)P (kn)m �W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2⌃2
nl/2 + 1, (34)

where the damping scale ⌃nl is a fitted parameter. We assume
a Gaussian prior on ⌃nl with width ±2h�1 Mpc, centred on
8.24h�1 Mpc for pre-reconstruction fits and 4.47h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c� 2011 RAS, MNRAS 000, 2–33
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理論的
課題

•観測と比較するための理論の精度向上
（観測由来の系統的効果も含めて）

大規模かつ質の高い観測データからこれまで以上の統計精度で
大規模構造の様子が幅広い赤方偏移でわかる (→ 精密宇宙論)

•  観測量から有意な情報を取り出す方法論の開発
（非ガウス性が発達した）
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Figure 9: The power spectrum of the dark matter distribution in the Millennium Simulation at various
epochs (blue lines). The gray lines show the power spectrum predicted for linear growth, while the dashed
line denotes the shot-noise limit expected if the simulation particles are a Poisson sampling from a smooth
underlying density field. In practice, the sampling is significantly sub-Poisson at early times and in low
density regions, but approaches the Poisson limit in nonlinear structures. Shot-noise subtraction allows us
to probe the spectrum slightly beyond the Poisson limit. Fluctuations around the linear input spectrum on
the largest scales are due to the small number of modes sampled at these wavelengths and the Rayleigh
distribution of individual mode amplitudes assumed in setting up the initial conditions. To indicate the bin
sizes and expected sample variance on these large scales, we have included symbols and error bars in the
z= 0 estimates. On smaller scales, the statistical error bars are negligibly small.
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どこまで正確に大規模構造の統計的性質を定量化できるか？

重力非線形
性の影響

この他にも
•銀河バイアス
•赤方偏移空間歪み
など



講義の内容
構造形成の理論を通して、宇宙論のプローブとして
の宇宙の大規模構造の成り立ち・進化を理解する

１・オーバービュー

２・フリードマン宇宙モデル

３・構造形成の線形理論

４・非一様宇宙の観測

５・非線形構造形成



講義ノートと資料など

http://www2.yukawa.kyoto-u.ac.jp/~atsushi.taruya/Lecture2019_Tohoku/index.html

以下のサイトを参照


