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perturbative solution. To do this, notice that the displacement field is the vector quan-
tity whose dynamical degree of freedom is divided to two parts: longitudinal (ψk,k) and
transverse (ϵijkψj,k) parts. While Eq. (4.13) directly leads to the evolution equation for
longitudinal mode, the equation for transverse mode is obtained by taking the rotation
to Eq. (4.11) with respect to Eulerian coordinate, i.e., ∇× (ẍ+2Hẋ) = 0. A set of basic
equations then becomes [46]
( ∂2

∂t2
+ 2H

∂

∂t
− 4πG ρm

)
ψk,k =− ϵijkϵipq ψj,p

( ∂2

∂t2
+ 2H

∂

∂t
− 2πG ρm

)
ψk,q

− 1

2
ϵijkϵpqrψi,pψj,q

( ∂2

∂t2
+ 2H

∂

∂t
− 4π

3
ρm
)
ψk,r, (4.21)

( ∂2

∂t2
+ 2H

∂

∂t

)
ϵijk ψj,k =− ϵijk ψp,j

( ∂2

∂t2
+ 2H

∂

∂t

)
ψp,k, (4.22)

where ψj,k = ∂ψj/∂qk. The right-hand-side of the above equations represent the non-linear
source terms, which have to be evaluated by order-by-order calculation. Once we get the
perturbative solutions for longitudinal and transverse modes (i.e., ψk,k and ϵijkψj,k), a
final step is to explicitly construct the displacement field itself. This is not trivial at all,
but can be systematically done in Fourier space (e.g., [46]).

4.3 (Eulerian) Perturbation theory

Collisionless Boltzmann equation (Vlasov-Poisson system)

[
∂

∂t
+

p

ma2
∂

∂x
−m

∂Ψ

∂x

∂

∂p

]
f(x,p) = 0, (4.23)

supplemented with the Poisson equation:

∇2Ψ(x) = 4πGa2
[
m

a3

∫
d3p f(x,p)− ρm

]
. (4.24)

Here, m is the mass of CDM (+baryon) particle.

Single-stream approximation

Ansatz f(x,p) = n a3 {1 + δm(x)} δD
[
p−mav(x)

]
. (4.25)

With this ansatz, taking the zeroth and first velocity moments of Eq. (4.23) yields

∂δm
∂t

+
1

a
∇ [(1 + δm)v] = 0, (4.26)

∂v

∂t
+

1

a
(v ·∇)v = −1

a

∂Ψ

∂x
, (4.27)

1

a2
∇2Ψ = 4πG ρm δm. (4.28)
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cube of the separation. The REGPT results agree with
N-body simulations almost perfectly over the plotted
scales. As it is known, the impact of nonlinear clustering
on the baryon acoustic peak is significant: the peak position
becomes slightly shifted to a smaller scale, and the
structure of the peak tends to be smeared as the redshift
decreases (e.g., Refs. [24,25,49,50]). The REGPT calcula-
tion can describe not only the behavior around the baryon
acoustic peak but also the small-scale behavior of the
correlation function. Note that similar results are also
obtained from other improved PT treatments such as
closure and LRT. Although the REGPT predictions eventu-
ally deviate from simulations at small scales—the result
at z ¼ 0:35 indeed manifests the discrepancy below
r" 30h#1 Mpc—the actual range of agreement between
REGPT and N-body results is even wider than what is
naively expected from the power spectrum results. In
fact, it has been recently advocated by several authors
that with several improved PT treatments, the one-loop
calculation is sufficient to accurately describe the two-
point correlation function (e.g., Refs. [22,48,51]). We
have checked that the REGPT treatment at one-loop order
can give a satisfactory result close to the two-loop result,
and the prediction including the two-loop corrections only
slightly improves the agreement with N-body simulations
at small scales. This is good news for practical purposes in
the sense that we do not necessarily have to evaluate the
multidimensional integrals for the accurate prediction of
two-point correlation function in the weakly nonlinear
regime. Nevertheless, in this work, we keep the two-loop
contributions in the computed contributions. The computa-
tional costs of the two-loop order will be addressed in the
following with the development of a method for acceler-
ated PT calculation at two-loop order.

V. REGPT-FAST: ACCELERATED POWER
SPECTRUM CALCULATION

In this section, we present a method that allows accel-
erated calculations of the required diagrams of the two-
loop order REGPT prescription. In principle, the power
spectra calculations in the context of REGPT require multi-
dimensional integrations that cannot be done beforehand as
they fully depend on the linear power spectra. It is however
possible to obtain the required quantities much more
rapidly provided we know the answer for a close enough
model.
The key point in this approach is to utilize the fact that

the nonlinear REGPT power spectrum is a well-defined
functional form of the linear power spectrum. Each of
the diagrams that has to be computed is of quadratic, cubic,
etc. order with respect to the linear power spectrum with a
kernel that, although complicated, can be explicitly given.
It is then easy to Taylor-expand each of these terms with
respect to the linear power spectrum. In principle one then
just needs to prepare, in advance, a set of the REGPT results
for some fiducial cosmological models, and then take the
difference between fiducial and target initial power spectra
for which we want to calculate the nonlinear power spec-
trum. These differences involve only one-dimensional in-
tegrals at the first order in the Taylor expansion.
In the following, we present the detail of the implemen-

tation of this approach illustrating it with the one-loop
calculation case.

A. Power spectrum reconstruction from fiducial model

While our final goal is to present the fast PT calculation
at two-loop order, in order to get insights into the imple-
mentation of this calculation, we consider the power

FIG. 10 (color online). Comparison of two-point correlation function between N-body and REGPT results at z ¼ 3, 2, 1, and 0.35
(from bottom to top). In each panel, magenta solid, and black dotted lines represent the prediction from REGPT and linear theory
calculations, respectively. Left panel focuses on the behavior around baryon acoustic peak in linear scales, while right panel shows the
overall behavior in a wide range of separation in logarithmic scales. Note that in right panel, the resulting correlation function is
multiplied by the cube of the separation for illustrative purpose.
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Grid-based PT calculation ?

• Mock galaxy catalog  construction

Taking observational systematics (survey mask & geometry) into account,

• Covariance estimation

http://www.projet-horizon.fr/… particle-based methods using Lagrangian PT

Analytical PT calculation 
ceases to be tractable• …

Is there grid-based method using standard PT (SPT) approach ? 

Still, PT approach is useful in constructing mocks:

Peak patch, PThalo, Pinocchio, HALLOGEN, 
Patchy, EZmock, …

(Bond & Mayers ’96;  Scoccimarro & Sheth ’02; Monaco et 
al. ’02; Avila et al. ’15; Kitaura et al. ’14,’15; Chuang et al. ’15)

Q
If we can exploit such a method, is it useful ?



Generating standard PT on grids

(Roth & Porciani ’11,  Tassev’14)

How can we generate higher-order density fields on grids ?

We first go to Fourier space, and use the 
recursion formula for SPT kernels, Fn and Gn

In conventional approach,

(e.g., Goroff et al. ’86)

δ(x) = δ1(x) + δ2(x) + δ3(x) + ⋯

Going to higher-order, this is computationally costly

Grid-based calculation up to 3rd order

Linear density field

replaced with the one in the Einstein–de Sitter Universe,
Eq. (7). The PT calculation with Einstein–de Sitter
approximation is shown to give a sufficiently accurate
prediction in the cosmological model close to the ΛCDM
model (e.g., [9,24]), and it ensures that the perturbative
quantities δ and θ can be expanded by a power series of
growth factor Dþ ¼ eη. We thus have

δðxÞ ¼
X

n

enηδnðxÞ; θðxÞ ¼
X

n

enηθnðxÞ;

uðxÞ ¼
X

n

enηunðxÞ: ð8Þ

Substituting these into Eq. (4), the order-by-order calcu-
lation leads to (for n≥ 2)

ðnδab þ ΩEdS
ab Þ

!
δnðxÞ
θnðxÞ

"

¼
Xn

m¼1

 
ð∇δmÞ · un−m þ δmθn−m

½∂jðumÞk&½∂kðun−mÞj& þ um · ð∇θn−mÞ

!

: ð9Þ

This gives the recursion relation for perturbative quantities
δn and θn,

!
δnðxÞ
θnðxÞ

"
¼ 2

ð2nþ 3Þðn− 1Þ

!nþ 1
2 1

3
2 n

"Xn−1

m¼1

×
! ð∇δmÞ · un−m þ δmθn−m
½∂jðumÞk&½∂kðun−mÞj& þ um · ð∇θn−mÞ

"
;

ð10Þ

for n≥ 2. For the linear-order quantities (n¼ 1), the
growing-mode initial condition implies

!
δ1ðxÞ
θ1ðxÞ

"
¼

!
1

1

"
δ0ðxÞ; ð11Þ

where δ0ðxÞ is the initial density field.
The real-space recursion relation given above contains the

gradient and vector fields in the nonlinear source terms. To
analytically evaluate these nonlinear terms, a standard way is
to go to Fourier space and obtain the local expression for the
Fourier kernels of perturbations. This is what has been done
in the statistical predictions of large-scale structures. That is,
we express the Fourier transform of the density and velocity-
divergence fields, δnðkÞ and θnðkÞ, as

δnðkÞ ¼
Z

d3k1…d3kn
ð2πÞ3ðn−1Þ

δDðk − k1;…;nÞ

× Fnðk1;…; knÞδ0ðk1Þ ' ' ' δ0ðknÞ; ð12Þ

θnðkÞ ¼
Z

d3k1…d3kn
ð2πÞ3ðn−1Þ

δDðk − k1;…;nÞ

×Gnðk1;…; knÞδ0ðk1Þ ' ' ' δ0ðknÞ; ð13Þ

with k1;…;n≡ k1 þ ' ' ' þ kn. Here, the field δ0 is the initial
linear density field, and the functions Fn and Gn are the
Fourier-space PT kernels. Substituting these expressions
into Eq. (10), one obtains the Fourier-space recursion
relation for PT kernels. Writing F ðnÞ

a ≡ ðFn;GnÞ, we have

F ðnÞ
a ðk1;…; knÞ ¼

Xn−1

m¼1

σabðnÞγbcdðk1;…;m; kðmþ1Þ'''nÞ

× F ðmÞ
c ðk1;…; kmÞF

ðn−mÞ
d ðkmþ1;…; knÞ

ð14Þ

with the initial condition F ð1Þ
a ≡ ð1; 1Þ. The explicit func-

tional form of σab and γbcd can be found in, e.g.,
Refs. [2,10,13,25]. One advantage of the Fourier-space
formulation in Eqs. (12)–(14) is that cosmology dependence
are entirely separated out, and the structure of thePTkernels is
determined irrespective of the initial conditions and back-
ground cosmology (but see Refs. [11,12,26] for generalized
cosmologies). However, if one wants to compare the PT
prediction with a particular realization of the N-body sim-
ulation and/or observed large-scale structure at field level, the
Fourier-space formulation [17] becomes impractical to evalu-
ate the higher-order density and velocity fields because of the
multidimensional convolution integrals. We therefore imple-
ment the right-hand side of Eq. (10) directly in the real space.

C. GridSPT: Generating higher-order density
fields on grids

In this subsection, based on the real-space recursion
relations, Eqs. (10) and (11), we present a grid-based PT
calculation, called GridSPT, which enables us to systemati-
cally evaluate the higher-order PT solutions at the field level.
Making use of the fast Fourier transform (FFT), the basic
procedure to construct the density and velocity fields on grids
are as follows. Note that one can find in the literature some
studies closely related to this work, in which the FFT
technique has been applied to directly solve Eqs. (1)–(3)
[27,28]. Here, we rather stick to a perturbative calculation
and give a recipe to compute the PT solutions on grids.
(1) Generate the initial density field δ0ðkÞ on Fourier-

space grids drawn from the Gaussian random distri-
bution specified by the linear power spectrum P0ðkÞ.

(2) Perform the inverse FFT to obtain the following
quantities on real-space grids after multiplying the
relevant factors to δ0ðkÞ in Fourier space:

δ0ðkÞ
ikδ0ðkÞ#
− ik

k2

$
δ0ðkÞ

#
kikj
k2

$
δ0ðkÞ

9
>>>>>>=

>>>>>>;

⇒
inverse FFT

8
>>><

>>>:

δ1ðxÞ ¼ θ1ðxÞ
∇δ1ðxÞ ¼ ∇θ1ðxÞ
u1ðxÞ
∂iðu1Þj:

ð15Þ
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Real-space recursion formula

: Linear growth factorD+(a) :

f(a) =
d lnD+(a)

d ln a�1(x) = ✓1(x) = �0(x)

u ≡ ∇(∇−2θ)

Making use of FFT, RHS can be evaluated quickly

 (AT, Nishimichi & Jeong ’18,  Tobias’ talk )

We can exploit a real-space counterpart of SPT recursion formula

Linear order (n=1)

Higher order (n≥2)

2

Substituting these into Eq. (4), the order-by-order calculation gives (for n ≥ 2)

(
n δab + ΩEdS

ab

)
⎛

⎝
δn(x)

θn(x)

⎞

⎠ =
n∑

m=1

⎛

⎝
(∇δm) · un−m + δm θn−m

[∂j(um)k][∂k(un−m)j ] + um · (∇θn−m)

⎞

⎠ . (9)

We then obtain the recursion relation for perturbative quantities δn and θn:

⎛

⎝
δn(x)

θn(x)

⎞

⎠ =
2

(2n+ 3)(n− 1)

⎛

⎜⎜⎝

n+
1

2
1

3

2
n

⎞

⎟⎟⎠
n−1∑

m=1

⎛

⎝
(∇δm) · un−m + δm θn−m

[∂j(um)k][∂k(un−m)j ] + um · (∇θn−m)

⎞

⎠ , (10)

which is valid at n ≥ 2. For the linear-order quantities (n = 1), the growing-mode initial condition implies
⎛

⎝
δ1(x)

θ1(x)

⎞

⎠ =

⎛

⎝
1

1

⎞

⎠ δ0(x), (11)

where δ0(x) is the initial density field.

With the recursion relation and Eq. (11), the higher-order quantities δn and θn of n ≥ 2 are systematically
constructed. As a sanity check, we here construct the second-order solution (n = 2). Using the fact that u1 =
∇−1θ1 = ∇−1δ0, Eqs. (10) and (11) give

δ2(x) =
5

7

{
(∇δ0)(∇−1δ0) + δ20

}
+

2

7

{[
∂j(∇−1δ0)k

][
∂k(∇−1δ0)j

]
+ (∇−1δ0) · (∇δ0)

}
, (12)

θ2(x) =
3

7

{
(∇δ0)(∇−1δ0) + δ20

}
+

4

7

{[
∂j(∇−1δ0)k

][
∂k(∇−1δ0)j

]
+ (∇−1δ0) · (∇δ0)

}
. (13)

To check if the resultant expressions (12) and (13) are indeed correct, we derive the standard PT kernels. Recalling
that δ0 and ∇−1δ0 are expressed as

δ0(x) =

∫
d3k

(2π)3
δ0(k) e

ik·x, ∇−1δ0(x) =

∫
d3k

(2π)3

(
− ik

k2

)
δ0(k) e

ik·x, (14)

we obtain

(∇δ0)(∇−1δ0) + δ20 =

∫
d3k1d3k2

(2π)6

{ 1

2

(
k1 · k2

k21
+

k1 · k2

k22

)
+ 1

}
δ0(k1)δ0(k2) e

i(k1+k2)·x,

[
∂j(∇−1δ0)k

][
∂k(∇−1δ0)j

]
+ (∇−1δ0) · (∇δ0)

=

∫
d3k1d3k2

(2π)6

{(k1 · k2

k1k2

)2

+
1

2

(
k1 · k2

k21
+

k1 · k2

k22

)}
δ0(k1)δ0(k2) e

i(k1+k2)·x.

Note that the integrands at the right-hand-side are symmetrized under the permutation of k1 and k2. Substituting
these expressions into Eqs. (12) and (13), we obtain
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i(k1+k2)·x,

θ2(x) =

∫
d3k1d3k2

(2π)6
G2(k1,k2) δ0(k1)δ0(k2) e

i(k1+k2)·x, (15)

where the functions F2 and G2 are written as follows:

F2(k1,k2) =
5

7
+

1

2

(k1 · k2

k1k2

)(k2
k1

+
k1
k2

)
+

2

7

(k1 · k2

k1k2

)2
,

G2(k1,k2) =
3

7
+

1

2

(k1 · k2

k1k2

)(k2
k1

+
k1
k2

)
+

4

7

(k1 · k2

k1k2

)2
.

These expressions coinside with those of the standard PT kernels (e.g., [1]).
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These expressions coinside with those of the standard PT kernels (e.g., [1]).
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gridPT: grid-based petrurbation theory calculation of large-scale structure using FFTs

Atsushi Taruya
(Dated: December 21, 2016)

We here propose a novel method for perturbation theory (PT) calculation of large-scale structure
using the technique of Fast Fourier Ttransform (FFT).

I. BASIC EQUATIONS

Throughout this note, we treat the matter fluctuations in the Universe as a pressureless fluid system, which is a
single-stream approximation of collisionless Boltzmann equation. The basic equations for perturbations become

∂δ

∂t
+

1

a
∇ · [(1 + δ)v] = 0, (1)

∂v

∂t
+H v +

1

a
(v ·∇) · v = −1

a
∇ψ, (2)

1

a2
∇2ψ = 4πG ρm δ. (3)

Assuming the irrotational flow, the motion of matter elements is described by the potential flow. Thus, the velocity
field is characterized by the scalar quantity. We define θ ≡ −∇ · v/(faH) with f being the linear growth rate defined
by f ≡ d lnD+/d ln a. Further, we introduce the new time variable η ≡ lnD+(t) with D+ being the linear growth
factor, and rewrite Eqs. (1)-(3) with evolution equations for δ and θ. We obtain

d

dη

⎛

⎝
δ(x)

θ(x)

⎞

⎠+ Ωab(η)

⎛

⎝
δ(x)

θ(x)

⎞

⎠ =

⎛

⎝
(∇δ) · u+ δ θ

(∂juk)(∂kuj) + (∇θ) · u

⎞

⎠ , (4)

where the quantity u is the reduced velocity field defined by u ≡ −v/(f aH). Under the irrotational flow, it is related
to the velocity divergence θ through

u(x) = ∇−1θ(x) =

∫
d3k

(2π)3

(
− ik

k2

)
θ(k) eik·x. (5)

In Eq. (4), the quantity Ωab is the time-dependent (2× 2) matrix:

Ωab(η) =

⎛

⎜⎜⎝

0 −1

−4πG ρm
f2 H2

1

f

(
2 +

Ḣ

H2
+

df

dη

)

⎞

⎟⎟⎠ . (6)

Note that in Einstein-de Sitter Universe, this matrix is reduced to

Ωab(η) −→ ΩEdS
ab =

⎛

⎜⎝
0 −1

−3

2

1

2

⎞

⎟⎠ . (7)

II. SYSTEMATIC EXPANSION

Eq. (4) is the basis for a systematic perturbative expansion. Since we are interested in the evolution of matter
fluctuations dominated by the linear growing-mode solution, we shall adopt the so-called Einstein-de Sitter approxi-
mation for a tractable semi-analytic calculation, by which the matrix Ωab in Eq. (4) is replaced with the one in the
Einstein-de Sitter Universe, i.e., Eq. (7). This ensures that the perturbative quantities δ and θ can be expanded by a
power series of growth factor D+ = eη:

δ(x) =
∑

n

en η δn(x), θ(x) =
∑

n

en η θn(x), u(x) =
∑

n

en η un(x). (8)(D+ )n
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⎛

⎝
δ(x)

θ(x)

⎞

⎠ =

⎛

⎝
(∇δ) · u+ δ θ

(∂juk)(∂kuj) + (∇θ) · u

⎞

⎠ , (4)

where the quantity u is the reduced velocity field defined by u ≡ −v/(f aH). Under the irrotational flow, it is related
to the velocity divergence θ through

u(x) = ∇−1θ(x) =

∫
d3k

(2π)3

(
− ik

k2

)
θ(k) eik·x. (5)

In Eq. (4), the quantity Ωab is the time-dependent (2× 2) matrix:

Ωab(η) =

⎛

⎜⎜⎝

0 −1

−4πG ρm
f2 H2

1

f

(
2 +

Ḣ

H2
+

df

dη

)

⎞

⎟⎟⎠ . (6)

Note that in Einstein-de Sitter Universe, this matrix is reduced to

Ωab(η) −→ ΩEdS
ab =

⎛

⎜⎝
0 −1

−3

2

1

2

⎞

⎟⎠ . (7)

II. SYSTEMATIC EXPANSION

Eq. (4) is the basis for a systematic perturbative expansion. Since we are interested in the evolution of matter
fluctuations dominated by the linear growing-mode solution, we shall adopt the so-called Einstein-de Sitter approxi-
mation for a tractable semi-analytic calculation, by which the matrix Ωab in Eq. (4) is replaced with the one in the
Einstein-de Sitter Universe, i.e., Eq. (7). This ensures that the perturbative quantities δ and θ can be expanded by a
power series of growth factor D+ = eη:

δ(x) =
∑

n

en η δn(x), θ(x) =
∑

n

en η θn(x), u(x) =
∑

n

en η un(x). (8)(D+ )n✓(x) ⌘ � r·v
aH f

Real-space recursion formula

C++ code:  GridSPT (will be made public)



GridSPT: projected density field

GridSPT
n=1

z=0

Ngrid=5123

Lbox=1,000 h-1Mpc

-�

�

�

�

�

Gaussian filter of R=10 h-1Mpc (depth: h-1Mpc)
AT, Nishimichi & Jeong (’18)

δ1(x)GridSPT 
density field



z=0 GridSPT
n=2

-�

�

�

�

�

GridSPT: projected density field
AT, Nishimichi & Jeong (’18)

δ1(x) + δ2(x)GridSPT 
density field

Gaussian filter of R=10 h-1Mpc (depth: h-1Mpc)



z=0 GridSPT
n=3

-�

�

�

�

�

GridSPT: projected density field
AT, Nishimichi & Jeong (’18)

δ1(x) + δ2(x) + δ3(x)GridSPT 
density field

Gaussian filter of R=10 h-1Mpc (depth: h-1Mpc)



z=0

-�

�

�

�

�

GridSPT
n=4

GridSPT: projected density field
AT, Nishimichi & Jeong (’18)

δ1(x) + δ2(x) + δ3(x) + δ4(x)GridSPT 
density field

Gaussian filter of R=10 h-1Mpc (depth: h-1Mpc)



z=0

-�

�

�

�

�

n=5
GridSPT

GridSPT: projected density field
AT, Nishimichi & Jeong (’18)

δ1(x) + δ2(x) + δ3(x) + δ4(x) + δ5(x)GridSPT 
density field

Gaussian filter of R=10 h-1Mpc (depth: h-1Mpc)



z=0

-�

�

�

�

�

N-body

N-body: projected density field

δN−body(x)N-body 
density field

Gaussian filter of R=10 h-1Mpc (depth: h-1Mpc)
Nparticle=1,0243

Lbox=1,000 h-1Mpc

AT, Nishimichi & Jeong (’18)



GridSPT vs N-body: 1D slice

smoothing scale results in a spurious wiggle structure in the
low-density region, and this can also affect small density
peaks, leading to an unphysical behavior of δ < −1. We
have checked that this behavior appears persistently in the
GridSPT density fields smoothed with the same scales,
regardless of the box size and the aliasing correction. The
fact that the density field is less than −1 is thus not simply
due to the numerical artifact, if any, but rather a drawback
of Eulerian perturbation theory; at the region with δ < −1,

the mass density becomes negative, and the mass flux
eventually flips its sign. This, in turn, leads to a rather
strong mode coupling between long and short modes. We
will discuss this UV-sensitive behavior from the statistical
point of view in the next section.

B. Statistical properties

In this subsection, based on the density fields generated
with GridSPT in Sec. III A, we measure the statistical

FIG. 3. 1D density field at z ¼ 0 smoothed with Gaussian filter of R ¼ 10h−1 Mpc, taken from Fig. 2. The density field shown here
lies at x ¼ 341h−1 Mpc, indicated as vertical dashed line in bottom right panel of Fig. 2.

FIG. 2. Same as in Fig. 1, but enlarged plot of the 2D density field over 200 × 200h−1 Mpc size is particularly shown for the region
enclosed by the dashed line in bottom right panel of Fig. 1.
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quantities and study their properties in comparison with
the result of the N-body simulation. In particular, we
measure the cross-correlation of the SPT density field with
N-body results and discuss on how well the PT predictions
reproduce the N-body results.

1. Power spectrum and bispectrum

Before discussing the cross-correlation with N-body
results, let us first check if the GridSPT calculations properly
reproduce the analytic prediction computed with Fourier-
space recursion relation in Eq. (14). Figure 6 shows the
measured results of the power spectrum from the GridSPT
calculations, which are compared with both analytic PT
predictions andN-body results. Here, the results at z ¼ 1 are
particularly shown. All the results are multiplied by k3=2 (k3)
for the power spectrum (bispectrum).
In the left panel of Fig. 6, the contribution to the

power spectrum at each perturbative order, Plin (red),
P1-loop (green), and P2-loop (blue), are shown. These are
measured from the GridSPT density fields analogously

to the standard procedure on the snapshots of N-body
simulations,

PlinðkÞ ¼ D2
þ

1

Nk

X

jkj¼k

jδ1ðkÞj2; ð19Þ

P1-loopðkÞ ¼ D4
þ

1

Nk

X

jkj¼k

f2Re½δ1ðkÞδ&3ðkÞ' þ jδ2ðkÞj2g;

ð20Þ

P2-loopðkÞ ¼ D6
þ

1

Nk

X

jkj¼k

f2Re½δ1ðkÞδ&5ðkÞ þ δ2ðkÞδ&4ðkÞ'

þ jδ3ðkÞj2g; ð21Þ

with Nk being the number of Fourier modes in a k-bin.
Note that the measured power spectrum is constructed
in the same way as we usually do in the analytic PT
calculation, and hence differs from the power spectrum of

FIG. 4. Same as in Fig. 3, but the low-density region at y ¼ 175h−1 Mpc is particularly shown (indicated as horizontal dashed line in
bottom right panel of Fig. 2).

FIG. 5. Dependence of smoothing scale on the projected 1D density fields shown in Figs. 3 (left) and 4 (right).
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High density

Low density

smoothing scale results in a spurious wiggle structure in the
low-density region, and this can also affect small density
peaks, leading to an unphysical behavior of δ < −1. We
have checked that this behavior appears persistently in the
GridSPT density fields smoothed with the same scales,
regardless of the box size and the aliasing correction. The
fact that the density field is less than −1 is thus not simply
due to the numerical artifact, if any, but rather a drawback
of Eulerian perturbation theory; at the region with δ < −1,

the mass density becomes negative, and the mass flux
eventually flips its sign. This, in turn, leads to a rather
strong mode coupling between long and short modes. We
will discuss this UV-sensitive behavior from the statistical
point of view in the next section.

B. Statistical properties

In this subsection, based on the density fields generated
with GridSPT in Sec. III A, we measure the statistical

FIG. 3. 1D density field at z ¼ 0 smoothed with Gaussian filter of R ¼ 10h−1 Mpc, taken from Fig. 2. The density field shown here
lies at x ¼ 341h−1 Mpc, indicated as vertical dashed line in bottom right panel of Fig. 2.

FIG. 2. Same as in Fig. 1, but enlarged plot of the 2D density field over 200 × 200h−1 Mpc size is particularly shown for the region
enclosed by the dashed line in bottom right panel of Fig. 1.
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GridSPT: Statistical calculations

δSPT ¼
Pn

i¼1 D
i
þδi, seen in Fig. 1. The corresponding

analytic predictions, taking account of the finite box and
high-k cutoff,4 are depicted as solid lines. We expect that,
for a sufficient number of grids, the GridSPT results
would converge to the analytic curves after we take an
ensemble average over many different random realizations
of the GridSPT density field.
Overall, the measured results reasonably agree with the

analytic predictions. However, a closer look at small scales
reveals a small discrepancy between GridSPT and analytic
calculations in both P1-loop and P2-loop. In particular, the
discrepancy is manifest in the two-loop correction, and
GridSPT calculations are prone to overestimate the analytic
prediction. This could happen possibly due to the accu-
mulation of a small numerical flaw at each order in
the GridSPT calculations. Or, the discretization made in
the GridSPT calculation changes the mode transfer effi-
ciency, and even with our setup of Ngrid ¼ 5123, this could
produce a visible systematics. In any case, in SPT, a higher-
order correction of the power spectrum is known to have a
heavy cancellation among multiple diagrams at the same
order with positive and negative contributions, and the
cancellation becomes more significant as we go to higher
order. Thus, even a small error on each diagram at lower
order may result in a noticeable systematics at higher-order
corrections through an imperfect cancellation.
In the right panel of Fig. 6, summing up all the PT

corrections, the GridSPT results are shown in green and
blue filled circles, which are compared with analytic PT
predictions depicted as solid lines. As anticipated, discrep-
ancy is manifest at two-loop order, while the one-loop

results show a tiny amount of error at high k, which
apparently looks insignificant. Although this point has to be
kept in mind in our subsequent analyses, the discrepancy
is large only at the scales where the deviation from the
N-body result, depicted as filled red circles, is significant.
Further, the discrepancy remains mild and is smaller than a
large underestimation found in the prediction based on
2LPT (filled gray circles).
Indeed, such a discrepancy is not clearly seen in the case

of the bispectrum. Figure 7 presents the measured results of
the PT contribution at each order, Btree and B1−loop, (left)
and their total amplitudes (right), which are compared with
N-body and 2LPT results. Here, the measurements of the
bispectrum are done in the equilateral configuration,
k1 ¼ k2 ¼ k3 ≡ k, and the results are plotted as functions
of k. The PT corrections Btree and B1−loop are defined as

Btreeðk1; k2; k3Þ ¼ D4
þ

1

N123

X

k1;k2;k3

δKk1þk2þk3;0

× ½δ1ðk1Þδ1ðk2Þδ2ðk3Þ þ ð2 permÞ&;
ð22Þ

B1−loopðk1; k2; k3Þ ¼ D6
þ

1

N123

X

k1;k2;k3

δKk1þk2þk3;0

× ½fδ1ðk1Þδ2ðk2Þδ3ðk3Þ þ ð5 permÞg
þ δ2ðk1Þδ2ðk2Þδ2ðk3Þ
þ fδ1ðk1Þδ1ðk2Þδ4ðk3Þ þ ð2 permÞg&:

ð23Þ

Note that in actual calculation of these expressions, we use
a fast estimator based on FFT (e.g., [40,41]). Only with the
single realization, the resultant bispectrum is rather noisy,

FIG. 6. (Left) Linear power spectrum (red), and one-loop (green) and two-loop (blue) corrections to the power spectrum at z ¼ 1. The
results measured from the GridSPT density fields (filled circles) are compared with those obtained from analytic PT calculations (solid).
(Right) Comparison of the total power spectrum at z ¼ 1 between GridSPT calculations at one-loop (green) and two-loop (blue) order
and N-body simulations (red). For comparison, the second-order Lagrangian PT prediction generated with 2LPT is also shown in gray
filled circles.

4To be precise, in analytic PT calculations, we introduced
the cutoff scales in the linear power spectrum, given by kmin¼
2π=Lbox≃6.28×10−3hMpc−1 and kmax¼kcut;2¼ð4=3ÞhMpc−1.
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Power spectrum

Bispectrum 
(equilateral)

P1−loop = P11 + (2 P13 + P22)

P2−loop = P11 + (2P13 + P22)
+(2 P15 + 2 P24 + P33)

however, increasing the number of realizations up to 50,
shown in Fig. 8, the tree- and one-loop corrections are
found to reproduce the analytic PT results (solid lines) quite
well. Also, in the right panel, the overall behavior of the
one-loop prediction better agrees with the N-body simu-
lation than the 2LPT prediction (gray filled circles).

2. Cross-correlation

In order to systematically compare the GridSPT density
fields with N-body simulations, we calculate the cross-
correlation between them. First, we consider the density
field at each PT order and compute the cross-correlation
with the density field constructed from N-body simulations
in Fourier space. Figure 9 shows the cross-correlation
coefficients, rcorrðkÞ, defined by

rðnÞcorrðkÞ≡
P

jkj¼kRe½δnðkÞδN-bodyðkÞ%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jkj¼kjδnðkÞj2

P
jkj¼kjδN-bodyðkÞj2

q : ð24Þ

Note that −1 ≤ rðnÞcorr ≤ 1. The measured results at z ¼ 1
(left) and 0 (right) are shown up to the fifth order of
GridSPT density fields.
As shown in Fig. 9, all the correlations tend to get

suppressed at high k, and, at z ¼ 0, the suppression of
correlation appears prominent even on large scales. This is
indeed what is expected. An interesting point may be that
the correlation of the higher-order PT fields ðn ≥ 2Þ with
N-body is not monotonic and exhibits anticorrelation

(rðnÞcorr < 0) for a certain range of k.
Indeed, these nonmonotonic behaviors, together with a

strong damping at high k, are predicted by a resummed
PT treatment. In Fig. 9, we also show (solid lines) the
predictions of the same quantity based on the multipoint
propagator expansion [5] with regularized propagators,
called RegPT [16]. The RegPT predictions are made by
assuming that the evolved density field in N-body simu-
lation is described with the multipoint propagator expan-
sion at two-loop order. In Appendix B, we present a recipe

FIG. 8. Same as in Fig. 7, but the GridSPT results are averaged over 50 realizations. The error bars indicate the standard error of
the mean.

FIG. 7. (Left) Comparison of the tree-level (green) and one-loop (blue) corrections to the bispectrum measured from GridSPT density
fields (filled circles) with those obtained from analytic PT calculations (solid). The results at equilateral configuration ðk1 ¼ k2 ¼
k3 ≡ kÞ are plotted as function of k. (Right) Comparison of the total bispectrum for the equilateral configuration between GridSPT
calculations at tree-level (green) and one-loop (blue) order and N-body simulations (red). The second-order Lagrangian PT prediction
generated with 2LPT is also shown in gray filled circles.
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B1−loop = 3 B112 + (3 B114 + 6 B123

SPT (analytical)

+B222)

Btree = 3 B112

AT, Nishimichi & Jeong (’18)

Can be made similarly to 
analytical PT, but at field level

Ngrid=5123

Lbox=1,000 h-1Mpc



δSPT ¼
Pn

i¼1 D
i
þδi, seen in Fig. 1. The corresponding

analytic predictions, taking account of the finite box and
high-k cutoff,4 are depicted as solid lines. We expect that,
for a sufficient number of grids, the GridSPT results
would converge to the analytic curves after we take an
ensemble average over many different random realizations
of the GridSPT density field.
Overall, the measured results reasonably agree with the

analytic predictions. However, a closer look at small scales
reveals a small discrepancy between GridSPT and analytic
calculations in both P1-loop and P2-loop. In particular, the
discrepancy is manifest in the two-loop correction, and
GridSPT calculations are prone to overestimate the analytic
prediction. This could happen possibly due to the accu-
mulation of a small numerical flaw at each order in
the GridSPT calculations. Or, the discretization made in
the GridSPT calculation changes the mode transfer effi-
ciency, and even with our setup of Ngrid ¼ 5123, this could
produce a visible systematics. In any case, in SPT, a higher-
order correction of the power spectrum is known to have a
heavy cancellation among multiple diagrams at the same
order with positive and negative contributions, and the
cancellation becomes more significant as we go to higher
order. Thus, even a small error on each diagram at lower
order may result in a noticeable systematics at higher-order
corrections through an imperfect cancellation.
In the right panel of Fig. 6, summing up all the PT

corrections, the GridSPT results are shown in green and
blue filled circles, which are compared with analytic PT
predictions depicted as solid lines. As anticipated, discrep-
ancy is manifest at two-loop order, while the one-loop

results show a tiny amount of error at high k, which
apparently looks insignificant. Although this point has to be
kept in mind in our subsequent analyses, the discrepancy
is large only at the scales where the deviation from the
N-body result, depicted as filled red circles, is significant.
Further, the discrepancy remains mild and is smaller than a
large underestimation found in the prediction based on
2LPT (filled gray circles).
Indeed, such a discrepancy is not clearly seen in the case

of the bispectrum. Figure 7 presents the measured results of
the PT contribution at each order, Btree and B1−loop, (left)
and their total amplitudes (right), which are compared with
N-body and 2LPT results. Here, the measurements of the
bispectrum are done in the equilateral configuration,
k1 ¼ k2 ¼ k3 ≡ k, and the results are plotted as functions
of k. The PT corrections Btree and B1−loop are defined as

Btreeðk1; k2; k3Þ ¼ D4
þ

1

N123

X

k1;k2;k3

δKk1þk2þk3;0

× ½δ1ðk1Þδ1ðk2Þδ2ðk3Þ þ ð2 permÞ&;
ð22Þ

B1−loopðk1; k2; k3Þ ¼ D6
þ

1

N123

X

k1;k2;k3

δKk1þk2þk3;0

× ½fδ1ðk1Þδ2ðk2Þδ3ðk3Þ þ ð5 permÞg
þ δ2ðk1Þδ2ðk2Þδ2ðk3Þ
þ fδ1ðk1Þδ1ðk2Þδ4ðk3Þ þ ð2 permÞg&:

ð23Þ

Note that in actual calculation of these expressions, we use
a fast estimator based on FFT (e.g., [40,41]). Only with the
single realization, the resultant bispectrum is rather noisy,

FIG. 6. (Left) Linear power spectrum (red), and one-loop (green) and two-loop (blue) corrections to the power spectrum at z ¼ 1. The
results measured from the GridSPT density fields (filled circles) are compared with those obtained from analytic PT calculations (solid).
(Right) Comparison of the total power spectrum at z ¼ 1 between GridSPT calculations at one-loop (green) and two-loop (blue) order
and N-body simulations (red). For comparison, the second-order Lagrangian PT prediction generated with 2LPT is also shown in gray
filled circles.

4To be precise, in analytic PT calculations, we introduced
the cutoff scales in the linear power spectrum, given by kmin¼
2π=Lbox≃6.28×10−3hMpc−1 and kmax¼kcut;2¼ð4=3ÞhMpc−1.
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however, increasing the number of realizations up to 50,
shown in Fig. 8, the tree- and one-loop corrections are
found to reproduce the analytic PT results (solid lines) quite
well. Also, in the right panel, the overall behavior of the
one-loop prediction better agrees with the N-body simu-
lation than the 2LPT prediction (gray filled circles).

2. Cross-correlation

In order to systematically compare the GridSPT density
fields with N-body simulations, we calculate the cross-
correlation between them. First, we consider the density
field at each PT order and compute the cross-correlation
with the density field constructed from N-body simulations
in Fourier space. Figure 9 shows the cross-correlation
coefficients, rcorrðkÞ, defined by

rðnÞcorrðkÞ≡
P

jkj¼kRe½δnðkÞδN-bodyðkÞ%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jkj¼kjδnðkÞj2

P
jkj¼kjδN-bodyðkÞj2

q : ð24Þ

Note that −1 ≤ rðnÞcorr ≤ 1. The measured results at z ¼ 1
(left) and 0 (right) are shown up to the fifth order of
GridSPT density fields.
As shown in Fig. 9, all the correlations tend to get

suppressed at high k, and, at z ¼ 0, the suppression of
correlation appears prominent even on large scales. This is
indeed what is expected. An interesting point may be that
the correlation of the higher-order PT fields ðn ≥ 2Þ with
N-body is not monotonic and exhibits anticorrelation

(rðnÞcorr < 0) for a certain range of k.
Indeed, these nonmonotonic behaviors, together with a

strong damping at high k, are predicted by a resummed
PT treatment. In Fig. 9, we also show (solid lines) the
predictions of the same quantity based on the multipoint
propagator expansion [5] with regularized propagators,
called RegPT [16]. The RegPT predictions are made by
assuming that the evolved density field in N-body simu-
lation is described with the multipoint propagator expan-
sion at two-loop order. In Appendix B, we present a recipe

FIG. 8. Same as in Fig. 7, but the GridSPT results are averaged over 50 realizations. The error bars indicate the standard error of
the mean.

FIG. 7. (Left) Comparison of the tree-level (green) and one-loop (blue) corrections to the bispectrum measured from GridSPT density
fields (filled circles) with those obtained from analytic PT calculations (solid). The results at equilateral configuration ðk1 ¼ k2 ¼
k3 ≡ kÞ are plotted as function of k. (Right) Comparison of the total bispectrum for the equilateral configuration between GridSPT
calculations at tree-level (green) and one-loop (blue) order and N-body simulations (red). The second-order Lagrangian PT prediction
generated with 2LPT is also shown in gray filled circles.
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GridSPT averaged over 50 runs

SPT (analytical)

Power spectrum
P1−loop = P11 + (2 P13 + P22)

P2−loop = P11 + (2P13 + P22)
+(2 P15 + 2 P24 + P33)

GridSPT: Statistical calculations

Bispectrum 
(equilateral)

B1−loop = 3 B112 + (3 B114 + 6 B123

+B222)

Btree = 3 B112

AT, Nishimichi & Jeong (’18)

Can be made similarly to 
analytical PT, but at field level

Ngrid=5123

Lbox=1,000 h-1Mpc



Applications

•  generate higher-order random fields on grids very quickly

•  provide a basis to compute statistical quantities
(using the same grid-based measurement code as in N-body data)

Covariance estimation 

A quick generation of a large number of realizations, also accounting 
for observational systematics (e.g., survey mask)

Measurement/calibration of EFT parameters (Tobias’ talk)

A face-to-face comparison with N-body simulations

GridSPT allows to



Covariance estimation

• Lbox =512 h-1Mpc, Ngrid=2563
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GridSPT covariance is compared with N-body results with 104 runs



Non-Gaussian covariance
cov(ki, kj) =

2
Ni

{P(ki)}2 δK
ij +

1
V

Tij Trispectrum

Can be decomposed into covariances of SPT power spectra:
( ̂P11, ̂P12, ̂P13, ̂P22, ⋯)

2. Evaluate cov [ ̂Pab(ki), ̂Pcd(kj)] from many realization data
1. Measure SPT power spectra ̂P11, ̂P12, ̂P13, ̂P22, ⋯ in each realization 

3. Sum up these contributions in the right way

Power spectrum 
covariance

Covariance estimation in GridSPT

1
V

T tree
ij = cov[ ̂P11(ki), ̂P22(kj)] + 2 cov[ ̂P12(ki), ̂P12(kj)] + 2 cov[ ̂P11(ki), ̂P13(kj)]

+ (i ⟷ j)
The formulas holds irrespective of 
survey geometry & survey mask

1
V

T1−loop
ij = 2 cov[ ̂P11(ki), ̂P15(kj)] + ⋯



Covariance estimation

0.40.20.0GridSPT (Gauss+Trispec tree): 50,000runs @z=1
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covsim(k1, k1)covsim(k2, k2) Local mean subtracted

 (AT, Nishimichi & Jeong in prep.)



Covariance estimation

GridSPT (Gauss+Trispec 1-loop): 50,000runs @z=1 0.40.20.0
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r(k1, k2) =
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covsim(k1, k1)covsim(k2, k2) Local mean subtracted

 (AT, Nishimichi & Jeong in prep.)



Covariance estimation
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N-body simulation: 10,000runs @ z=1

r(k1, k2) =
cov(k1, k2)

covsim(k1, k1)covsim(k2, k2)

0.40.20.0

Local mean subtracted

 (AT, Nishimichi & Jeong in prep.)



Covariance estimation

k1 = 0.065 h Mpc−1, @z = 1
. N-body

k2 [h Mpc−1] k2 [h Mpc−1] k2 [h Mpc−1] k2 [h Mpc−1]

1 0
0 1

0

1

0 1

1 0

0

1

1 1

1 1

1
1

1
1

1

1

1

1
0

0

0

0
0 1 0 1

0 01 1

0

0

1

1

1

1

0

0

0

0

0

0

0
0 0
0

0
0

1
1

0
01
1

Sphere 1
R=Lbox/4
1

0

Mosaic 4Mosaic 2No mask

Lbox 1

Gauss+Ttree
T1-loop

Total
GridSPT

r(k1, k2) =
cov(k1, k2)

covsim(k1, k1)covsim(k2, k2) Local mean subtracted

 (AT, Nishimichi & Jeong in prep.)



Covariance estimation

k1 = 0.115 h Mpc−1, @z = 1
. N-body
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r(k1, k2) =
cov(k1, k2)

covsim(k1, k1)covsim(k2, k2) Local mean subtracted

 (AT, Nishimichi & Jeong in prep.)



Covariance estimation

k1 = 0.165 h Mpc−1, @z = 1
. N-body
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r(k1, k2) =
cov(k1, k2)

covsim(k1, k1)covsim(k2, k2) Local mean subtracted

 (AT, Nishimichi & Jeong in prep.)



Summary
GridSPT: FFT-based code to generate density field on grids in 
standard perturbation theory: demonstration & application

• Demonstration: morphological & statistical properties

Other possible applications

• Mock catalogs

• Reconstructing initial density field

compared with N-body simulation & 2LPT

Generating density fields in SPT calculations to 5th order,

Incorporating field-level EFT & bias expansion is easy & straightforward

• Application: covariance calculations with survey mask
(trispectrum at 1-loop order)


