2020/12/16 CGP internal workshop

Cosmic tension:

Headache in Planck ACDM cosmology

Atsushi Taruya

• Or both are wrong

due to unknown systematics

Hubble parameter

Fundamental quantity characterizing the expansion of the Universe

$$H(t) \equiv rac{\dot{a}(t)}{a(t)}$$
 $a(t)$: Scale factor of the Universe

$$3H^{2}(t) = 8\pi G \left\{ \rho_{\rm m}(t) + \rho_{\rm DE}(t) \right\} - \frac{K}{a^{2}}$$

matter dark energy curvature

In particular, Hubble parameter at the present time is called

Friedmann

equation

A precision determination of H_0 is important in cosmology, and is a basis to clarify the nature of dark energy or cosmic acceleration

(Local) measurement of H₀

Hubble-Lemaître law

Recession velocity of galaxies is linearly proportional to distance:

(Local) measurement of H_0

Hubble-Lemaître law

Recession velocity of galaxies is linearly proportional to distance:

(Local) measurement of H_0

Hubble-Lemaître law

Recession velocity of galaxies is linearly proportional to distance:

$$v_{rec} = H_0 d$$

Distance measurement is the most difficult part :

For closer objects (<10⁴ light years),

V_{rec}

Mdc

km/s

an accurate measurement can be made by using <u>parallax method</u> (e.g., Gaia, HST)

Distance measurements

For much farther objects $(d>10^4 \text{ light years})$,

the distance measurement can be still made if we *a priori* know the size or luminosity of the objects

Standard(izable) candles

Cepheid variable

Pulsating stars that periodically gets bright & faint

(Empirical) period-luminosity relation

<u>Type-la Supernova</u>

A type of supernova that occurs in binary systems

Tight relation between peak luminosity & decay time scale

Distance ladder

Three steps to the Hubble Constant

https://en.wikipedia.org/wiki/Cosmic_distance_ladder#/media/File:Cosmic_distance_ladder.jpg

SH₀ES

 $(SNe, H_0, for the Equation of State of dark energy)$

A precision local measurement of H_0 using Hubble space telescope (photometric obs. of Cepheid & SNe la)

Distance anchors to calibrate Cepheid P-L relation:

- Parallaxes \rightarrow Milkyway Cepheids
- 20 Detached eclipsing binaries → LMC Cepheid

(Large Magellanic Cepheid)

Riess et al. ('19)

• VLBI obs. of water masers \rightarrow NGC4258 Cepheid 1.9% precision

 $H_0 = 74.03 \pm 1.42 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

Time evolution of H_0 measurement

Planck 2018 results I, modified

Alternative method

We can rely on the standard cosmological model

Lambda Cold Dark Matter (ACDM) model Baryon describes both cosmic expansion & structure formation (with parameters including H₀)

Based on the theory of structure formation,

H₀ can be inferred from the observations of high-redshift universe

(Inverse distance ladder)

http://www.esa.int/spaceinimages/Images/

Dark

energy

 $(=\Lambda)$

69%

CDM

Alternative method

We can rely on the standard cosmological model

<u>Lambda Cold Dark Matter (ACDM) model</u> describes both cosmic expansion & structure formation (with parameters including H₀)

Based on the theory of structure formation,

H₀ can be inferred from the observations of high-redshift universe

(Inverse distance ladder)

http://www.esa.int/spaceinimages/Images/

Dark

energy

 $(=\Lambda)$

69%

CDM

26%

5%

Cosmic microwave background (CMB)

'Relic' radiation emitted at 380,000 years after Big-Bang

Tiny anisotropies offers a powerful cosmological probe

Standard cosmological model

Planck satellite (ESA) provides high-precision data of

- temperature
- polarization
- gravitational lensing

Help tightening cosmological constraints

Planck (2009-2013)

Planck 2018

Parameter	Planck alone
$\Omega_{ m b}h^2$	0.02237 ± 0.00015
$\Omega_{ m c}h^2$	0.1200 ± 0.0012
$100\theta_{\rm MC}$	1.04092 ± 0.00031
τ	0.0544 ± 0.0073
$\ln(10^{10}A_s)$	3.044 ± 0.014
$n_{\rm s}$	0.9649 ± 0.0042
$H_0 \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	67.36 ± 0.54
Ω_{Λ}	0.6847 ± 0.0073
$\Omega_{\rm m}$	0.3153 ± 0.0073
$\Omega_{\rm m} h^2 \dots \dots$	0.1430 ± 0.0011
$\Omega_{\rm m}h^3\ldots\ldots\ldots$	0.09633 ± 0.00030
σ_8	0.8111 ± 0.0060
$\sigma_8(\Omega_{ m m}/0.3)^{0.5}$	0.832 ± 0.013
$Z_{\rm re}$	7.67 ± 0.73
Age[Gyr]	13.797 ± 0.023
$r_*[Mpc] \dots$	144.43 ± 0.26
$100\theta_*$	1.04110 ± 0.00031
$r_{\rm drag}[{ m Mpc}]$	147.09 ± 0.26
Z_{eq}	3402 ± 26
$k_{\rm eq}[{ m Mpc}^{-1}]\ldots\ldots$	0.010384 ± 0.000081

Planck 2018

H₀ tension

VS

Model-independent

Local measurement by SH₀ES (distance ladder) Planck CMB measurement assuming ΛCDM model

$$H_0 = 74.0 \pm 1.4 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$$

(Riess et al. '19)

 $H_0 = 67.4 \pm 0.5 \,\mathrm{km \, s^{-1} \, Mpc^{-1}}$

(Planck 2018 results IV)

Deviation of Planck H_0 from local measurement is at 4.4σ level (99.999% for Gaussian errors)

Discrepancy remains statistically significant even if <u>other</u> <u>parameters</u> are allowed to vary. (spatial curvature, dark energy EOS, neutrino mass, ...)

This is actually not the first to highlight the discrepancy

Time evolution of competing H₀

Local measurements prefer a large H_0 , while CMB prefer a small H_0

Systematics ?

Planck 2018 result IV

SH₀ES

Table 5Best Estimates of H_0 Including Systematics	
Anchor(s)	Value $(\text{km s}^{-1} \text{Mpc}^{-1})$
LMC	74.22 ± 1.82
Two anchors	
LMC + NGC 4258	73.40 ± 1.55
LMC + MW	74.47 ± 1.45
NGC 4258 + MW	73.94 ± 1.58
Three anchors (preferred)	
NGC 4258 + MW + LMC	74.03 ± 1.42

Riess et al. ('19)

Depending on how they combine the data set, the tension may be alleviated, but it seems difficult to completely resolve the tension

Other H_0 measurements

Relieving H₀ tension by 'new' physics

Relieving H₀ tension by 'new' physics

Relieving H₀ tension by 'new' physics

Incomplete Proposed scenarios

Early-time or Late-time solution

• Early dark energy @ rad-matter equality

Poulin, Smith, Karwal & Kamionkowski ('19) • Strongly self-interacting neutrinos with N_{eff} ~4

Early-time modification of gravity

Kreisch, Cyr-Rachine & Doré ('19) Braglia et al. ('20)

- Nonlinear small-scale fluctuations by primordial magnetic field Jedamzik & Pogosian ('20)
- Change of background CMB temperature

Ivanov, Ali-Haimoud & Lesgourgues ('20); Bose & Lombrizer ('20)

- Time varying electron mass
- Late-time modification of gravity (Generalized Proca, MTMG)

Sekiguchi & Takahashi ('20)

De Felice, Mukohyama & Pookkillath ('20) De Felice, Geng, Pookkillath & Yin ('20)

Early dark energy

Adding a tiny amount of dark energy at the time Poulin et al. ('19) of pre-recombination epoch

Weak-lensing observations prefer a larger S₈ than that of Planck

Summary

H₀ tension appears manifest and gets serious since the CMB measurements by Planck

- Low-z measurements prefer higher H₀ (model-indept. distance ladder)
 Hi-z measurements prefer lower H₀ (based on ACDM model)
- New physics ? but most of the (early-time) solutions has troubles
- Another tension (S₈ tension) is now highlighted and has to be solved simultaneously (if possible)

Unknown systematics ?

- Planck has some internal anomalies
- A_L (lensing) anomaly
- Curvature anomaly

SH0ES internal inconsistencies G. Efstathiou ('20)

Planck internal anomalies

Planck 2018 results VI.

A_L anomaly

Allowing the lensing amplitude to vary gives a larger best-fit value

Curvature anomaly

One parameter extension to Λ CDM prefer positive curvature

SH₀ES internal consistency

No prior on P-L relation

slope of P-L relation

Distance moduli

Efstathiou ('20)