24th July 2019
MIAPP programme on

Dynamics of Large-scale Structure Formation

GridSPT: grid-based calculation for perturbation theory of largescale structure

Atsushi Taruya
(Yukawa Institute for Theoretical Physics)

With

Takahiro Nishimichi (YITP), Donghui Jeong (Penn State)

Plan of talk

Grid-based algorithm for standard perturbation theory of large-scale structure: demonstration \& application

Introduction
GridSPT
Demonstration \& application
Summary

Based on
AT, Nishimichi \& Jeong, PRD98, I 03532 (' I8) ++

Perturbation theory (PT) calculation of Large-scale structure

Single-stream approximation of cosmological Vlasov-Poisson system

$$
\begin{aligned}
& \frac{\partial \delta}{\partial t}+\frac{1}{a} \nabla[(1+\delta) \boldsymbol{v}]=0, \\
& \frac{\partial \boldsymbol{v}}{\partial t}+\frac{1}{a}(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}=-\frac{1}{a} \frac{\partial \Phi}{\partial \boldsymbol{x}}, \\
& \frac{1}{a^{2}} \nabla^{2} \Phi=4 \pi G \rho_{\mathrm{m}} \delta
\end{aligned}
$$

Resummation technique

EFT treatment \& bias expansion

Statical calculation is easy to do analytically
Many realizations are not necessary (c.f. N-body simulation)

Grid-based PT calculation ?

Taking observational systematics (survey mask \& geometry) into account,

- Mock galaxy catalog construction
- Covariance estimation Analytical PT calculation
- ... ceases to be tractable

Still, PT approach is useful in constructing mocks:
Peak patch, PThalo, Pinocchio, HALLOGEN, Patchy, EZmock, ...
(Bond \& Mayers '96; Scoccimarro \& Sheth '02; Monaco et al. '02; Avila et al.' 15 ; Kitaura et al.' 14 ,' 15 ; Chuang et al.' 15)
... particle-based methods using Lagrangian PT

Q Is there grid-based method using standard PT (SPT) approach ? If we can exploit such a method, is it useful ?

Generating standard PT on grids

How can we generate higher-order density fields on grids ?

$$
\delta(\boldsymbol{x})=\delta_{1}(\boldsymbol{x})+\delta_{2}(\boldsymbol{x})+\delta_{3}(\boldsymbol{x})+\cdots
$$

In conventional approach,
We first go to Fourier space, and use the
 recursion formula for SPT kernels, F_{n} and G_{n} (e.g, Goroff et al. '86)

$$
\delta_{n}(\boldsymbol{k})=\int \frac{d^{3} \boldsymbol{k}_{1} \ldots d^{3} \boldsymbol{k}_{n}}{(2 \pi)^{3(n-1)}} \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}_{1, \ldots, n}\right) F_{n}\left(\boldsymbol{k}_{1}, \ldots, \boldsymbol{k}_{n}\right) \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta_{0}\left(\boldsymbol{k}_{n}\right)
$$

Linear density field
Going to higher-order, this is computationally costly
Grid-based calculation up to 3rd order (Roth \& Porciani 'II, Tassev' I4)

Real-space recursion formula

We can exploit a real-space counterpart of SPT recursion formula
Real-space recursion formula
(AT, Nishimichi \& Jeong 'l8, Tobias' talk)

$$
\delta(\boldsymbol{x})=\sum_{n}\left(D_{+}\right)^{n} \delta_{n}(\boldsymbol{x}), \quad \theta(\boldsymbol{x}) \equiv-\frac{\nabla \cdot \boldsymbol{v}}{a H f}=\sum_{n}\left(D_{+}\right)^{n} \theta_{n}(\boldsymbol{x})
$$

Linear order $(n=1)$

$$
\delta_{1}(\boldsymbol{x})=\theta_{1}(\boldsymbol{x})=\delta_{0}(\boldsymbol{x}) \text { random field }
$$

D_{+}: Linear growth factor

$$
f(a)=\frac{d \ln D_{+}(a)}{d \ln a}
$$

Higher order ($n \geq 2$)

$$
\left.\begin{array}{c}
\boldsymbol{u} \equiv \nabla\left(\nabla^{-2} \theta\right) \\
\left(\nabla \delta_{m}\right) \cdot \boldsymbol{u}_{n-m}+\delta_{m} \theta_{n-m} \\
{\left[\partial_{j}\left(\boldsymbol{u}_{m}\right)_{k}\right]\left[\partial_{k}\left(\boldsymbol{u}_{n-m}\right)_{j}\right]+\boldsymbol{u}_{m} \cdot\left(\nabla \theta_{n-m}\right)}
\end{array}\right)
$$

Making use of FFT, RHS can be evaluated quickly
C++ code: GridSPT (will be made public)

GridSPT: projected density field

Gaussian filter of $R=10 h^{-1} \mathrm{Mpc}$ (depth: $h^{-1} \mathrm{Mpc}$)

GridSPT density field $\delta_{1}(\boldsymbol{x})$

AT, Nishimichi \& Jeong (' 18)
$N_{\text {grid }}=512^{3}$
$L_{\text {box }}=1,000 \mathrm{~h}^{-1} \mathrm{Mpc}$

GridSPT: projected density field

Gaussian filter of $R=10 h^{-1} \mathrm{Mpc}$ (depth: $h^{-1} \mathrm{Mpc}$)
AT, Nishimichi \& Jeong (' 18)

GridSPT density field $\delta_{1}(\boldsymbol{x})+\delta_{2}(\boldsymbol{x})$
$z=0$

GridSPT: projected density field

Gaussian filter of $R=10 h^{-1} \mathrm{Mpc}$ (depth: $h^{-1} \mathrm{Mpc}$)
AT, Nishimichi \& Jeong (' 18)

GridSPT density field

$$
\delta_{1}(\boldsymbol{x})+\delta_{2}(\boldsymbol{x})+\delta_{3}(\boldsymbol{x})
$$

$z=0$

GridSPT: projected density field

Gaussian filter of $R=10 h^{-1} \mathrm{Mpc}$ (depth: $h^{-1} \mathrm{Mpc}$)

GridSPT density field
 $$
\delta_{1}(\boldsymbol{x})+\delta_{2}(\boldsymbol{x})+\delta_{3}(\boldsymbol{x})+\delta_{4}(\boldsymbol{x})
$$

GridSPT: projected density field

Gaussian filter of $R=10 h^{-1} \mathrm{Mpc}$ (depth: $\left.h^{-1} \mathrm{Mpc}\right)$
AT, Nishimichi \& Jeong (' 18)

GridSPT density field
 $$
\delta_{1}(\boldsymbol{x})+\delta_{2}(\boldsymbol{x})+\delta_{3}(\boldsymbol{x})+\delta_{4}(\boldsymbol{x})+\delta_{5}(\boldsymbol{x})
$$

$z=0$

N-body: projected density field

Gaussian filter of $R=10 h^{-1}$ Mpc (depth: $h^{-1} \mathrm{Mpc}$)

N-body density field $\delta_{\mathrm{N} \text {-body }}(\boldsymbol{x})$

AT, Nishimichi \& Jeong (' 18)
$N_{\text {particle }}=I, 024^{3}$
$L_{\text {box }}=1,000 \mathrm{~h}^{-1} \mathrm{Mpc}$

GridSPT vs N-body: ID slice

AT, Nishimichi \& Jeong (' 18)

High density

Low density

GridSPT: Statistical calculations

Can be made similarly to analytical PT, but at field level

Power spectrum

$$
\begin{aligned}
P_{1-\text { loop }}= & P_{11}+\left(2 P_{13}+P_{22}\right) \\
P_{2-\text { loop }}= & P_{11}+\left(2 P_{13}+P_{22}\right) \\
& +\left(2 P_{15}+2 P_{24}+P_{33}\right)
\end{aligned}
$$

Bispectrum (equilateral)

$$
B_{\text {tree }}=3 B_{112}
$$

$$
B_{1-\text { loop }}=3 B_{112}+\left(3 B_{114}+6 B_{123}\right.
$$

$$
\left.+B_{222}\right)
$$

AT, Nishimichi \& Jeong (' 18)

GridSPT: Statistical calculations

Can be made similarly to analytical PT, but at field level

Power spectrum

$$
\begin{aligned}
P_{1-\text { loop }}= & P_{11}+\left(2 P_{13}+P_{22}\right) \\
P_{2-\text { loop }}= & P_{11}+\left(2 P_{13}+P_{22}\right) \\
& +\left(2 P_{15}+2 P_{24}+P_{33}\right)
\end{aligned}
$$

Bispectrum (equilateral)

$$
\begin{aligned}
& \quad B_{\text {tree }}=3 B_{112} \\
& B_{1-\text { loop }}=3 B_{112}+\left(3 B_{114}+6 B_{123}\right. \\
& \left.+B_{222}\right)
\end{aligned}
$$

Applications

GridSPT allows to

- generate higher-order random fields on grids very quickly
- provide a basis to compute statistical quantities (using the same grid-based measurement code as in N -body data)

A face-to-face comparison with N -body simulations
\longrightarrow Measurement/calibration of EFT parameters (Tobias' talk)
A quick generation of a large number of realizations, also accounting for observational systematics (e.g., survey mask)

Covariance estimation

Covariance estimation

\sim Proof-of-concept study taking account of survey masks \sim

- $L_{\text {box }}=512 \mathrm{~h}^{-1} \mathrm{Mpc}, \quad \mathrm{N}_{\text {grid }}=256^{3}$
- Artificial survey window function : $W(x)=\left\{\begin{array}{l}1 \\ 0\end{array}\right.$

GridSPT covariance is compared with N-body results with 10^{4} runs

Non-Gaussian covariance

$\begin{gathered}\text { Power spectrum } \\ \text { covariance }\end{gathered} \operatorname{cov}\left(k_{i}, k_{j}\right)=\frac{2}{N_{i}}\left\{P\left(k_{i}\right)\right\}^{2} \delta_{i j}^{\mathrm{K}}+\frac{1}{V} \bar{T}_{i j}$ Trispectrum
Can be decomposed into covariances of SPT power spectra:

$$
\left(\hat{P}_{11}, \hat{P}_{12}, \hat{P}_{13}, \hat{P}_{22}, \cdots\right)
$$

$$
\begin{aligned}
\frac{1}{V} \bar{T}_{i j}^{\text {tree }}= & \operatorname{cov}\left[\hat{P}_{11}\left(k_{i}\right), \hat{P}_{22}\left(k_{j}\right)\right]+2 \operatorname{cov}\left[\hat{P}_{12}\left(k_{i}\right), \hat{P}_{12}\left(k_{j}\right)\right]+2 \operatorname{cov}\left[\hat{P}_{11}\left(k_{i}\right), \hat{P}_{13}\left(k_{j}\right)\right] \\
& +(i \longleftrightarrow j)
\end{aligned}
$$

$$
\frac{1}{V} \bar{T}_{i j}^{1-\text { loop }}=2 \operatorname{cov}\left[\hat{P}_{11}\left(k_{i}\right), \hat{P}_{15}\left(k_{j}\right)\right]+\cdots
$$

The formulas holds irrespective of survey geometry \& survey mask

Covariance estimation in GridSPT
I. Measure SPT power spectra $\hat{P}_{11}, \hat{P}_{12}, \hat{P}_{13}, \hat{P}_{22}, \cdots$ in each realization
2. Evaluate $\operatorname{cov}\left[\hat{P}_{a b}\left(k_{i}\right), \hat{P}_{c d}\left(k_{j}\right)\right]$ from many realization data
3. Sum up these contributions in the right way

Covariance estimation

$$
r\left(k_{1}, k_{2}\right)=\frac{\operatorname{cov}\left(k_{1}, k_{2}\right)}{\sqrt{\operatorname{cov}_{\operatorname{sim}}\left(k_{1}, k_{1}\right) \operatorname{cov}_{\operatorname{sim}}\left(k_{2}, k_{2}\right)}}
$$

(AT, Nishimichi \& Jeong in prep.)
Local mean subtracted

GridSPT (Gauss+Trispec tree): 50,000runs @z=|

Covariance estimation

$$
r\left(k_{1}, k_{2}\right)=\frac{\operatorname{cov}\left(k_{1}, k_{2}\right)}{\sqrt{\operatorname{cov}_{\operatorname{sim}}\left(k_{1}, k_{1}\right) \operatorname{cov}_{\operatorname{sim}}\left(k_{2}, k_{2}\right)}}
$$

(AT, Nishimichi \& Jeong in prep.)
Local mean subtracted

GridSPT (Gauss+Trispec I-loop): 50,000runs @z=|

$k_{1}\left[h \mathrm{Mpc}^{-1}\right]$
$k_{1}\left[h \mathrm{Mpc}^{-1}\right]$
$k_{1}\left[h \mathrm{Mpc}^{-1}\right]$
$k_{1}\left[h \mathrm{Mpc}^{-1}\right]$

Covariance estimation

$$
r\left(k_{1}, k_{2}\right)=\frac{\operatorname{cov}\left(k_{1}, k_{2}\right)}{\sqrt{\operatorname{cov}_{\operatorname{sim}}\left(k_{1}, k_{1}\right) \operatorname{cov}_{\operatorname{sim}}\left(k_{2}, k_{2}\right)}}
$$

(AT, Nishimichi \& Jeong in prep.)
Local mean subtracted

Covariance estimation

$$
r\left(k_{1}, k_{2}\right)=\frac{\operatorname{cov}\left(k_{1}, k_{2}\right)}{\sqrt{\operatorname{cov}_{\operatorname{sim}}\left(k_{1}, k_{1}\right) \operatorname{cov}_{\operatorname{sim}}\left(k_{2}, k_{2}\right)}}
$$

(AT, Nishimichi \& Jeong in prep.)

Local mean subtracted

Covariance estimation

$$
r\left(k_{1}, k_{2}\right)=\frac{\operatorname{cov}\left(k_{1}, k_{2}\right)}{\sqrt{\operatorname{cov}_{\operatorname{sim}}\left(k_{1}, k_{1}\right) \operatorname{cov}_{\operatorname{sim}}\left(k_{2}, k_{2}\right)}}
$$

(AT, Nishimichi \& Jeong in prep.)

Local mean subtracted

Covariance estimation

$$
r\left(k_{1}, k_{2}\right)=\frac{\operatorname{cov}\left(k_{1}, k_{2}\right)}{\sqrt{\operatorname{cov}_{\operatorname{sim}}\left(k_{1}, k_{1}\right) \operatorname{cov}_{\operatorname{sim}}\left(k_{2}, k_{2}\right)}}
$$

(AT, Nishimichi \& Jeong in prep.)

Local mean subtracted

Summary

GridSPT: FFT-based code to generate density field on grids in standard perturbation theory: demonstration \& application

Generating density fields in SPT calculations to 5th order,

- Demonstration: morphological \& statistical properties compared with N-body simulation \& 2LPT
- Application: covariance calculations with survey mask
(trispectrum at I-loop order)
Other possible applications
- Mock catalogs
- Reconstructing initial density field

Incorporating field-level EFT \& bias expansion is easy \& straightforward

