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Concordant picture of the Universe
Lambda cold dark matter (ΛCDM) model

Minimal model characterized by 6 parameters

Model describes both cosmic expansion and structure formation

https://www.eso.org/public/images/eso1620a/

over 13.8 billion years
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Unresolved issues

Tension

Mysterious components

Success of minimal model does not imply model is convincing

Dark matter

Dark energy (late-time cosmic acceleration)

Untested hypothesis

General relativity on cosmological scales

Gaussianity of primordial fluctuations

Cosmic inflation

Discrepancy of Planck ΛCDM model parameters with 
those obtained from other observations (H0, S8, …)

Dark energy

Cold dark matter

Baryon



Large-scale structure
Large-scale matter inhomogeneities over Mpc~Gpc scales

✓ Spectroscopic surveys

evolved under the influence of gravity & cosmic expansion

Its statistical nature carries rich cosmological information

Baryon acoustic oscillation (BAO) 

(angular position + redshift)

✓ Photometric/imaging surveys
(angular position + galaxy shape)

Weak lensing effect

Redshift-space distortions (RSD)

Using (mainly) galaxies as a tracer of LSS,



Baryon acoustic oscillations (BAO)
Characteristic oscillatory features of primeval baryon-photon fluid 
imprinted on galaxy clustering pattern at ~100Mpc

→ BAO scale can be used as a standard ruler
7

FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also

14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p
Cii for the power spectrum and the rms error calculated

from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥Bm(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, kn, equally spaced in 0 < k < 2hMpc�1,
to the central wavenumbers of the observed bandpowers ki:

P (ki)fit =
X

n

W (ki, kn)P (kn)m �W (ki, 0). (33)

The final term W (ki, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

Bm = (BCAMB � 1)e�k2⌃2
nl/2 + 1, (34)

where the damping scale ⌃nl is a fitted parameter. We assume
a Gaussian prior on ⌃nl with width ±2h�1 Mpc, centred on
8.24h�1 Mpc for pre-reconstruction fits and 4.47h�1 Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.

c� 2011 RAS, MNRAS 000, 2–33

BOSS DR9
(SDSS-III)

10 S. Alam et al.

Figure 3. BAO signals in the measured post-reconstruction power spectrum (left panels) and correlation function (right panels) and predictions of the best-fit
BAO models (curves). To isolate the BAO in the monopole (top panels), predictions of a smooth model with the best-fit cosmological parameters but no BAO
feature have been subtracted, and the same smooth model has been divided out in the power spectrum panel. For clarity, vertical offsets of ±0.15 (power
spectrum) and ±0.004 (correlation function) have been added to the points and curves for the high- and low-redshift bins, while the intermediate redshift
bin is unshifted. For the quadrupole (middle panels), we subtract the quadrupole of the smooth model power spectrum, and for the correlation function we
subtract the quadrupole of a model that has the same parameters as the best-fit but with ✏ = 0. If reconstruction were perfect and the fiducial model were
exactly correct, the curves and points in these panels would be flat; oscillations in the model curves indicate best-fit ✏ 6= 0. The bottom panels show the
measurements for the 0.4 < z < 0.6 redshift bin decomposed into the component of the separations transverse to and along the line of sight, based on
x(p, µ) = x0(p) + L2(µ)x2(p), where x represents either s

2 multiplied by the correlation function or the BAO component power spectrum displayed in the
upper panels, p represents either the separation or the Fourier mode, L2 is the 2nd order Legendre polynomial, p|| = µp, and p? =

p
p2 � µ2p2.

c� 2016 RAS, MNRAS 000, 1–38
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Redshift-space distortions (RSD)

Cosmological Analysis of BOSS galaxies 13
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Figure 5. The measured pre-reconstruction correlation function (left) and power spectrum (middle) in the directions perpendicular and parallel to the line of
sight, shown for the NGC only in the redshift range 0.50 < z < 0.75. In each panel, the color scale shows the data and the contours show the prediction of the
best-fit model. The anisotropy of the contours seen in both plots reflects a combination of RSD and the AP effect, and holds most of the information used to
separately constrain DM (z)/rd, H(z)rd, and f�8. The BAO ring can be seen in two dimensions on the correlation function plot. To more clearly show the
anisotropic BAO ring in the power spectrum, the right panel plots the two-dimensional power-spectrum divided by the best-fit smooth component. The wiggles
seen in this panel are analogous to the oscillations seen in the top left panel of Fig 3.

Table 4. Summary table of pre-reconstruction full-shape constraints on the parameter combinations DM ⇥
�
rd,fid/rd

�
, H⇥

�
rd/rd,fid

�
, and f�8(z) derived

in the supporting papers for each of our three overlapping redshift bins

Measurement redshift Satpathy et al. Beutler et al. (b) Grieb et al. Sánchez et al.
⇠(s) multipoles P (k) multipoles P (k) wedges ⇠(s) wedges

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.38 1476 ± 33 1549 ± 41 1525 ± 25 1501 ± 27

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.51 1985 ± 41 2015 ± 53 1990 ± 32 2010 ± 30

DM ⇥
�
rd,fid/rd

�
[Mpc] z = 0.61 2287 ± 54 2270 ± 57 2281 ± 43 2286 ± 37

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.38 79.3 ± 3.3 82.5 ± 3.2 81.2 ± 2.3 82.5 ± 2.4

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.51 88.3 ± 4.1 88.4 ± 4.1 87.0 ± 2.4 90.2 ± 2.5

H ⇥
�
rd/rd,fid

�
[km s�1Mpc�1] z = 0.61 99.5 ± 4.4 97.0 ± 4.0 94.9 ± 2.5 97.3 ± 2.7

f�8 z = 0.38 0.430 ± 0.054 0.479 ± 0.054 0.498 ± 0.045 0.468 ± 0.053
f�8 z = 0.51 0.452 ± 0.058 0.454 ± 0.051 0.448 ± 0.038 0.470 ± 0.042
f�8 z = 0.61 0.456 ± 0.052 0.409 ± 0.044 0.409 ± 0.041 0.440 ± 0.039

ods is consistent with what we observe in mocks (see Section 7.2
and Fig. 10). In all cases the µ-wedges analyses give significantly
tighter constraints than the multipole analyses, in both configura-
tion space and Fourier space. The consensus constraints, described
in §8.2 below, are slightly tighter than those of the individual wedge
analyses. At all three redshifts and for all three quantities, mapping
distance, expansion rate, and the growth of structure, the 68% con-
fidence contour for the consensus results overlaps the 68% confi-
dence contour derived from Planck 2015 data assuming a ⇤CDM
cosmology. We illustrate the combination of these full shape results
with the post-reconstruction BAO results in Fig. 11 below.

c� 2016 RAS, MNRAS 000, 1–38
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Constraints from BAO & RSD

10 eBOSS Collaboration

TABLE 2
Data sets for cosmology analyses.

Name Data Combination Cosmology Analysis
BAO DM (z)/rd and DH(z)/rd from BAO measurements of all SDSS tracers Section 4
RSD f�8(z) from all SDSS tracers, marginalizing over DM (z)/rd and DH(z)/rd Section 5
SDSS DM (z)/rd, DH(z)/rd, and f�8(z) of all SDSS tracers Sections 6,7
CMB T&P Planck TT, TE, EE, and lowE power spectra Sections 4,5
CMB lens Planck lensing measurements Section 5
Planck Planck temperature, polarization, and lensing measurements Sections 6,7
SN Pantheon SNe Ia measurements Sections 4,6,7
WL DES cosmic shear correlation functions Section 5
DES DES 3⇥2 measurements (cosmic shear, galaxy clustering, and galaxy-galaxy lensing) Sections 6,7
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Fig. 1.— Top: Distance measurements from the SDSS lineage of BAO measurements presented as a function of redshift. Measurements
include those from SDSS MGS (Ross et al. 2015; Howlett et al. 2015), BOSS galaxies (Alam et al. 2017), eBOSS LRGs (Bautista et al.
2020; Gil-Marin et al. 2020), eBOSS ELGs (Tamone et al. 2020; de Mattia et al. 2020), eBOSS quasars (Hou et al. 2020; Neveux et al.
2020), the BOSS+eBOSS Ly↵ auto-correlation, and the BOSS+eBOSS Ly↵-quasar cross-correlation measurements (du Mas des Bourboux
et al. 2020). Red points correspond to transverse BAO, while green points to radial BAO. The MGS DV measurement is plotted in orange
with a translation to DM assuming a ⇤CDM model for illustrative purposes. The red and green theory curves are not fit to the BAO
data; they are the Planck bestfit predictions for a flat ⇤CDM model. Bottom: Growth rate measurements from the SDSS lineage of
f�8 measurements as a function of redshift. The measurements match the BAO samples except for z > 2, where we do not report a
measurement of the growth rate. As for the upper panel, theory curve is not a fit, but a bestfit Planck model.

structed correlation function (Ross et al. 2015) and an
RSD measurement from the anisotropic correlation func-
tion (Howlett et al. 2015), both at an e↵ective redshift
ze↵ = 0.15. The BAO measurement was characterized
with DV (z)/rd and the RSD fit was performed using the
post-reconstruction BAO fit as a prior. The likelihoods
from this work are found in the Supplementary Data as-
sociated with Howlett et al. (2015). We refer to this
sample as the ‘Main Galaxy Sample’ (MGS) in the table
and throughout the paper.
BOSS DR12 Galaxies (0.2 < z < 0.6): Over the pe-

riod 2009–2014, BOSS performed spectroscopy to mea-
sure large-scale structure with galaxies over the redshift
interval 0.2 < z < 0.75. BOSS obtained redshifts for
1,372,737 galaxies over 9,376 deg2 from which the final
galaxy catalog was produced for clustering measurements
(Reid et al. 2016). The sample was divided into three
redshift bins covering 0.2 < z < 0.5, 0.4 < z < 0.6,
and 0.5 < z < 0.75 for studies of BAO and RSD. For

each redshift bin, seven di↵erent measurements of BAO,
AP, and RSD were performed (Ross et al. 2017; Vargas-
Magaña et al. 2018; Beutler et al. 2017b,a; Satpathy et al.
2017; Sánchez et al. 2017b; Grieb et al. 2017) based
on the galaxy correlation function or power spectrum.
Following the methodology of Sánchez et al. (2017a),
these measurements were combined into a single consen-
sus likelihood spanning DM (z)/rd and DH(z)/rd for the
BAO-only measurements and DM (z)/rd, DH(z)/rd, and
f�8(z) for the combined BAO and RSD measurements.
These results were computed over all three redshift inter-
vals after fully accounting for systematic errors and co-
variances between parameters and between redshift bins
(Alam et al. 2017). We refer to the 0.2 < z < 0.5 and
0.4 < z < 0.6 samples as the ‘BOSS Galaxies’.
eBOSS Galaxies and Quasars (0.6 < z < 2.2):

eBOSS began full operations in July 2014 to perform
spectroscopy on luminous red galaxies (LRGs), emis-
sion line galaxies (ELGs), and quasars and concluded
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Fig. 5.— Left: H0 versus ⌦m from the inverse distance ladder (CMB+BAO+SN) under two di↵erent cosmological models. Right: H0
versus ⌦m from the combination of BAO and BBN, in a ⇤CDM model (blue). The red (gray) contours show the results when using only
BAO measurements below (above) z = 1. The horizontal shaded area shows the (68%, 95%) measurement of H0 from the distance ladder
technique (SH0ES, Riess et al. 2019).

TABLE 5
Hubble parameter constraints.

Dataset Cosmological model H0 (km s�1Mpc�1) Comments
CMB T&P+BAO+SN ow0waCDM 67.87± 0.86 Inverse distance ladder
BBN+BAO ⇤CDM 67.35± 0.97 No CMB anisotropies
CMB T&P ⇤CDM 67.28± 0.61 Planck 2018 (a)
CMB T&P o⇤CDM 54.5+3.3

�3.9 Planck 2018 (a)
Lensing time delays ⇤CDM 73.3± 1.8 H0LiCOW (b)
Distance ladder - 74.0± 1.4 SH0ES (c)
GW sirens - 70± 10 LIGO (d)
TRGB - 69.6± 1.9 LMC anchor (e)
TFR - 76.2± 4.3 Cosmicflows (f)

Note. — The top section shows constraints derived in this paper, while the bottom section shows a compilation of results
from the literature: (a) CMB anisotropies measured by the Planck satellite (Planck Collaboration et al. 2018b); (b) time delays
from six gravitationally lensed quasars from H0LiCOW (Wong et al. 2020); (c) distance ladder with Cepheids and SNe Ia from
the SH0ES collaboration (Riess et al. 2019); (d) gravitational wave detection of a neutron star binary merger by LIGO (Abbott
et al. 2017a); (e) tip of the red giant branch (TRGB) calibrated with the LMC distance (Freedman et al. 2020); (f) Tully-Fisher
relation (TFR) from the Cosmicflows database of galaxy distances (Tully et al. 2016).

olate the constraints to redshift zero. One example of this
indirect measurement is that obtained using time delays
in strongly-lensed quasars (e.g., Birrer et al. 2019). Other
indirect measurements of H0 use CMB data under strong
assumptions about the model governing the expansion
history from the last scattering surface to today. The
CMB estimates typically give considerably lower values
of the Hubble constant. The final Planck data release, for
example, finds H0 = 67.36 ± 0.54 km s�1Mpc�1 (Planck
Collaboration et al. 2018b) when assuming the ⇤CDM
model.

Explanations for the tension between direct measure-
ments and CMB estimates range from underestimated
systematic errors or modeling of the primordial power
spectrum (e.g., Davis et al. 2019; Dhawan et al. 2020;
Anderson 2019; Hazra et al. 2019), to models for dark
energy (e.g., Li & Shafieloo 2019; Alestas et al. 2020; Di
Valentino et al. 2020), to unmodeled pre-recombination
physics that lead to a decreased sound horizon scale (e.g.,
Poulin et al. 2019; Chiang & Slosar 2018; Beradze & Gog-
berashvili 2020; Vagnozzi 2019; Lin et al. 2019; Arendse
et al. 2019). See Knox & Millea (2020) for a review of
possible solutions to the tension.

We provide here two alternative analyses to show how

BAO measurements allow estimates of H0 that are ro-
bust against the strict assumptions of the CMB-only
estimates. First, we combine Planck temperature and
polarization, SN, and BAO data and allow a very flexi-
ble expansion history to demonstrate that the tension in
H0 estimates is not due to the assumptions of a ⇤CDM
model. Second, we present a measurement of H0 that
uses BAO and a BBN prior that is independent of CMB
anisotropies to demonstrate that the tension is not due
to systematic errors in the CMB data. We finish this sec-
tion presenting the combination of the BAO data with
the local distance ladder measurement, and we discuss
the low value of rd inferred from this analysis.

4.2.1. H0 and the inverse distance ladder

In this subsection we present a cosmological measure-
ment of H0 without an assumption of a flat ⇤CDM
model. This approach is often referred as the inverse

distance ladder, as it relies on a calibrated distance mea-
sure at high redshift that is then extrapolated to z = 0.
Schematically, we use information from the CMB to cal-
ibrate the BAO distances. Those in turn are used to
calibrate the absolute luminosity of SNe Ia.

Since the BAO feature follows DH(z)/rd = c/H(z)/rd
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TABLE 4
Marginalized values and confidence limits in ⇤CDM and one-parameter extensions using only expansion history and CMB temperature

and polarization measurements.

⌦DE H0[km/s/Mpc] ⌦k w ⌃m⌫ [eV]
BAO 0.701± 0.016 � � � �

⇤CDM

CMB T&P 0.6836± 0.0084 67.29± 0.61 � � �
CMB T&P+ BAO 0.6881± 0.0059 67.61± 0.44 � � �
CMB T&P+ SN 0.6856± 0.0078 67.43± 0.57 � � �
CMB T&P+ BAO+ SN 0.6891± 0.0057 67.68± 0.42 � � �
BAO 0.637+0.084

�0.074 � 0.078+0.086
�0.099 � �

o⇤CDM

CMB T&P 0.561+0.050
�0.041 54.5+3.3

�3.9 �0.044+0.019
�0.014 � �

CMB T&P+ BAO 0.6882± 0.0060 67.59± 0.61 �0.0001± 0.0018 � �
CMB T&P+ SN 0.670± 0.017 65.2± 2.2 �0.0061+0.0062

�0.0054 � �
CMB T&P+ BAO+ SN 0.6891± 0.0057 67.67± 0.60 �0.0001± 0.0018 � �
BAO 0.729+0.017

�0.038 � � �0.69± 0.15 �

wCDM

CMB T&P 0.801+0.057
�0.022 � � �1.58+0.16

�0.35 �
CMB T&P+ BAO 0.694± 0.012 68.4+1.4

�1.5 � �1.034+0.061
�0.053 �

CMB T&P+ SN 0.692± 0.010 68.3± 1.1 � �1.035± 0.037 �
CMB T&P+ BAO+ SN 0.6929± 0.0075 68.21± 0.82 � �1.026± 0.033 �

⌫⇤CDM

CMB T&P 0.680+0.016
�0.0087 67.0+1.2

�0.67 � � < 0.268 (95%)
CMB T&P+ BAO 0.6890+0.0069

�0.0061 67.70+0.53
�0.48 � � < 0.134 (95%)

CMB T&P+ SN 0.686+0.011
�0.0083 67.47+0.83

�0.65 � � < 0.174 (95%)
CMB T&P+ BAO+ SN 0.6898± 0.0061 67.76± 0.47 � � < 0.125 (95%)

Note. — Reported uncertainties correspond to 68% confidence intervals except for
P

m⌫ in the ⌫⇤CDM model. The reportedP
m⌫ values correspond to the 95% upper limits. BAO measure the dimensionless quantity rdH0/c, and therefore can only

provide constraints on H0 when combined with other probes. The constraints of CMB T&P in the wCDM model are a↵ected
by the H0 prior of H0 < 100km/s/Mpc, so no entry is provided here either.
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Fig. 4.— Constraints on the wCDM and ⌫⇤CDM models, as in Table 4. Left: w–⌦m constraints under the assumption of a flat
wCDM cosmology from the Planck CMB temperature and polarization data (gray), Pantheon SNe Ia sample (red), and SDSS BAO-only
measurements (blue). Right:

P
m⌫–⌦m constraints under the assumption of a flat ⇤CDM cosmology where the summed neutrino mass

is allowed as a free parameter, for the combination of CMB (grey), CMB + SN (red), and CMB + BAO (blue).

Flat

arXiv:2007.08991

Alam et al. (’20)

Dark energy equation-of-state

Hubble parameter

PDE = w ρDE



Ongoing/upcoming surveys

Nancy Grace Roman Space 
Telescope (WFIRST)

From stage III to stage IV-class surveys (ground & space)

DESI
 (2021～)

VCRO (LSST)

(2021+)

 SPHEREx

(2023+)

Subaru

HSC 
(2014~)

PFS 
(2023~)

Euclid 
(2023+)Imaging 

surveys

Spectroscopic 
surveys HETDEX 

(2018~)

(2025+)



Future 

2 SCIENCE MOTIVATION AND REQUIREMENTS 24

Figure 2.10: Expansion rate of the Universe as a function of redshift. In the upper plot, the filled
blue circle is the H0 measurement of [106], the solid black square shows the SDSS BAO measurement
of [107], the red square shows the BOSS galaxy BAO measurement of [6], the red circle shows the
BOSS Ly-↵ forest BAO measurement of [47], and the red x shows the BOSS Ly-↵ forest BAO-quasar
cross-correlation measurement of [108]. The lower plot shows projected DESI points.

Figure 2.11: The w0 � wa plane showing projected limits (68%) from DESI using just BAO and
using the broadband (BB) power spectrum. Also shown is the limit from BOSS BAO. Planck priors
are included in all cases, and DESI includes the BGS and non-redundant part of BOSS. The figure
of merit of the surveys is inversely proportional to the areas of the error ellipses.

Subaru PFS SSP Survey 5

Figure 4. Left panel: Expected accuracy of reconstructing the dark energy density parameter at each redshift, ⌦DE(z), from the BAO-measured DA(z) and
H(z). Here we used a fiducial model of a flat ⇤CDM. The solid curve shows the energy density parameter for the fiducial ⇤CDM model. Right: Expected 1�
constraints on f�8 as a function of redshift, from the PFS data combined with Planck 2018 (red points), as well as the current constraints. As an example, the
dashed line shows the prediction of a model of modified gravity called “nDGP+DE”, whereas the solid line shows that of GR+⇤CDM. Here we normalized both
the “nDGP+DE” and ⇤CDM models so that the model prediction matches the current constraints at z < 0.6. The PFS forecast includes both the power spectrum
and bispectrum.

Another possibility is that the cosmic acceleration is due
not to dark energy, but rather to a modification of behavior of
gravity on large scales. While modified gravity models are of-
ten designed to reproduce the geometry, they change the struc-
ture growth from GR, and the measured growth rate of struc-
ture can be used to test this. The right panel of Figure 4 shows
the expected constraints from PFS on the linear growth rate of
the structure, f�8, as a function of redshift, as well as the ex-
isting constraints from various galaxy surveys. The PFS cos-
mology program will measure f�8 with ⇠6% level precision
extending into a hitherto uncharted redshift range, providing a
powerful test of GR on cosmological scales. For comparison
the dashed line shows the so-called “nDGP+DE” brane-world
model (Dvali et al. 2000) as an example of the modified grav-
ity models. The “nDGP+DE” brane-world model is based
on the normal branch of the DGP brane-world model with a
quintessence-type dark energy component added on the brane,
so that the expansion history in such a model coincides with
flat ⇤CDM (Schmidt 2009). Here the normalization of f�8
is adjusted to match the existing observations at low redshift
(z < 0.6), while the cross-over scale rc, which is the charac-
teristic additional parameter over ⇤CDM, is set to the natural
value rc = H�1

0 . Combining with other galaxy surveys, PFS
can rule out (or confirm!) this model decisively.

In summary, the PFS cosmology survey will chart the large-
scale distribution of galaxies out to z=2.4 with unprecedented
fidelity over an enormous cosmic volume. This will enable
us to study, for the first time in detail, the time evolution of
cosmic structures and measure the sum of the neutrino masses
to the precision of �(

P
m⌫) = 0.02 eV, which can test the

cosmological model beyond the standard ⇤CDM, over a wide
range of redshifts.

4.2. Uniqueness of the PFS cosmology program
Among spectroscopic surveys such as DESI and Euclid that

will be under way at the same time, the uniqueness of the PFS
cosmology program lies in its wide redshift coverage and high
number density of galaxies as well as its synergy with the
HSC imaging survey (discussed in the next section).

The PFS cosmology program is the only planned survey
which covers 0.6 < z < 2.4 with a single tracer (i.e., ELGs).

This consistency as cosmological probes is a key advantage of
the PFS survey. With significant improvements in the preci-
sion of cosmological measurements, tensions among di↵erent
probes have started appearing. One such tension is the tension
in the Hubble constant, where the measured values from lo-
cal distance-ladder measurements are in tension at 4.4� level
from the Planck (Bernal et al. 2016; Freedman 2017; Riess
et al. 2019). Having measurements of H(z) across wide red-
shift range by itself is valuable to address this tension as it
can place a stringent constraint on changing the evolution of
the late-time Universe. Another tension arises from the con-
straints on ⌦m and H0 within a flat ⇤CDM model by the BAO
measurements from the SDSS BOSS and eBOSS galaxies at
z < 1.0 and Lyman-↵ forests and quasars at z > 1.0. As shown
in the left panel of Figure 5, they prefer rather di↵erent values
of⌦m and H0. This tension in⌦m from di↵erent probes at low
and high redshifts could be an important signature of physics
beyond the standard⇤CDM model. Alternatively, it may sim-
ply represent systematic e↵ects in the various probes. By us-
ing a single tracer (i.e. [O ii] emitters) of large-scale structures
over a wide redshift range, PFS can directly address this ten-
sion free from such systematic biases, while simultaneously
examining whether other probes su↵er from them.

Having a wide redshift coverage can also improve the pre-
cision of the measurement. The right panel of Figure 5 shows
the expected precision of the PFS BAO-only measurements
in two di↵erent redshift ranges, wheres the low-z bin is com-
bined with BOSS measurement (z < 0.6 Alam et al. 2017b).
Di↵erent redshifts show di↵erent degeneracies in the⌦m�H0
plane because of the way H(z) integral works, thus the com-
bined analysis has a better precision. Thus measurements over
a wide range of redshifts are crucial for accurate, consistent,
and robust cosmological results.

Measuring f�8 at high redshift is only possible with the
PFS. Other planned surveys are suboptimal for this purpose;
for instance, DESI will probe high redshifts (z > 1.6) using
the Lyman-↵ forest where extracting f�8 is not straightfor-
ward because of radiative transfer uncertainties. So, measur-
ing the growth rate at high redshifts ensures that the PFS cos-
mology survey will have a unique discovery potential. Fur-
thermore, the combination of PFS and DESI can be even more

Subaru PFS
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Figure 2.12: Growth of structure, f , as a function of redshift, showing projected DESI mea-
surements and their ability to discriminate against alternative gravity models, f(R) (whose scale-
dependent growth we show evaluated at two di↵erent scales) and DGP. The brown (light) error
bars at z < 0.5 correspond to DESI Bright Galaxy Survey; these are expected to improve when
information from the multiple tracers in the BGS is included. Adopted from the Snowmass report
on the growth of cosmic structure [64].

theory information, not just BAO [19]. We also include the reconstruction factor (50% reduction
in damping length), assuming that reconstruction will recover non-BAO information as well. See
[95] for more discussion.

Ly-↵ Forest

DESI will also probe large-scale structure using the Ly-↵ forest [111, 43], i.e., the Ly-↵ absorption
by neutral gas in the intergalactic medium in the spectra of high redshift quasars (it may be
possible to do even better at faint magnitudes using Lyman-break galaxies [41]). The distribution
of intergalactic gas can be used as a complementary tracer to galaxies of the underlying matter
distribution for BAO and broadband power spectrum characteristics.

The constraints from the Ly-↵ forest are di�cult to predict accurately, because they require
careful simulation [112, 113]. The forecasts described below we believe are a conservative assessment.
We limit the application of Ly-� forest data to BAO only (see below), and do not include cross-
correlations with quasar density, nor statistics beyond the power spectrum, such as the bispectrum,
which are known to be powerful for breaking IGM model degeneracies (e.g., [114]). Finally, we only
use the redshift range z = 2� 2.7.

We model the three dimensional power spectrum of Ly-↵ using Eq. (2.15) and, except as
otherwise noted, we use the method of [41] to estimate the errors obtainable by DESI. We use
Table I of [37] to model the dependence of b, �, and fitting parameters of D. While these are
primarily valid near z ⇡ 2.25, for BAO the model dependence is not significant. For broadband
spectra constraints the bias and damping parameters depend on the amplitude and slope of the
linear power spectrum, temperature-density relation [115], and mean level of absorption [116], all of
which are varied in our Fisher matrix calculations. To help constrain these parameters, we include
the one-dimensional power spectrum, which could be measured from the hundreds of existing high
resolution spectra [116, 117].
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Figure 4. Left panel: Expected accuracy of reconstructing the dark energy density parameter at each redshift, ⌦DE(z), from the BAO-measured DA(z) and
H(z). Here we used a fiducial model of a flat ⇤CDM. The solid curve shows the energy density parameter for the fiducial ⇤CDM model. Right: Expected 1�
constraints on f�8 as a function of redshift, from the PFS data combined with Planck 2018 (red points), as well as the current constraints. As an example, the
dashed line shows the prediction of a model of modified gravity called “nDGP+DE”, whereas the solid line shows that of GR+⇤CDM. Here we normalized both
the “nDGP+DE” and ⇤CDM models so that the model prediction matches the current constraints at z < 0.6. The PFS forecast includes both the power spectrum
and bispectrum.

Another possibility is that the cosmic acceleration is due
not to dark energy, but rather to a modification of behavior of
gravity on large scales. While modified gravity models are of-
ten designed to reproduce the geometry, they change the struc-
ture growth from GR, and the measured growth rate of struc-
ture can be used to test this. The right panel of Figure 4 shows
the expected constraints from PFS on the linear growth rate of
the structure, f�8, as a function of redshift, as well as the ex-
isting constraints from various galaxy surveys. The PFS cos-
mology program will measure f�8 with ⇠6% level precision
extending into a hitherto uncharted redshift range, providing a
powerful test of GR on cosmological scales. For comparison
the dashed line shows the so-called “nDGP+DE” brane-world
model (Dvali et al. 2000) as an example of the modified grav-
ity models. The “nDGP+DE” brane-world model is based
on the normal branch of the DGP brane-world model with a
quintessence-type dark energy component added on the brane,
so that the expansion history in such a model coincides with
flat ⇤CDM (Schmidt 2009). Here the normalization of f�8
is adjusted to match the existing observations at low redshift
(z < 0.6), while the cross-over scale rc, which is the charac-
teristic additional parameter over ⇤CDM, is set to the natural
value rc = H�1

0 . Combining with other galaxy surveys, PFS
can rule out (or confirm!) this model decisively.

In summary, the PFS cosmology survey will chart the large-
scale distribution of galaxies out to z=2.4 with unprecedented
fidelity over an enormous cosmic volume. This will enable
us to study, for the first time in detail, the time evolution of
cosmic structures and measure the sum of the neutrino masses
to the precision of �(

P
m⌫) = 0.02 eV, which can test the

cosmological model beyond the standard ⇤CDM, over a wide
range of redshifts.

4.2. Uniqueness of the PFS cosmology program
Among spectroscopic surveys such as DESI and Euclid that

will be under way at the same time, the uniqueness of the PFS
cosmology program lies in its wide redshift coverage and high
number density of galaxies as well as its synergy with the
HSC imaging survey (discussed in the next section).

The PFS cosmology program is the only planned survey
which covers 0.6 < z < 2.4 with a single tracer (i.e., ELGs).

This consistency as cosmological probes is a key advantage of
the PFS survey. With significant improvements in the preci-
sion of cosmological measurements, tensions among di↵erent
probes have started appearing. One such tension is the tension
in the Hubble constant, where the measured values from lo-
cal distance-ladder measurements are in tension at 4.4� level
from the Planck (Bernal et al. 2016; Freedman 2017; Riess
et al. 2019). Having measurements of H(z) across wide red-
shift range by itself is valuable to address this tension as it
can place a stringent constraint on changing the evolution of
the late-time Universe. Another tension arises from the con-
straints on ⌦m and H0 within a flat ⇤CDM model by the BAO
measurements from the SDSS BOSS and eBOSS galaxies at
z < 1.0 and Lyman-↵ forests and quasars at z > 1.0. As shown
in the left panel of Figure 5, they prefer rather di↵erent values
of⌦m and H0. This tension in⌦m from di↵erent probes at low
and high redshifts could be an important signature of physics
beyond the standard⇤CDM model. Alternatively, it may sim-
ply represent systematic e↵ects in the various probes. By us-
ing a single tracer (i.e. [O ii] emitters) of large-scale structures
over a wide redshift range, PFS can directly address this ten-
sion free from such systematic biases, while simultaneously
examining whether other probes su↵er from them.

Having a wide redshift coverage can also improve the pre-
cision of the measurement. The right panel of Figure 5 shows
the expected precision of the PFS BAO-only measurements
in two di↵erent redshift ranges, wheres the low-z bin is com-
bined with BOSS measurement (z < 0.6 Alam et al. 2017b).
Di↵erent redshifts show di↵erent degeneracies in the⌦m�H0
plane because of the way H(z) integral works, thus the com-
bined analysis has a better precision. Thus measurements over
a wide range of redshifts are crucial for accurate, consistent,
and robust cosmological results.

Measuring f�8 at high redshift is only possible with the
PFS. Other planned surveys are suboptimal for this purpose;
for instance, DESI will probe high redshifts (z > 1.6) using
the Lyman-↵ forest where extracting f�8 is not straightfor-
ward because of radiative transfer uncertainties. So, measur-
ing the growth rate at high redshifts ensures that the PFS cos-
mology survey will have a unique discovery potential. Fur-
thermore, the combination of PFS and DESI can be even more
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Figure 2.10: Expansion rate of the Universe as a function of redshift. In the upper plot, the filled
blue circle is the H0 measurement of [106], the solid black square shows the SDSS BAO measurement
of [107], the red square shows the BOSS galaxy BAO measurement of [6], the red circle shows the
BOSS Ly-↵ forest BAO measurement of [47], and the red x shows the BOSS Ly-↵ forest BAO-quasar
cross-correlation measurement of [108]. The lower plot shows projected DESI points.

Figure 2.11: The w0 � wa plane showing projected limits (68%) from DESI using just BAO and
using the broadband (BB) power spectrum. Also shown is the limit from BOSS BAO. Planck priors
are included in all cases, and DESI includes the BGS and non-redundant part of BOSS. The figure
of merit of the surveys is inversely proportional to the areas of the error ellipses.
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Theoretical modeling far beyond linear regime is challenging

Combining several statistics such as bispectrum

Cross correlating multiple data set, 

also utilizing the information that has been abandoned



Improving cosmological constraints
Toward a better cosmological constraints,

Pushing available Fourier modes to a larger value

Using technique/method that maximizes cosmological information : 

kmax ↗ (small scales)

without conducting extra surveys

Theoretical modeling far beyond linear regime is challenging

Combining several statistics such as bispectrum

Cross correlating multiple data set, 

also utilizing the information that has been abandoned
Intrinsic alignment (IA) of galaxies as a cosmological probe

Focus of this seminar

& cosmological information
Statistical properties of 3D correlations 



Intrinsic alignment (IA) of galaxy
Projected shape of observed galaxies/dark matter halos

In general, galaxy/halo has elliptical shape, aligned to some directions:

∫ d2θ Iobs(θ) θi θj

∫ d2θ Iobs(θ)
(i, j = 1,2)qobs

ij ≡Quadrupole moment 
of galaxy image

intensity

θ1

θ2

ϵ+ ≡
qobs

11 − qobs
22

qobs
11 + qobs

22
, ϵ× ≡

2qobs
12

qobs
11 + qobs

22
Ellipticity：

ϵ+ > 0

ϵ+ < 0 ϵ× > 0

ϵ× < 0



Intrinsic alignment (IA) of galaxy
Ellipticity of distant galaxy is induced by the gravitational lensing of 
foreground large-scale structure :

Time evolution of large-structure

⃗θ s

⃗θ

ϵa ≃ γI
a + 2 ga ;

Reduced shear

ga ≡
γa

1 − κ
( ≪ 1)

(a = + or ×)

LensingIA

Gravitational lensing induces non-zero spatial correlation

However, 

IA can have non-zero spatial correlation

A clue to detect lensing signal

(contaminant of lensing measurement)
Troxel & Ishak (’15)
Joachimi et al. (’15)
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Figure 5. Comparison of the real space correlation functions between the
observed and mock LRGs. The black points with the error bars show the
observed correlation function (Zehavi et al. 2005). The dashed line is that
of the mock galaxy catalog using the best-fit HOD model for the LRGs (Seo
et al. 2008).
(A color version of this figure is available in the online journal.)

LRGs are then assigned to each halo with a central based on the
Poisson distribution with the average of 〈Nsat(M)〉. The satel-
lite LRGs inside dark matter halos are distributed following the
Navarro–Frenk–White profile (Navarro et al. 1997). The result-
ing fraction of central LRGs is 93.7%, consistent with that from
the observation (Section 2).

In Figure 5, we show a comparison of the real-space cor-
relation function between the mock and observed (Zehavi
et al. 2005) LRGs. Very good agreement of the results be-
tween the observation and mock catalog can be seen except
for r < 0.5 h−1 Mpc, as was seen by Seo et al. (2008). This
small discrepancy is irrelevant to the current study because the
satellite distribution within halos dominates on this scale and
only central LRGs are used for the statistical analysis below.

4.3. Modeled Ellipticity Correlation Function

The principal axes of each halo in a projected plane are
computed by diagonalizing the momentum of inertial tensor
(e.g., Miralda-Escudé 1991; Croft & Metzler 2000)

Iij =
∑

xixj , (5)

where the sum is over all the particles in the halo. The ellipticity
components of each halo are then estimated in the same way as
those of LRGs (Equation (1)), where the value of q is assumed
to be zero again.

First, we assume that all central galaxies are completely
aligned with their parent dark matter halos. Then the ellipticity
correlation functions of central galaxies are equal to those of
their parent halos. With this assumption, we plot the ellipticity
autocorrelation functions of the mock LRGs, c11 and c22, in
Figure 6. In order to refine the statistics, we averaged over seven
mock LRG samples with different random seeds for assigning
LRGs to dark halos. Interestingly, the ellipticity correlation
function c11 of the mock LRGs has a very similar shape to
the observed function, but the amplitude is about four times
higher. The function c22 is significantly negative at r about a few
h−1 Mpc, compared to the real observed one. In the next section,
we will explain these differences between the observation and
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Figure 6. Ellipticity autocorrelation functions of the central LRGs, (top) c11(r)
and (bottom) c22(r). In both panels, the data points with the error bars are the
measurements from the SDSS, the same ones as those in the bottom panel of
Figure 1. The dashed red lines are results of the mock central LRGs with no
misalignment with their parent halos. The solid red lines are those with the
misalignment parameter of σθ = 35◦. The horizontal axis at the top shows the
corresponding angular scale when all the galaxies are located at z = 1.
(A color version of this figure is available in the online journal.)

simulation by considering misalignment of central galaxies with
their host halos. In Figure 6 we also show the angular separations
with the assumption of all the galaxies being at z = 1, which is
the typical redshift of recent weak lensing surveys (see Section
6). Note that the values of the ellipticity correlation function of
halos are about an order of magnitude larger than the previous
result by Jing (2002), because we assume q = 0 in the current
study.

5. CONSTRAINTS ON MISALIGNMENT

In this section we consider a more general case in which the
position angle of each central galaxy is not completely aligned
with its host halo. We assume that the probability distribution
function (PDF) of the misalignment angle θ between the major
axes of central LRGs and their host halos is a Gaussian function
with a zero mean and a width σθ ,

f (θ; σθ )dθ = 1√
2πσθ

exp

[

−1
2

(
θ

σθ

)2
]

dθ, (6)

where σθ is the misalignment angle parameter or the typical
misalignment angle. We artificially assign misalignment to
position angles of each mock central LRG according to Equation
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lite LRGs inside dark matter halos are distributed following the
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ing fraction of central LRGs is 93.7%, consistent with that from
the observation (Section 2).
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tween the observation and mock catalog can be seen except
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small discrepancy is irrelevant to the current study because the
satellite distribution within halos dominates on this scale and
only central LRGs are used for the statistical analysis below.
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components of each halo are then estimated in the same way as
those of LRGs (Equation (1)), where the value of q is assumed
to be zero again.

First, we assume that all central galaxies are completely
aligned with their parent dark matter halos. Then the ellipticity
correlation functions of central galaxies are equal to those of
their parent halos. With this assumption, we plot the ellipticity
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simulation by considering misalignment of central galaxies with
their host halos. In Figure 6 we also show the angular separations
with the assumption of all the galaxies being at z = 1, which is
the typical redshift of recent weak lensing surveys (see Section
6). Note that the values of the ellipticity correlation function of
halos are about an order of magnitude larger than the previous
result by Jing (2002), because we assume q = 0 in the current
study.

5. CONSTRAINTS ON MISALIGNMENT

In this section we consider a more general case in which the
position angle of each central galaxy is not completely aligned
with its host halo. We assume that the probability distribution
function (PDF) of the misalignment angle θ between the major
axes of central LRGs and their host halos is a Gaussian function
with a zero mean and a width σθ ,

f (θ; σθ )dθ = 1√
2πσθ

exp

[

−1
2

(
θ

σθ

)2
]

dθ, (6)

where σθ is the misalignment angle parameter or the typical
misalignment angle. We artificially assign misalignment to
position angles of each mock central LRG according to Equation
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LRGs are then assigned to each halo with a central based on the
Poisson distribution with the average of 〈Nsat(M)〉. The satel-
lite LRGs inside dark matter halos are distributed following the
Navarro–Frenk–White profile (Navarro et al. 1997). The result-
ing fraction of central LRGs is 93.7%, consistent with that from
the observation (Section 2).

In Figure 5, we show a comparison of the real-space cor-
relation function between the mock and observed (Zehavi
et al. 2005) LRGs. Very good agreement of the results be-
tween the observation and mock catalog can be seen except
for r < 0.5 h−1 Mpc, as was seen by Seo et al. (2008). This
small discrepancy is irrelevant to the current study because the
satellite distribution within halos dominates on this scale and
only central LRGs are used for the statistical analysis below.

4.3. Modeled Ellipticity Correlation Function

The principal axes of each halo in a projected plane are
computed by diagonalizing the momentum of inertial tensor
(e.g., Miralda-Escudé 1991; Croft & Metzler 2000)

Iij =
∑

xixj , (5)

where the sum is over all the particles in the halo. The ellipticity
components of each halo are then estimated in the same way as
those of LRGs (Equation (1)), where the value of q is assumed
to be zero again.

First, we assume that all central galaxies are completely
aligned with their parent dark matter halos. Then the ellipticity
correlation functions of central galaxies are equal to those of
their parent halos. With this assumption, we plot the ellipticity
autocorrelation functions of the mock LRGs, c11 and c22, in
Figure 6. In order to refine the statistics, we averaged over seven
mock LRG samples with different random seeds for assigning
LRGs to dark halos. Interestingly, the ellipticity correlation
function c11 of the mock LRGs has a very similar shape to
the observed function, but the amplitude is about four times
higher. The function c22 is significantly negative at r about a few
h−1 Mpc, compared to the real observed one. In the next section,
we will explain these differences between the observation and
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simulation by considering misalignment of central galaxies with
their host halos. In Figure 6 we also show the angular separations
with the assumption of all the galaxies being at z = 1, which is
the typical redshift of recent weak lensing surveys (see Section
6). Note that the values of the ellipticity correlation function of
halos are about an order of magnitude larger than the previous
result by Jing (2002), because we assume q = 0 in the current
study.

5. CONSTRAINTS ON MISALIGNMENT

In this section we consider a more general case in which the
position angle of each central galaxy is not completely aligned
with its host halo. We assume that the probability distribution
function (PDF) of the misalignment angle θ between the major
axes of central LRGs and their host halos is a Gaussian function
with a zero mean and a width σθ ,

f (θ; σθ )dθ = 1√
2πσθ

exp

[

−1
2

(
θ

σθ

)2
]

dθ, (6)

where σθ is the misalignment angle parameter or the typical
misalignment angle. We artificially assign misalignment to
position angles of each mock central LRG according to Equation
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Intrinsic alignment (IA) correlation

Galaxy Alignments: An Overview 41

Fig. 12 Top: Examples of some large-scale intrinsic alignments measurements in the literature, employing
a galaxy density-shape correlation function, wg+ , as a function of comoving transverse separation between
galaxies, rp . The samples called “Main” refer to the SDSS main (flux-limited) spectroscopic sample, divided
into two subsamples, both at intermediate (Milky Way-type) luminosities. The red sample results use the
sample from Hirata et al. (2007), but were re-measured by Joachimi et al. (2011) using a different colour cut
that is more consistent with ones used by later works. The WiggleZ results come from Mandelbaum et al.
(2011), and the LOWZ (a low-redshift sample from the SDSS BOSS survey) results come from Singh et al.
(2014). Bottom: A comparison of the observed density-shape correlation for LRGs in SDSS, a prediction
from the MassiveBlack-II (MB-II) hydrodynamic simulation, and the non-linear alignment model. As shown,
both hydrodynamic simulations and this simple analytic model are well able to reproduce the scaling of
the observed density-shape correlations with separation. The data and predictions have been normalised by
the linear galaxy bias, here referred to as blin, relating the galaxy and matter overdensities, δg = blinδ. The
analytic model labelled ‘NLA’ corresponds to a slightly modified version of Eq. (16); see also Bridle and
King (2007). Bottom figure based on data from Tenneti et al. (2015), with credit to Sukhdeep Singh

6.3 Late-Type Galaxies

The alignment of late-type galaxies follows an equally persuasive physical picture, but there
are two competing mechanisms as possible explanations. Late-type spiral galaxies have
formed a galactic disc which, depending on the angle of inclination, is perceived to have
a certain ellipticity. The inclination of the disc must be determined by its angular momen-
tum, but how the angular momentum is ultimately linked to the surrounding large-scale

Joachimi et al. (’15)

SDSS main

BOSS  LOWZ

(early type) （GI correlation）

Projected correlation

⟨δgγI
+⟩

No clear correlation signal is 
detected for late-type galaxies

Behaviors of IA correlation crucially depend on galaxy type

Galaxy-IA correlation

WiggleZ

Joachimi et al. (’11)
Mandelaum et al. (’11)
Singh et al.  (’14)



IA in hydrodynamic simulations
Shi et al. (’20)

Blue seems to be randomly oriented

of their survey footprints, we should be able to measure the 3D IA power spectrum. Hence
the purpose of this paper is to make a quantitative study of the IA effects for various types
of galaxies using the state-of-the art hydrodynamical simulations, Illustris-TNG300 [29, 30].
Our study will give us a guideline for measurements of the IA effects based on the 3D power
spectrum method, for the existing and upcoming datasets. To do this, we study the IA effects
of galaxies over the range of scales, 0.1 < k/hMpc�1 < 60 for galaxies at 0.3  z  2.

The structure of this paper is as follows. The simulation and galaxy selection is de-
scribed in Section 2. In Section 3, we briefly introduce the non-linear alignment model and
the quadratic alignment model. Galaxy IA for different stellar mass and its evolution across
the redshift of 0.3 to 2 are presented in Section 4.1. In Section 4.2, we study the IA power
spectrum for ng = 10�4 (h�1Mpc)�3 galaxy samples ranked either by M? or SFR. In Sec-
tions 4.3 and 4.4, we explore the dependence of IA on galaxy morphology and environment
(central/satellite). We further present a prediction of IA for future surveys, including their
signal-to-noise ratio in Section 5.

2 Illustris-TNG and Methods
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Figure 1. Snapshots of a 40 ⇥ 40(h�1Mpc)2 slice with a thickness of 2h�1Mpc at z = 2, 1.5, 1,
0.7, 0.5, and 0.3, respectively. The blue and red sticks represent star-forming and quiescent galaxies
(M? > 109h�1M�), where the quiescent galaxies are selected by applying sSFR < 10�11M� yr�1.
The direction of each stick is defined to be along the major axes of the projected ellipse of the galaxy
and the length is proportional to the ellipticity amplitude.

2.1 The Illustris-TNG simulations

Throughout this work, we use the data from the Illustris-TNG project [31]. Illustris-TNG
is a suite of cosmological magneto-hydrodynamical (MHD) simulations that feature compre-
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Red: quiescent ‘galaxy’
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Throughout this work, we use the data from the Illustris-TNG project [31]. Illustris-TNG
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Figure 4. The IA cross power spectrum, P�E , for fixed number density samples (ng =
10�4(h�1Mpc)�3), ranked by either stellar mass (left panel) or SFR (right panel). Here we show
the results for the IA shear calculated by both the reduced inertia tensor (�kP�E , filled circles) and
that of the angular momentum vector (�kP�EJ , open squares). Note that the y axis of the right panel
is not in log scale. The IA alignment for the M?-limited galaxies characterized by P�E and P�EJ is
clear and strong. There is no IA signal for SFR-limited sample at k < 3hMpc�1.

Figure 5. The cumulative signal-to-noise (S/N) ratio as a function of kmax for M?-limited samples
with varying number densities, as indicated by the legend. The number densities here are in units of
(h�1Mpc)�3. The cumulative S/N is calculated by integrating the differential S/N in each k bin over
0.1 < k/hMpc�1 < kmax. Here we assume the Gaussian covariance for simplicity. The cumulative
S/N ratio is highest when ng = 10�3(h�1Mpc)�3.

the stellar angular momentum vector, as defined in Eqs. (2.3) and (2.4). We use P�E and
P�EJ to denote the resulting IA power spectra separately.

For the M?-limited sample, there exists a clear IA signal at all redshifts for both P�E

and P�EJ . The IA strength for P�E at z = 0.5 and 2 are AIA = 24.05 ± 2.01 and 9.69 ± 2.02,
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Mechanisms of IA correlation

γI
a ∝ ∂2Φ Gravitational 
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aligned along the tidal field induced by large-scale structure
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Cosmology with IA
Tidally-induced IAs look promising and measuring these can have 

a potential to improve cosmological constraints
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eBOSS*

Relevant surveys:

LOWZ ( ) & CMASS ( )z ∼ 0.3 z ∼ 0.5
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•  How well one can model/predict IA correlations ? 
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extended Baryon Oscillation Spectroscopic Survey

Done

Done

Ongoing
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Linear alignment (LA) model

Observing IA of early-type galaxies looks very interesting

A model for tidally-induced IA (Catelan et al. ’01, Hirata & Seljak ’04)
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In galaxy redshift surveys, one can measure 3D spatial correlation

Line of sight



IA statistics in 3D
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With the IA defined by projected shape, their correlation becomes 
anisotropic along line of sight, characterized as a function of  (r∥, r⊥)



Anisotropic GI & II correlations

GI correlation II correlation (ξ± ≡ ξ++ ± ξ××)

 : line-of-sight separationr∥

Okumura & AT (’20)They are given as function of  (r⊥, r∥)
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Figure1.Left-handpanel:GIcorrelationfunctionasafunctionofseparationsperpendicularandparalleltothelineofsightinrealspacer2ξR
δ+(left)andin

redshiftspacer2ξS
δ+(right).ThedifferencebetweentheleftandrighthandsidesisduetoRSDs.Middlepanel:TwoIIcorrelationfunctions,r2ξ+(left)and

r2ξ−(right).Right-handpanel:VIcorrelationfunctionrξv+.TheBAOscale,r"100h−1Mpc,isdenotedbythedashedgreycirclesinallthepanels.Allthe
statisticsarecalculatedatz=0.3.
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momentofξ××islargerthanotherIIcorrelationcomponents.
Probingthemultipolemomentsmayenableonetoeasilymeasure
theIIcorrelationfunctionratherthanfocusingonthemonopole
alone.

4.3VIcorrelation

Finally,wederivethesimpleexpressionoftheVIcorrelation
function.Again,bywritingkz/k=y1,0(k̂)andutilizingtherela-
tionbetweeny#mandtheWigner’s3-jsymbols,theresultingVI
correlationfunctionisexpressedas

ξv+(r)=C̃1cos(2φ)µ(1−µ2)%(1)
δ&,3(r).(21)

Anothercomponent,ξv×,isalsoderivedinthesamemanneras
equation(21),butcos(2φ)termisreplacedwithsin(2φ).Just
liketheIIcorrelation,theVIcorrelationisnotaffectedbyRSD
atlinearorder,andweomitthesuperscriptSorR.Weplotthis
functionasafunctionofr=(r⊥,r‖)intheright-handpanelof
Fig.1.Althoughwiththevelocityfieldwecanprobethestructure
growthatlargerscalesthanwiththedensityfield,theBAOfeatures
intheVIcorrelationaremuchlessprominentthanthoseintheGI
andIIcorrelations.

Fromequation(21),wecaneasilyfindnon-zeromultipoleswhich
are,#=1and#=3,and

ξv+,1(r)=−ξv+,3(r)=2
5C̃1%

(1)
δ&,3(r).(22)

Thus,thereisarelationsimilartothecaseoftheGIfunction,but
heretheoctopole-to-dipoleratiobecomes−1.Thisisshowninthe
upperrightpanelofFig.2(equivalenttothebluedottedcurvein
fig.12ofOkumuraetal.2019).

4.4Emodeauto-andcross-correlations

Byanalogywithweaklensingsurveys,theabovealignmentstatis-
ticscanbedecomposedintogradienttype(Emode)andcurltype
(Bmode)components(Crittendenetal.2002;Schneider2006;
Troxel&Ishak2015).Sinceweaklensingisknowntoproduce
onlyEmodetothelowestorder,itisusefultoexpressourformulas
derivedabovewiththeellipticitiesdecomposedintoE/Bmodes.

AsshownbyBlazeketal.(2011),intheLAmodeltheEandB
modeautocorrelationsaresimplyξEE(r)=ξ+(r)andξBB(r)=0
.Thecross-correlationbetweengalaxiesandEmodesinrealspace
isderivedas

ξR
gE(r)=−2

3
C̃1bg

[
P0(µ)%

(0)
δδ,0(r)+P2(µ)%

(0)
δδ,2(r)

]
.(23)
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Figure 1. Left-hand panel: GI correlation function as a function of separations perpendicular and parallel to the line of sight in real space r2ξR
δ+ (left) and in

redshift space r2ξS
δ+ (right). The difference between the left and right hand sides is due to RSDs. Middle panel: Two II correlation functions, r2ξ+ (left) and

r2ξ− (right). Right-hand panel: VI correlation function rξv +. The BAO scale, r " 100 h−1 Mpc, is denoted by the dashed grey circles in all the panels. All the
statistics are calculated at z = 0.3.
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Figure 2. Multipole moments of correlation functions. The upper-left panel
shows the GI correlation function in real space (dashed) and in redshift space
(dotted), while the upper-right panel presents the VI correlation function.
The bottom panels show the two components of the II correlation functions,
ξ+ (lower left) and ξ− (lower right). The GI and II correlations are multiplied
by r2, while the VI correlation is multiplied by r and a factor of 10. All the
statistics are calculated at z = 0.3.

moment of ξ× × is larger than other II correlation components.
Probing the multipole moments may enable one to easily measure
the II correlation function rather than focusing on the monopole
alone.

4.3 VI correlation

Finally, we derive the simple expression of the VI correlation
function. Again, by writing kz/k = y1,0(k̂) and utilizing the rela-
tion between y#m and the Wigner’s 3-j symbols, the resulting VI
correlation function is expressed as

ξv+(r) = C̃1 cos (2φ)µ(1 − µ2)%(1)
δ&,3(r). (21)

Another component, ξ v ×, is also derived in the same manner as
equation (21), but cos (2φ) term is replaced with sin (2φ). Just
like the II correlation, the VI correlation is not affected by RSD
at linear order, and we omit the superscript S or R. We plot this
function as a function of r = (r⊥, r‖) in the right-hand panel of
Fig. 1. Although with the velocity field we can probe the structure
growth at larger scales than with the density field, the BAO features
in the VI correlation are much less prominent than those in the GI
and II correlations.

From equation (21), we can easily find non-zero multipoles which
are, # = 1 and # = 3, and

ξv+,1(r) = −ξv+,3(r) = 2
5 C̃1 %

(1)
δ&,3(r). (22)

Thus, there is a relation similar to the case of the GI function, but
here the octopole-to-dipole ratio becomes −1. This is shown in the
upper right panel of Fig. 2 (equivalent to the blue dotted curve in
fig. 12 of Okumura et al. 2019).

4.4 E mode auto- and cross-correlations

By analogy with weak lensing surveys, the above alignment statis-
tics can be decomposed into gradient type (E mode) and curl type
(B mode) components (Crittenden et al. 2002; Schneider 2006;
Troxel & Ishak 2015). Since weak lensing is known to produce
only E mode to the lowest order, it is useful to express our formulas
derived above with the ellipticities decomposed into E/B modes.

As shown by Blazek et al. (2011), in the LA model the E and B
mode auto correlations are simply ξEE(r) = ξ+(r) and ξBB (r) = 0
. The cross-correlation between galaxies and E modes in real space
is derived as

ξR
gE(r) = −2

3
C̃1 bg

[
P0(µ) %

(0)
δδ,0(r) + P2(µ) %

(0)
δδ,2(r)

]
. (23)
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Figure1.Left-handpanel:GIcorrelationfunctionasafunctionofseparationsperpendicularandparalleltothelineofsightinrealspacer2ξR
δ+(left)andin

redshiftspacer2ξS
δ+(right).ThedifferencebetweentheleftandrighthandsidesisduetoRSDs.Middlepanel:TwoIIcorrelationfunctions,r2ξ+(left)and

r2ξ−(right).Right-handpanel:VIcorrelationfunctionrξv+.TheBAOscale,r"100h−1Mpc,isdenotedbythedashedgreycirclesinallthepanels.Allthe
statisticsarecalculatedatz=0.3.
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Figure2.Multipolemomentsofcorrelationfunctions.Theupper-leftpanel
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statisticsarecalculatedatz=0.3.

momentofξ××islargerthanotherIIcorrelationcomponents.
Probingthemultipolemomentsmayenableonetoeasilymeasure
theIIcorrelationfunctionratherthanfocusingonthemonopole
alone.

4.3VIcorrelation

Finally,wederivethesimpleexpressionoftheVIcorrelation
function.Again,bywritingkz/k=y1,0(k̂)andutilizingtherela-
tionbetweeny#mandtheWigner’s3-jsymbols,theresultingVI
correlationfunctionisexpressedas

ξv+(r)=C̃1cos(2φ)µ(1−µ2)%(1)
δ&,3(r).(21)

Anothercomponent,ξv×,isalsoderivedinthesamemanneras
equation(21),butcos(2φ)termisreplacedwithsin(2φ).Just
liketheIIcorrelation,theVIcorrelationisnotaffectedbyRSD
atlinearorder,andweomitthesuperscriptSorR.Weplotthis
functionasafunctionofr=(r⊥,r‖)intheright-handpanelof
Fig.1.Althoughwiththevelocityfieldwecanprobethestructure
growthatlargerscalesthanwiththedensityfield,theBAOfeatures
intheVIcorrelationaremuchlessprominentthanthoseintheGI
andIIcorrelations.

Fromequation(21),wecaneasilyfindnon-zeromultipoleswhich
are,#=1and#=3,and

ξv+,1(r)=−ξv+,3(r)=2
5C̃1%

(1)
δ&,3(r).(22)

Thus,thereisarelationsimilartothecaseoftheGIfunction,but
heretheoctopole-to-dipoleratiobecomes−1.Thisisshowninthe
upperrightpanelofFig.2(equivalenttothebluedottedcurvein
fig.12ofOkumuraetal.2019).

4.4Emodeauto-andcross-correlations

Byanalogywithweaklensingsurveys,theabovealignmentstatis-
ticscanbedecomposedintogradienttype(Emode)andcurltype
(Bmode)components(Crittendenetal.2002;Schneider2006;
Troxel&Ishak2015).Sinceweaklensingisknowntoproduce
onlyEmodetothelowestorder,itisusefultoexpressourformulas
derivedabovewiththeellipticitiesdecomposedintoE/Bmodes.

AsshownbyBlazeketal.(2011),intheLAmodeltheEandB
modeautocorrelationsaresimplyξEE(r)=ξ+(r)andξBB(r)=0
.Thecross-correlationbetweengalaxiesandEmodesinrealspace
isderivedas

ξR
gE(r)=−2

3
C̃1bg

[
P0(µ)%

(0)
δδ,0(r)+P2(µ)%

(0)
δδ,2(r)

]
.(23)
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Figure 1. Left-hand panel: GI correlation function as a function of separations perpendicular and parallel to the line of sight in real space r2ξR
δ+ (left) and in

redshift space r2ξS
δ+ (right). The difference between the left and right hand sides is due to RSDs. Middle panel: Two II correlation functions, r2ξ+ (left) and

r2ξ− (right). Right-hand panel: VI correlation function rξv +. The BAO scale, r " 100 h−1 Mpc, is denoted by the dashed grey circles in all the panels. All the
statistics are calculated at z = 0.3.
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Figure 2. Multipole moments of correlation functions. The upper-left panel
shows the GI correlation function in real space (dashed) and in redshift space
(dotted), while the upper-right panel presents the VI correlation function.
The bottom panels show the two components of the II correlation functions,
ξ+ (lower left) and ξ− (lower right). The GI and II correlations are multiplied
by r2, while the VI correlation is multiplied by r and a factor of 10. All the
statistics are calculated at z = 0.3.

moment of ξ× × is larger than other II correlation components.
Probing the multipole moments may enable one to easily measure
the II correlation function rather than focusing on the monopole
alone.

4.3 VI correlation

Finally, we derive the simple expression of the VI correlation
function. Again, by writing kz/k = y1,0(k̂) and utilizing the rela-
tion between y#m and the Wigner’s 3-j symbols, the resulting VI
correlation function is expressed as

ξv+(r) = C̃1 cos (2φ)µ(1 − µ2)%(1)
δ&,3(r). (21)

Another component, ξ v ×, is also derived in the same manner as
equation (21), but cos (2φ) term is replaced with sin (2φ). Just
like the II correlation, the VI correlation is not affected by RSD
at linear order, and we omit the superscript S or R. We plot this
function as a function of r = (r⊥, r‖) in the right-hand panel of
Fig. 1. Although with the velocity field we can probe the structure
growth at larger scales than with the density field, the BAO features
in the VI correlation are much less prominent than those in the GI
and II correlations.

From equation (21), we can easily find non-zero multipoles which
are, # = 1 and # = 3, and

ξv+,1(r) = −ξv+,3(r) = 2
5 C̃1 %

(1)
δ&,3(r). (22)

Thus, there is a relation similar to the case of the GI function, but
here the octopole-to-dipole ratio becomes −1. This is shown in the
upper right panel of Fig. 2 (equivalent to the blue dotted curve in
fig. 12 of Okumura et al. 2019).

4.4 E mode auto- and cross-correlations

By analogy with weak lensing surveys, the above alignment statis-
tics can be decomposed into gradient type (E mode) and curl type
(B mode) components (Crittenden et al. 2002; Schneider 2006;
Troxel & Ishak 2015). Since weak lensing is known to produce
only E mode to the lowest order, it is useful to express our formulas
derived above with the ellipticities decomposed into E/B modes.

As shown by Blazek et al. (2011), in the LA model the E and B
mode auto correlations are simply ξEE(r) = ξ+(r) and ξBB (r) = 0
. The cross-correlation between galaxies and E modes in real space
is derived as

ξR
gE(r) = −2

3
C̃1 bg

[
P0(µ) %

(0)
δδ,0(r) + P2(µ) %

(0)
δδ,2(r)

]
. (23)
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Figure1.Left-handpanel:GIcorrelationfunctionasafunctionofseparationsperpendicularandparalleltothelineofsightinrealspacer2ξR
δ+(left)andin

redshiftspacer2ξS
δ+(right).ThedifferencebetweentheleftandrighthandsidesisduetoRSDs.Middlepanel:TwoIIcorrelationfunctions,r2ξ+(left)and

r2ξ−(right).Right-handpanel:VIcorrelationfunctionrξv+.TheBAOscale,r"100h−1Mpc,isdenotedbythedashedgreycirclesinallthepanels.Allthe
statisticsarecalculatedatz=0.3.
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Figure2.Multipolemomentsofcorrelationfunctions.Theupper-leftpanel
showstheGIcorrelationfunctioninrealspace(dashed)andinredshiftspace
(dotted),whiletheupper-rightpanelpresentstheVIcorrelationfunction.
ThebottompanelsshowthetwocomponentsoftheIIcorrelationfunctions,
ξ+(lowerleft)andξ−(lowerright).TheGIandIIcorrelationsaremultiplied
byr2,whiletheVIcorrelationismultipliedbyrandafactorof10.Allthe
statisticsarecalculatedatz=0.3.

momentofξ××islargerthanotherIIcorrelationcomponents.
Probingthemultipolemomentsmayenableonetoeasilymeasure
theIIcorrelationfunctionratherthanfocusingonthemonopole
alone.

4.3VIcorrelation

Finally,wederivethesimpleexpressionoftheVIcorrelation
function.Again,bywritingkz/k=y1,0(k̂)andutilizingtherela-
tionbetweeny#mandtheWigner’s3-jsymbols,theresultingVI
correlationfunctionisexpressedas

ξv+(r)=C̃1cos(2φ)µ(1−µ2)%(1)
δ&,3(r).(21)

Anothercomponent,ξv×,isalsoderivedinthesamemanneras
equation(21),butcos(2φ)termisreplacedwithsin(2φ).Just
liketheIIcorrelation,theVIcorrelationisnotaffectedbyRSD
atlinearorder,andweomitthesuperscriptSorR.Weplotthis
functionasafunctionofr=(r⊥,r‖)intheright-handpanelof
Fig.1.Althoughwiththevelocityfieldwecanprobethestructure
growthatlargerscalesthanwiththedensityfield,theBAOfeatures
intheVIcorrelationaremuchlessprominentthanthoseintheGI
andIIcorrelations.

Fromequation(21),wecaneasilyfindnon-zeromultipoleswhich
are,#=1and#=3,and

ξv+,1(r)=−ξv+,3(r)=2
5C̃1%

(1)
δ&,3(r).(22)

Thus,thereisarelationsimilartothecaseoftheGIfunction,but
heretheoctopole-to-dipoleratiobecomes−1.Thisisshowninthe
upperrightpanelofFig.2(equivalenttothebluedottedcurvein
fig.12ofOkumuraetal.2019).

4.4Emodeauto-andcross-correlations

Byanalogywithweaklensingsurveys,theabovealignmentstatis-
ticscanbedecomposedintogradienttype(Emode)andcurltype
(Bmode)components(Crittendenetal.2002;Schneider2006;
Troxel&Ishak2015).Sinceweaklensingisknowntoproduce
onlyEmodetothelowestorder,itisusefultoexpressourformulas
derivedabovewiththeellipticitiesdecomposedintoE/Bmodes.

AsshownbyBlazeketal.(2011),intheLAmodeltheEandB
modeautocorrelationsaresimplyξEE(r)=ξ+(r)andξBB(r)=0
.Thecross-correlationbetweengalaxiesandEmodesinrealspace
isderivedas

ξR
gE(r)=−2

3
C̃1bg

[
P0(µ)%

(0)
δδ,0(r)+P2(µ)%

(0)
δδ,2(r)

]
.(23)
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Figure 1. Left-hand panel: GI correlation function as a function of separations perpendicular and parallel to the line of sight in real space r2ξR
δ+ (left) and in

redshift space r2ξS
δ+ (right). The difference between the left and right hand sides is due to RSDs. Middle panel: Two II correlation functions, r2ξ+ (left) and

r2ξ− (right). Right-hand panel: VI correlation function rξv +. The BAO scale, r " 100 h−1 Mpc, is denoted by the dashed grey circles in all the panels. All the
statistics are calculated at z = 0.3.
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Figure 2. Multipole moments of correlation functions. The upper-left panel
shows the GI correlation function in real space (dashed) and in redshift space
(dotted), while the upper-right panel presents the VI correlation function.
The bottom panels show the two components of the II correlation functions,
ξ+ (lower left) and ξ− (lower right). The GI and II correlations are multiplied
by r2, while the VI correlation is multiplied by r and a factor of 10. All the
statistics are calculated at z = 0.3.

moment of ξ× × is larger than other II correlation components.
Probing the multipole moments may enable one to easily measure
the II correlation function rather than focusing on the monopole
alone.

4.3 VI correlation

Finally, we derive the simple expression of the VI correlation
function. Again, by writing kz/k = y1,0(k̂) and utilizing the rela-
tion between y#m and the Wigner’s 3-j symbols, the resulting VI
correlation function is expressed as

ξv+(r) = C̃1 cos (2φ)µ(1 − µ2)%(1)
δ&,3(r). (21)

Another component, ξ v ×, is also derived in the same manner as
equation (21), but cos (2φ) term is replaced with sin (2φ). Just
like the II correlation, the VI correlation is not affected by RSD
at linear order, and we omit the superscript S or R. We plot this
function as a function of r = (r⊥, r‖) in the right-hand panel of
Fig. 1. Although with the velocity field we can probe the structure
growth at larger scales than with the density field, the BAO features
in the VI correlation are much less prominent than those in the GI
and II correlations.

From equation (21), we can easily find non-zero multipoles which
are, # = 1 and # = 3, and

ξv+,1(r) = −ξv+,3(r) = 2
5 C̃1 %

(1)
δ&,3(r). (22)

Thus, there is a relation similar to the case of the GI function, but
here the octopole-to-dipole ratio becomes −1. This is shown in the
upper right panel of Fig. 2 (equivalent to the blue dotted curve in
fig. 12 of Okumura et al. 2019).

4.4 E mode auto- and cross-correlations

By analogy with weak lensing surveys, the above alignment statis-
tics can be decomposed into gradient type (E mode) and curl type
(B mode) components (Crittenden et al. 2002; Schneider 2006;
Troxel & Ishak 2015). Since weak lensing is known to produce
only E mode to the lowest order, it is useful to express our formulas
derived above with the ellipticities decomposed into E/B modes.

As shown by Blazek et al. (2011), in the LA model the E and B
mode auto correlations are simply ξEE(r) = ξ+(r) and ξBB (r) = 0
. The cross-correlation between galaxies and E modes in real space
is derived as

ξR
gE(r) = −2

3
C̃1 bg

[
P0(µ) %

(0)
δδ,0(r) + P2(µ) %

(0)
δδ,2(r)

]
. (23)
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Figure 1. Left-hand panel: GI correlation function as a function of separations perpendicular and parallel to the line of sight in real space r2ξR
δ+ (left) and in

redshift space r2ξS
δ+ (right). The difference between the left and right hand sides is due to RSDs. Middle panel: Two II correlation functions, r2ξ+ (left) and

r2ξ− (right). Right-hand panel: VI correlation function rξv +. The BAO scale, r " 100 h−1 Mpc, is denoted by the dashed grey circles in all the panels. All the
statistics are calculated at z = 0.3.
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Figure 2. Multipole moments of correlation functions. The upper-left panel
shows the GI correlation function in real space (dashed) and in redshift space
(dotted), while the upper-right panel presents the VI correlation function.
The bottom panels show the two components of the II correlation functions,
ξ+ (lower left) and ξ− (lower right). The GI and II correlations are multiplied
by r2, while the VI correlation is multiplied by r and a factor of 10. All the
statistics are calculated at z = 0.3.

moment of ξ× × is larger than other II correlation components.
Probing the multipole moments may enable one to easily measure
the II correlation function rather than focusing on the monopole
alone.

4.3 VI correlation

Finally, we derive the simple expression of the VI correlation
function. Again, by writing kz/k = y1,0(k̂) and utilizing the rela-
tion between y#m and the Wigner’s 3-j symbols, the resulting VI
correlation function is expressed as

ξv+(r) = C̃1 cos (2φ)µ(1 − µ2)%(1)
δ&,3(r). (21)

Another component, ξ v ×, is also derived in the same manner as
equation (21), but cos (2φ) term is replaced with sin (2φ). Just
like the II correlation, the VI correlation is not affected by RSD
at linear order, and we omit the superscript S or R. We plot this
function as a function of r = (r⊥, r‖) in the right-hand panel of
Fig. 1. Although with the velocity field we can probe the structure
growth at larger scales than with the density field, the BAO features
in the VI correlation are much less prominent than those in the GI
and II correlations.

From equation (21), we can easily find non-zero multipoles which
are, # = 1 and # = 3, and

ξv+,1(r) = −ξv+,3(r) = 2
5 C̃1 %

(1)
δ&,3(r). (22)

Thus, there is a relation similar to the case of the GI function, but
here the octopole-to-dipole ratio becomes −1. This is shown in the
upper right panel of Fig. 2 (equivalent to the blue dotted curve in
fig. 12 of Okumura et al. 2019).

4.4 E mode auto- and cross-correlations

By analogy with weak lensing surveys, the above alignment statis-
tics can be decomposed into gradient type (E mode) and curl type
(B mode) components (Crittenden et al. 2002; Schneider 2006;
Troxel & Ishak 2015). Since weak lensing is known to produce
only E mode to the lowest order, it is useful to express our formulas
derived above with the ellipticities decomposed into E/B modes.

As shown by Blazek et al. (2011), in the LA model the E and B
mode auto correlations are simply ξEE(r) = ξ+(r) and ξBB (r) = 0
. The cross-correlation between galaxies and E modes in real space
is derived as

ξR
gE(r) = −2

3
C̃1 bg

[
P0(µ) %

(0)
δδ,0(r) + P2(µ) %

(0)
δδ,2(r)

]
. (23)
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momentofξ××islargerthanotherIIcorrelationcomponents.
Probingthemultipolemomentsmayenableonetoeasilymeasure
theIIcorrelationfunctionratherthanfocusingonthemonopole
alone.

4.3VIcorrelation

Finally,wederivethesimpleexpressionoftheVIcorrelation
function.Again,bywritingkz/k=y1,0(k̂)andutilizingtherela-
tionbetweeny#mandtheWigner’s3-jsymbols,theresultingVI
correlationfunctionisexpressedas

ξv+(r)=C̃1cos(2φ)µ(1−µ2)%(1)
δ&,3(r).(21)

Anothercomponent,ξv×,isalsoderivedinthesamemanneras
equation(21),butcos(2φ)termisreplacedwithsin(2φ).Just
liketheIIcorrelation,theVIcorrelationisnotaffectedbyRSD
atlinearorder,andweomitthesuperscriptSorR.Weplotthis
functionasafunctionofr=(r⊥,r‖)intheright-handpanelof
Fig.1.Althoughwiththevelocityfieldwecanprobethestructure
growthatlargerscalesthanwiththedensityfield,theBAOfeatures
intheVIcorrelationaremuchlessprominentthanthoseintheGI
andIIcorrelations.

Fromequation(21),wecaneasilyfindnon-zeromultipoleswhich
are,#=1and#=3,and

ξv+,1(r)=−ξv+,3(r)=2
5C̃1%

(1)
δ&,3(r).(22)

Thus,thereisarelationsimilartothecaseoftheGIfunction,but
heretheoctopole-to-dipoleratiobecomes−1.Thisisshowninthe
upperrightpanelofFig.2(equivalenttothebluedottedcurvein
fig.12ofOkumuraetal.2019).

4.4Emodeauto-andcross-correlations

Byanalogywithweaklensingsurveys,theabovealignmentstatis-
ticscanbedecomposedintogradienttype(Emode)andcurltype
(Bmode)components(Crittendenetal.2002;Schneider2006;
Troxel&Ishak2015).Sinceweaklensingisknowntoproduce
onlyEmodetothelowestorder,itisusefultoexpressourformulas
derivedabovewiththeellipticitiesdecomposedintoE/Bmodes.

AsshownbyBlazeketal.(2011),intheLAmodeltheEandB
modeautocorrelationsaresimplyξEE(r)=ξ+(r)andξBB(r)=0
.Thecross-correlationbetweengalaxiesandEmodesinrealspace
isderivedas

ξR
gE(r)=−2

3
C̃1bg

[
P0(µ)%

(0)
δδ,0(r)+P2(µ)%

(0)
δδ,2(r)

]
.(23)
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Figure 1. Left-hand panel: GI correlation function as a function of separations perpendicular and parallel to the line of sight in real space r2ξR
δ+ (left) and in

redshift space r2ξS
δ+ (right). The difference between the left and right hand sides is due to RSDs. Middle panel: Two II correlation functions, r2ξ+ (left) and

r2ξ− (right). Right-hand panel: VI correlation function rξv +. The BAO scale, r " 100 h−1 Mpc, is denoted by the dashed grey circles in all the panels. All the
statistics are calculated at z = 0.3.
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Figure 2. Multipole moments of correlation functions. The upper-left panel
shows the GI correlation function in real space (dashed) and in redshift space
(dotted), while the upper-right panel presents the VI correlation function.
The bottom panels show the two components of the II correlation functions,
ξ+ (lower left) and ξ− (lower right). The GI and II correlations are multiplied
by r2, while the VI correlation is multiplied by r and a factor of 10. All the
statistics are calculated at z = 0.3.

moment of ξ× × is larger than other II correlation components.
Probing the multipole moments may enable one to easily measure
the II correlation function rather than focusing on the monopole
alone.

4.3 VI correlation

Finally, we derive the simple expression of the VI correlation
function. Again, by writing kz/k = y1,0(k̂) and utilizing the rela-
tion between y#m and the Wigner’s 3-j symbols, the resulting VI
correlation function is expressed as

ξv+(r) = C̃1 cos (2φ)µ(1 − µ2)%(1)
δ&,3(r). (21)

Another component, ξ v ×, is also derived in the same manner as
equation (21), but cos (2φ) term is replaced with sin (2φ). Just
like the II correlation, the VI correlation is not affected by RSD
at linear order, and we omit the superscript S or R. We plot this
function as a function of r = (r⊥, r‖) in the right-hand panel of
Fig. 1. Although with the velocity field we can probe the structure
growth at larger scales than with the density field, the BAO features
in the VI correlation are much less prominent than those in the GI
and II correlations.

From equation (21), we can easily find non-zero multipoles which
are, # = 1 and # = 3, and

ξv+,1(r) = −ξv+,3(r) = 2
5 C̃1 %

(1)
δ&,3(r). (22)

Thus, there is a relation similar to the case of the GI function, but
here the octopole-to-dipole ratio becomes −1. This is shown in the
upper right panel of Fig. 2 (equivalent to the blue dotted curve in
fig. 12 of Okumura et al. 2019).

4.4 E mode auto- and cross-correlations

By analogy with weak lensing surveys, the above alignment statis-
tics can be decomposed into gradient type (E mode) and curl type
(B mode) components (Crittenden et al. 2002; Schneider 2006;
Troxel & Ishak 2015). Since weak lensing is known to produce
only E mode to the lowest order, it is useful to express our formulas
derived above with the ellipticities decomposed into E/B modes.

As shown by Blazek et al. (2011), in the LA model the E and B
mode auto correlations are simply ξEE(r) = ξ+(r) and ξBB (r) = 0
. The cross-correlation between galaxies and E modes in real space
is derived as

ξR
gE(r) = −2

3
C̃1 bg

[
P0(µ) %

(0)
δδ,0(r) + P2(µ) %

(0)
δδ,2(r)

]
. (23)
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Figure1.Left-handpanel:GIcorrelationfunctionasafunctionofseparationsperpendicularandparalleltothelineofsightinrealspacer2ξR
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Figure2.Multipolemomentsofcorrelationfunctions.Theupper-leftpanel
showstheGIcorrelationfunctioninrealspace(dashed)andinredshiftspace
(dotted),whiletheupper-rightpanelpresentstheVIcorrelationfunction.
ThebottompanelsshowthetwocomponentsoftheIIcorrelationfunctions,
ξ+(lowerleft)andξ−(lowerright).TheGIandIIcorrelationsaremultiplied
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statisticsarecalculatedatz=0.3.

momentofξ××islargerthanotherIIcorrelationcomponents.
Probingthemultipolemomentsmayenableonetoeasilymeasure
theIIcorrelationfunctionratherthanfocusingonthemonopole
alone.

4.3VIcorrelation

Finally,wederivethesimpleexpressionoftheVIcorrelation
function.Again,bywritingkz/k=y1,0(k̂)andutilizingtherela-
tionbetweeny#mandtheWigner’s3-jsymbols,theresultingVI
correlationfunctionisexpressedas

ξv+(r)=C̃1cos(2φ)µ(1−µ2)%(1)
δ&,3(r).(21)

Anothercomponent,ξv×,isalsoderivedinthesamemanneras
equation(21),butcos(2φ)termisreplacedwithsin(2φ).Just
liketheIIcorrelation,theVIcorrelationisnotaffectedbyRSD
atlinearorder,andweomitthesuperscriptSorR.Weplotthis
functionasafunctionofr=(r⊥,r‖)intheright-handpanelof
Fig.1.Althoughwiththevelocityfieldwecanprobethestructure
growthatlargerscalesthanwiththedensityfield,theBAOfeatures
intheVIcorrelationaremuchlessprominentthanthoseintheGI
andIIcorrelations.

Fromequation(21),wecaneasilyfindnon-zeromultipoleswhich
are,#=1and#=3,and

ξv+,1(r)=−ξv+,3(r)=2
5C̃1%

(1)
δ&,3(r).(22)

Thus,thereisarelationsimilartothecaseoftheGIfunction,but
heretheoctopole-to-dipoleratiobecomes−1.Thisisshowninthe
upperrightpanelofFig.2(equivalenttothebluedottedcurvein
fig.12ofOkumuraetal.2019).

4.4Emodeauto-andcross-correlations

Byanalogywithweaklensingsurveys,theabovealignmentstatis-
ticscanbedecomposedintogradienttype(Emode)andcurltype
(Bmode)components(Crittendenetal.2002;Schneider2006;
Troxel&Ishak2015).Sinceweaklensingisknowntoproduce
onlyEmodetothelowestorder,itisusefultoexpressourformulas
derivedabovewiththeellipticitiesdecomposedintoE/Bmodes.

AsshownbyBlazeketal.(2011),intheLAmodeltheEandB
modeautocorrelationsaresimplyξEE(r)=ξ+(r)andξBB(r)=0
.Thecross-correlationbetweengalaxiesandEmodesinrealspace
isderivedas

ξR
gE(r)=−2

3
C̃1bg

[
P0(µ)%

(0)
δδ,0(r)+P2(µ)%

(0)
δδ,2(r)

]
.(23)
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Figure 1. Left-hand panel: GI correlation function as a function of separations perpendicular and parallel to the line of sight in real space r2ξR
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δ+ (right). The difference between the left and right hand sides is due to RSDs. Middle panel: Two II correlation functions, r2ξ+ (left) and
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Figure 2. Multipole moments of correlation functions. The upper-left panel
shows the GI correlation function in real space (dashed) and in redshift space
(dotted), while the upper-right panel presents the VI correlation function.
The bottom panels show the two components of the II correlation functions,
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statistics are calculated at z = 0.3.

moment of ξ× × is larger than other II correlation components.
Probing the multipole moments may enable one to easily measure
the II correlation function rather than focusing on the monopole
alone.

4.3 VI correlation

Finally, we derive the simple expression of the VI correlation
function. Again, by writing kz/k = y1,0(k̂) and utilizing the rela-
tion between y#m and the Wigner’s 3-j symbols, the resulting VI
correlation function is expressed as

ξv+(r) = C̃1 cos (2φ)µ(1 − µ2)%(1)
δ&,3(r). (21)

Another component, ξ v ×, is also derived in the same manner as
equation (21), but cos (2φ) term is replaced with sin (2φ). Just
like the II correlation, the VI correlation is not affected by RSD
at linear order, and we omit the superscript S or R. We plot this
function as a function of r = (r⊥, r‖) in the right-hand panel of
Fig. 1. Although with the velocity field we can probe the structure
growth at larger scales than with the density field, the BAO features
in the VI correlation are much less prominent than those in the GI
and II correlations.

From equation (21), we can easily find non-zero multipoles which
are, # = 1 and # = 3, and

ξv+,1(r) = −ξv+,3(r) = 2
5 C̃1 %

(1)
δ&,3(r). (22)

Thus, there is a relation similar to the case of the GI function, but
here the octopole-to-dipole ratio becomes −1. This is shown in the
upper right panel of Fig. 2 (equivalent to the blue dotted curve in
fig. 12 of Okumura et al. 2019).

4.4 E mode auto- and cross-correlations

By analogy with weak lensing surveys, the above alignment statis-
tics can be decomposed into gradient type (E mode) and curl type
(B mode) components (Crittenden et al. 2002; Schneider 2006;
Troxel & Ishak 2015). Since weak lensing is known to produce
only E mode to the lowest order, it is useful to express our formulas
derived above with the ellipticities decomposed into E/B modes.

As shown by Blazek et al. (2011), in the LA model the E and B
mode auto correlations are simply ξEE(r) = ξ+(r) and ξBB (r) = 0
. The cross-correlation between galaxies and E modes in real space
is derived as

ξR
gE(r) = −2

3
C̃1 bg

[
P0(µ) %

(0)
δδ,0(r) + P2(µ) %

(0)
δδ,2(r)

]
. (23)
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole

MNRASL 493, L124–L128 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article-abstract/493/1/L124/5731881 by guest on 25 February 2020

L126 T. Okumura and A. Taruya

cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole

MNRASL 493, L124–L128 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article-abstract/493/1/L124/5731881 by guest on 25 February 2020

L126 T. Okumura and A. Taruya

cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole

MNRASL 493, L124–L128 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nrasl/article-abstract/493/1/L124/5731881 by guest on 25 February 2020

L126 T. Okumura and A. Taruya

cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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cylindrical coordinates. We rewrite all the angular dependences
in Fourier space by the spherical harmonics, e.g. (k2

x − k2
y)/k2 =√

2/3 [y2,2(k̂) − y2,−2(k̂)] where y!m(k̂) ≡
√

4π/(2! + 1)Y!m(k̂) is
a normalized spherical harmonic function, and utilize its orthog-
onality condition. The angular integral then can be analytically
performed. We find that the GI correlation function in real space is
reduced to a much simpler form:

ξR
g+(r) = C̃1bg cos (2φ)(1 − µ2)%(0)

δδ,2(r). (11)

This is equivalent to equation (9), but here the angular dependence
is explicitly given. Similarly, ξR

g× is described by replacing cos (2φ)
in equation (11) with sin (2φ).

The resulting GI correlation function as a function of r = (r⊥, r‖)
is shown in the left half of the left-hand panel in Fig. 1. Here for
simplicity we plot equation (11) with bg = 1, which corresponds to
the cross-correlation between matter density and galaxy ellipticity
fields, ξR

δ+(r) = ξR
g+(r)/bg. The ridge structures seen around r '

100 h−1 Mpc are the baryon acoustic oscillation (BAO) features
(Peebles & Yu 1970; Sunyaev & Zeldovich 1970; Eisenstein et al.
2005). Similarly to the correlation function of the density field, the
feature appears as a ‘BAO ring’ (Matsubara 2004; Okumura et al.
2008), but interestingly, it shows up as a dip in the GI correlation
rather than a peak (Okumura et al. 2019).

Obviously, the multipoles components of equation (11), ξR
g+,!(r),

become non-zero only if ! = 0 or ! = 2, and

ξR
g+,0(r) = −ξR

g+,2(r) = 2
3
C̃1bg%

(0)
δδ,2(r). (12)

This is shown as the red dashed curve in the upper-left panel of
Fig. 2. It is equivalent with the red curve in fig. 2 of Okumura et al.
(2019). The quadrupole-to-monopole ratio being −1 is a natural
consequence of the LA model.

Next, let us extend the real-space formulation of the GI correlation
to redshift space. We consider the Kaiser’s RSD model (Kaiser
1987), δS

g (k) = δR
g (k) + f (kz/k)2'(k), where '(k) is the Fourier

transform of the velocity divergence. We then have the additional
angular-dependent term, k2

z /k
2 = 2

3 y2,0(k̂) + 1
3 y0,0(k̂). We can per-

form the integral using the relation between the spherical har-
monics and Wigner’s 3-j symbols,

∫
d2k̂ y!m(k̂)y!1m1 (k̂)y!2m2 (k̂) =

4π

(
! !1 !2

0 0 0

)(
! !1 !2

m m1 m2

)
. The resulting GI correlation func-

tion in redshift space reads

ξ S
g+(r) = ξR

g+(r) + 1
7
C̃1f cos (2φ)

(
1 − µ2)

×
[
%

(0)
δ',2(r) −

(
7µ2 − 1

)
%

(0)
δ',4(r)

]
. (13)

The redshift-space GI correlation function is presented in the right
half of the left-hand panel of Fig. 1. Just like the density correlation
function, RSDs do not shift the scale of BAO peak in the alignment
correlation in linear theory. Thus, the alignment statistics can be
used for the Alcock–Paczynski test complimentarily to the galaxy
clustering statistics.

In redshift space, not only the monopole and quadrupole but
also hexadecapole are the non-vanishing multipoles for the GI
correlation function in the LA model:

ξ S
g+,0(r) = ξR

g+,0(r) + 2
105 C̃1f

[
5 %

(0)
δ',2(r) − 2 %

(0)
δ',4(r)

]
, (14)

ξ S
g+,2(r) = ξR

g+,2(r) − 2
21 C̃1 f

[
%

(0)
δ',2(r) + 2 %

(0)
δ',4(r)

]
, (15)

ξ S
g+,4(r) = 8

35 C̃1 f %
(0)
δ',4(r). (16)

In the presence of the RSD effect, the quadrupole-to-monopole
ratio is no longer −1 unlike the real-space case, and we have
ξ S

g+,2(r)/ξ S
g+,0(r) < −1. These three multipole moments are shown

as the dotted curves in the upper-left panel of Fig. 2.
It is interesting to note that the quadrupole and hexadecapole

moments of the redshift-space galaxy correlation function are given
by (Hamilton 1992)

ξ S
gg,2(r) = 4

3 f bg%
(0)
δ',2(r) + 4

7 f 2 %
(0)
'',2(r), (17)

ξ S
gg,4(r) = 8

35 f 2 %
(0)
δ',4(r). (18)

Namely, the GI correlation in real space has exactly the same shape
as the quadrupole of the density correlation in redshift space in
the linear theory limit, and likewise the GI correlation in redshift
space can be described by the combination of the quadrupole
and hexadecapole correlation functions. These features of the GI
correlation function are clarified for the first time by our simple
formulas.

4.2 II correlation

We can derive simple formulas for the II correlation in a similar
way, although the II correlation function has a bit intricate form
compared to the GI correlation. The angular-dependent terms in
ξ++ and ξ×× are respectively rewritten as 1

k4

(
(k2

x − k2
y)2, 4k2

xk
2
y

)
=

±
√

8
35

[
y4,4(k̂) + y4,−4(k̂)

]
+ 4

35 y4,0(k̂) − 8
21 y2,0(k̂) + 4

15 y0,0(k̂).
After applying the orthogonality condition of y!m, the two
components of the II correlation function, ξ±(r), are given as
(see Xia et al. 2017, for an similar expression for the monopole
moment)

ξ+(r) = 8
105

C̃2
1

[
7 P0(µ) %

(0)
δδ,0(r) + 10 P2(µ) %

(0)
δδ,2(r)

+3 P4(µ) %
(0)
δδ,4(r)

]
, (19)

ξ−(r) = C̃2
1 cos (4φ)

(
1 − µ2)2

%
(0)
δδ,4(r)

= 8
105

C̃2
1 cos (4φ)

× [7 P0(µ) + 10 P2(µ) + 3 P4(µ)] %
(0)
δδ,4(r). (20)

Since the II correlation function is not affected by RSDs in linear
theory, ξ S

± = ξR
± , we omit the superscript for this statistic. The

cross component, ξ+×, can be obtained by replacing cos (4φ) in
equation (20) with sin (4φ). The II correlations, ξ+ and ξ−, are
respectively presented in the left- and right-hand sides of the middle
panel of Fig. 1. Combining these two functions, one can also derive
ξ++ and ξ××, and our formula nicely explains the anisotropic feature
of ξ×× measured from N-body simulations by Croft & Metzler
(2000).

The multipole components of ξ±(r) are obvious from equa-
tions (19) and (20), and their hexadecapoles coincide with each
other. The resulting multipoles, ξ+, ! and ξ−, !, are respectively
shown in the lower left and lower right panels of Fig. 2. Since ξ−, 0

> ξ+, 0 beyond r ∼ 15 h−1 Mpc, ξ× ×(r) is negative at such scales, as
measured for haloes from simulations and galaxies from observation
(fig. 6 of Okumura, Jing & Li 2009). The II correlation function is
known to be harder to measure and noisier than the GI correlation
function. Moreover, the amplitude of ξ× × is even more suppressed
compared to ξ++ because of the large anisotropy (Croft & Metzler
2000; Okumura et al. 2009). Interestingly, however, the quadrupole
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Anisotropies of galaxy ellipticity correlations L125

2 IN T R I N S I C A L I G N M E N T STAT I S T I C S

In this section, we briefly describe the statistics used to characterize
IAs.

First, the two components of the ellipticity of each galaxy (or
cluster) are given as

γ(+,×)(x) = 1 − (β/α)2

1 + (β/α)2
(cos(2θ ), sin(2θ )), (1)

where β/α is the minor-to-major axial ratio, θ is the position angle
of the ellipticity defined on the plane normal to the line-of-sight
direction, and the ellipticity is also defined on the projected plane
(see fig. 1 of Okumura et al. 2019 for the illustration of these
quantities, and note θ #= cos −1µ). Sometimes the superscript I is
added to γ +, × to distinguish intrinsic ellipticities from the cosmic
shear components in weak lensing surveys. However, we omit it
because lensing is not considered in this Letter.

The II correlation of galaxies has four components, and one of
the four, ξ++, is defined as (Croft & Metzler 2000; Heavens et al.
2000)

1 + ξ++(r) =
〈
[1 + δg(x1)][1 + δg(x2)]γ+(x1)γ+(x2)

〉
, (2)

where r = x2 − x1. The other components, such as ξ× × and ξ+×,
are defined in the same way by replacing two and one γ + in
equation (2) with γ ×, respectively. By combining ξ++ an ξ× ×,
we can also define ξ±(r) as

ξ±(r) = ξ++(r) ± ξ××(r). (3)

The cross-correlation functions of density and ellipticity fields,
namely GI correlations, are defined as (Hirata & Seljak 2004)

1 + ξgi(r) =
〈
[1 + δg(x1)][1 + δg(x2)]γi(x2)

〉
, (4)

where i = { +, ×}. Since the distances to objects are measured
through redshift in galaxy surveys, the density field is affected by
their velocities, known as redshift-space distortions (RSDs) (Kaiser
1987; Hamilton 1998). Thus, the superscripts R and S are added
to ξ g + to denote the GI correlation in real and redshift space,
respectively.

We also consider the velocity alignment statistic corresponding
to the GI correlation, the density-weighted, velocity-intrinsic ellip-
ticity (VI) correlation (Okumura et al. 2019),

ξvi(r) =
〈
[1 + δg(x1)][1 + δg(x2)]v‖(x1)γi(x2)

〉
, (5)

where i = { +, ×} and v! denotes the line-of-sight component of
the velocity field, v‖(x) ≡ v(x) · x̂ (hat denotes a unit vector). As is
the case with the ellipticity field, the velocity field is not affected
by RSDs in linear theory, ξ S

v+ = ξR
v+ (Okumura et al. 2014, 2017).

All the statistics above are anisotropic even in real space because
observable shapes of galaxies are the line-of-sight projection.
Moreover, RSDs induce further anisotropies to the the GI corre-
lation function. Thus, we consider the multipole moments of the
correlation functions (Hamilton 1992):

X'(r) = 2' + 1
2

∫ 1

−1
dµX(r)P'(µ), (6)

where X is any of the statistics introduced above, and µ is the di-
rectional cosine between the vector r and the line-of-sight direction
x̂. Below, we use r⊥ and r! to express, respectively, the separations
perpendicular and parallel to the line-of-sight direction. These are
related to r and µ through r2 = r2

⊥ + r2
‖ and µ = r!/r. Throughout

this Letter, we assume the distant-observer approximation, and
particularly take z-axis to be the line-of-sight direction so that
x̂1 = x̂2 ≡ x̂.

3 L I N E A R A L I G N M E N T M O D E L

The most commonly used model for IA studies on large scales is
the LA model (Catelan et al. 2001; Hirata & Seljak 2004). In this
model, the intrinsic ellipticity (equation 1) is assumed to follow the
linear relation with the Newtonian potential, (P,

γ(+,×)(x) = − C1

4πG

(
∇2

x − ∇2
y , 2∇x∇y

)
(P (x), (7)

where G is the Newtonian gravitational constant, C1 parameterizes
the strength of IA. The observed ellipticity field is density weighted,
[1 + δg(x)]γ(+,×)(x) (Section 2). However, the density-weighting
term δg(x)γ (x) is sub-dominant on large scales and is usually ig-
nored. We also do not consider this term because we are interested in
the large-scale behaviours. In Fourier space, equation (7) becomes

γ(+,×)(k) = −C̃1

(
k2

x − k2
y, 2kxky

)

k2
δ(k), (8)

where C̃1(z) ≡ a2C1ρ̄(z)/D̄(z), ρ̄ is the mean mass density of the
Universe, D̄ ∝ (1 + z)D(z), and D(z) is the linear growth factor.

The three-dimensional cross-correlation function between the
density field and the ellipticity is given in the LA model as (Okumura
et al. 2019)

ξg+(r) = C̃1bg cos (2φ)
∫ ∞

0

k⊥dk⊥

2π2
J2(k⊥r⊥)

×
∫ ∞

0
dk‖

k2
⊥

k2
Pδδ(k) cos (k‖r‖), (9)

where k2
⊥ = k2

x + k2
y , k! = kz, φ is the azimuthal angle of the

projected separation vector on the celestial sphere, measured from
the x-axis, J2 is the Bessel function with second order, Pδδ is the auto
power spectrum of density and bg is the linear galaxy bias parameter.
Likewise, the II and VI correlation functions are expressed using
the Bessel function (see Blazek et al. 2011 and Okumura et al. 2019,
respectively). Here and in what follows, we keep the φ-dependence
explicitly for clarity and completeness when a statistic is newly
derived, and we set φ = 0 when the multipole moments are further
derived.

4 N E W F O R M U L A S F O R IA STAT I S T I C S W I T H
L I N E A R A L I G N M E N T M O D E L

In this section we present formulas of the IA statistics, namely the
GI, II and VI correlation functions in the LA model. We also show
the results of the numerical calculations at z = 0.3, for which we set
the parameter C̃1 to C̃1/a

2 = 1.5, as determined by Okumura et al.
(2019) for dark matter haloes with the mass greater than 1014 M*.

For later convenience, we newly introduce a quantity ,
(n)
XY,'(r)

defined by

,
(n)
XY,'(r) = (aHf )n

∫ ∞

0

k2−ndk

2π2
PXY (k)j'(kr), (10)

where XY = {δδ, δ-, --}, - is the velocity-divergence field
defined by -(x) = −∇ · v/(aHf ), H(a) is the Hubble parameter
and f is the linear growth rate, given by f ≡ dln D/dln a. The
quantities Pδ- and P-- are the cross power spectrum of density and
velocity divergence and the autospectrum of the latter, respectively.
In the linear theory limit, Pδδ = Pδ- = P--.

4.1 GI correlation

The conventional expression of alignment statistics in the LA model,
such as equation (9) for the GI correlation, was derived by adopting
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azimuthal angle in ϕ : ⃗r⊥
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2 IN T R I N S I C A L I G N M E N T STAT I S T I C S

In this section, we briefly describe the statistics used to characterize
IAs.

First, the two components of the ellipticity of each galaxy (or
cluster) are given as

γ(+,×)(x) = 1 − (β/α)2

1 + (β/α)2
(cos(2θ ), sin(2θ )), (1)

where β/α is the minor-to-major axial ratio, θ is the position angle
of the ellipticity defined on the plane normal to the line-of-sight
direction, and the ellipticity is also defined on the projected plane
(see fig. 1 of Okumura et al. 2019 for the illustration of these
quantities, and note θ #= cos −1µ). Sometimes the superscript I is
added to γ +, × to distinguish intrinsic ellipticities from the cosmic
shear components in weak lensing surveys. However, we omit it
because lensing is not considered in this Letter.

The II correlation of galaxies has four components, and one of
the four, ξ++, is defined as (Croft & Metzler 2000; Heavens et al.
2000)

1 + ξ++(r) =
〈
[1 + δg(x1)][1 + δg(x2)]γ+(x1)γ+(x2)

〉
, (2)

where r = x2 − x1. The other components, such as ξ× × and ξ+×,
are defined in the same way by replacing two and one γ + in
equation (2) with γ ×, respectively. By combining ξ++ an ξ× ×,
we can also define ξ±(r) as

ξ±(r) = ξ++(r) ± ξ××(r). (3)

The cross-correlation functions of density and ellipticity fields,
namely GI correlations, are defined as (Hirata & Seljak 2004)

1 + ξgi(r) =
〈
[1 + δg(x1)][1 + δg(x2)]γi(x2)

〉
, (4)

where i = { +, ×}. Since the distances to objects are measured
through redshift in galaxy surveys, the density field is affected by
their velocities, known as redshift-space distortions (RSDs) (Kaiser
1987; Hamilton 1998). Thus, the superscripts R and S are added
to ξ g + to denote the GI correlation in real and redshift space,
respectively.

We also consider the velocity alignment statistic corresponding
to the GI correlation, the density-weighted, velocity-intrinsic ellip-
ticity (VI) correlation (Okumura et al. 2019),

ξvi(r) =
〈
[1 + δg(x1)][1 + δg(x2)]v‖(x1)γi(x2)

〉
, (5)

where i = { +, ×} and v! denotes the line-of-sight component of
the velocity field, v‖(x) ≡ v(x) · x̂ (hat denotes a unit vector). As is
the case with the ellipticity field, the velocity field is not affected
by RSDs in linear theory, ξ S

v+ = ξR
v+ (Okumura et al. 2014, 2017).

All the statistics above are anisotropic even in real space because
observable shapes of galaxies are the line-of-sight projection.
Moreover, RSDs induce further anisotropies to the the GI corre-
lation function. Thus, we consider the multipole moments of the
correlation functions (Hamilton 1992):

X'(r) = 2' + 1
2

∫ 1

−1
dµX(r)P'(µ), (6)

where X is any of the statistics introduced above, and µ is the di-
rectional cosine between the vector r and the line-of-sight direction
x̂. Below, we use r⊥ and r! to express, respectively, the separations
perpendicular and parallel to the line-of-sight direction. These are
related to r and µ through r2 = r2

⊥ + r2
‖ and µ = r!/r. Throughout

this Letter, we assume the distant-observer approximation, and
particularly take z-axis to be the line-of-sight direction so that
x̂1 = x̂2 ≡ x̂.

3 L I N E A R A L I G N M E N T M O D E L

The most commonly used model for IA studies on large scales is
the LA model (Catelan et al. 2001; Hirata & Seljak 2004). In this
model, the intrinsic ellipticity (equation 1) is assumed to follow the
linear relation with the Newtonian potential, (P,

γ(+,×)(x) = − C1

4πG

(
∇2

x − ∇2
y , 2∇x∇y

)
(P (x), (7)

where G is the Newtonian gravitational constant, C1 parameterizes
the strength of IA. The observed ellipticity field is density weighted,
[1 + δg(x)]γ(+,×)(x) (Section 2). However, the density-weighting
term δg(x)γ (x) is sub-dominant on large scales and is usually ig-
nored. We also do not consider this term because we are interested in
the large-scale behaviours. In Fourier space, equation (7) becomes

γ(+,×)(k) = −C̃1

(
k2

x − k2
y, 2kxky

)

k2
δ(k), (8)

where C̃1(z) ≡ a2C1ρ̄(z)/D̄(z), ρ̄ is the mean mass density of the
Universe, D̄ ∝ (1 + z)D(z), and D(z) is the linear growth factor.

The three-dimensional cross-correlation function between the
density field and the ellipticity is given in the LA model as (Okumura
et al. 2019)

ξg+(r) = C̃1bg cos (2φ)
∫ ∞

0

k⊥dk⊥

2π2
J2(k⊥r⊥)

×
∫ ∞

0
dk‖

k2
⊥

k2
Pδδ(k) cos (k‖r‖), (9)

where k2
⊥ = k2

x + k2
y , k! = kz, φ is the azimuthal angle of the

projected separation vector on the celestial sphere, measured from
the x-axis, J2 is the Bessel function with second order, Pδδ is the auto
power spectrum of density and bg is the linear galaxy bias parameter.
Likewise, the II and VI correlation functions are expressed using
the Bessel function (see Blazek et al. 2011 and Okumura et al. 2019,
respectively). Here and in what follows, we keep the φ-dependence
explicitly for clarity and completeness when a statistic is newly
derived, and we set φ = 0 when the multipole moments are further
derived.

4 N E W F O R M U L A S F O R IA STAT I S T I C S W I T H
L I N E A R A L I G N M E N T M O D E L

In this section we present formulas of the IA statistics, namely the
GI, II and VI correlation functions in the LA model. We also show
the results of the numerical calculations at z = 0.3, for which we set
the parameter C̃1 to C̃1/a

2 = 1.5, as determined by Okumura et al.
(2019) for dark matter haloes with the mass greater than 1014 M*.

For later convenience, we newly introduce a quantity ,
(n)
XY,'(r)

defined by

,
(n)
XY,'(r) = (aHf )n

∫ ∞

0

k2−ndk

2π2
PXY (k)j'(kr), (10)

where XY = {δδ, δ-, --}, - is the velocity-divergence field
defined by -(x) = −∇ · v/(aHf ), H(a) is the Hubble parameter
and f is the linear growth rate, given by f ≡ dln D/dln a. The
quantities Pδ- and P-- are the cross power spectrum of density and
velocity divergence and the autospectrum of the latter, respectively.
In the linear theory limit, Pδδ = Pδ- = P--.

4.1 GI correlation

The conventional expression of alignment statistics in the LA model,
such as equation (9) for the GI correlation, was derived by adopting
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Figure 1. Alignment statistics of subhaloes with mass Mh ≥ 1013 M" as a function of r = (r⊥, r‖), GI (upper-left), VI (upper-right), and II (lower-left and
lower-right) correlations, ξ+ and ξ−, respectively. The left- and right-hand sides of each panel show the statistics in real and redshift space, respectively. In
each panel, the colour scale shows the measurements from the N-body simulations and the grey sold contours show the LA model prediction. The BAO scale,
r ∼ 100 h−1 Mpc, is denoted by the dashed grey circle.

body results. The ratio of the correlation function in redshift and real
space, ξS

−,"/ξ
R
−,", is shown in the lower right-hand panel of Fig. 4.

Interestingly, while the ratios for the monopole and quadrupole are
more or less consistent with unity, that for the hexadecapole deviates
from unity by ∼10 per cent at all the scales probed. It is partially
caused by the non-linearity of RSDs that cannot be captured by the
LA model and beyond the scope of this paper. We will investigate
such non-linearities in future work.

4.3 VI correlation

The VI correlation function of subhaloes is shown as a function
of r = (r⊥, r‖) in the upper right-hand panel of Fig. 1. Again, the
difference between the measurements in real and redshift space
is small. However the agreement with the LA model gets worse
in redshift space than in real space, as expected. Since the VI
correlation function depends on odd powers of µ, the sign of the

function flips for r! > 0 and r! < 0. Moreover, because of the
non-linear RSD called the Fingers of God (FoG) effect, the sign of
the VI correlation is further changed at r < 10 h−1 Mpc (see e.g.
Okumura et al. 2014).

The multipoles of the VI correlation function in real space are
shown in the left-hand side of the upper right-hand set of Fig. 2.
The real-space VI dipole has been already presented in Okumura
et al. (2019). The octopole measured from the simulations shows a
behaviour very similar to the dipole. The octopole-to-dipole ratio of
the VI correlation in real space is shown in the lower left-hand panel
of Fig. 3. Although the measured VI multipoles start to deviate from
the NLA model at r ∼ 60 h−1 Mpc, the octopole-to-dipole ratio is
consistent with the prediction of the tidal alignment model, −1,
within 1 per cent to slightly smaller scales.

The multipoles of the VI correlation function in redshift space
are significantly suppressed, even at BAO scales, as shown in
the right-hand side of the upper right-hand set of Fig. 2. The

MNRAS 494, 694–702 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/494/1/694/5805209 by Kyoto U
niversity Library user on 04 April 2020

698 T. Okumura, A. Taruya and T. Nishimichi

Figure 1. Alignment statistics of subhaloes with mass Mh ≥ 1013 M" as a function of r = (r⊥, r‖), GI (upper-left), VI (upper-right), and II (lower-left and
lower-right) correlations, ξ+ and ξ−, respectively. The left- and right-hand sides of each panel show the statistics in real and redshift space, respectively. In
each panel, the colour scale shows the measurements from the N-body simulations and the grey sold contours show the LA model prediction. The BAO scale,
r ∼ 100 h−1 Mpc, is denoted by the dashed grey circle.

body results. The ratio of the correlation function in redshift and real
space, ξS

−,"/ξ
R
−,", is shown in the lower right-hand panel of Fig. 4.

Interestingly, while the ratios for the monopole and quadrupole are
more or less consistent with unity, that for the hexadecapole deviates
from unity by ∼10 per cent at all the scales probed. It is partially
caused by the non-linearity of RSDs that cannot be captured by the
LA model and beyond the scope of this paper. We will investigate
such non-linearities in future work.

4.3 VI correlation

The VI correlation function of subhaloes is shown as a function
of r = (r⊥, r‖) in the upper right-hand panel of Fig. 1. Again, the
difference between the measurements in real and redshift space
is small. However the agreement with the LA model gets worse
in redshift space than in real space, as expected. Since the VI
correlation function depends on odd powers of µ, the sign of the

function flips for r! > 0 and r! < 0. Moreover, because of the
non-linear RSD called the Fingers of God (FoG) effect, the sign of
the VI correlation is further changed at r < 10 h−1 Mpc (see e.g.
Okumura et al. 2014).

The multipoles of the VI correlation function in real space are
shown in the left-hand side of the upper right-hand set of Fig. 2.
The real-space VI dipole has been already presented in Okumura
et al. (2019). The octopole measured from the simulations shows a
behaviour very similar to the dipole. The octopole-to-dipole ratio of
the VI correlation in real space is shown in the lower left-hand panel
of Fig. 3. Although the measured VI multipoles start to deviate from
the NLA model at r ∼ 60 h−1 Mpc, the octopole-to-dipole ratio is
consistent with the prediction of the tidal alignment model, −1,
within 1 per cent to slightly smaller scales.

The multipoles of the VI correlation function in redshift space
are significantly suppressed, even at BAO scales, as shown in
the right-hand side of the upper right-hand set of Fig. 2. The
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body results. The ratio of the correlation function in redshift and real
space, ξS

−,"/ξ
R
−,", is shown in the lower right-hand panel of Fig. 4.

Interestingly, while the ratios for the monopole and quadrupole are
more or less consistent with unity, that for the hexadecapole deviates
from unity by ∼10 per cent at all the scales probed. It is partially
caused by the non-linearity of RSDs that cannot be captured by the
LA model and beyond the scope of this paper. We will investigate
such non-linearities in future work.

4.3 VI correlation

The VI correlation function of subhaloes is shown as a function
of r = (r⊥, r‖) in the upper right-hand panel of Fig. 1. Again, the
difference between the measurements in real and redshift space
is small. However the agreement with the LA model gets worse
in redshift space than in real space, as expected. Since the VI
correlation function depends on odd powers of µ, the sign of the

function flips for r! > 0 and r! < 0. Moreover, because of the
non-linear RSD called the Fingers of God (FoG) effect, the sign of
the VI correlation is further changed at r < 10 h−1 Mpc (see e.g.
Okumura et al. 2014).

The multipoles of the VI correlation function in real space are
shown in the left-hand side of the upper right-hand set of Fig. 2.
The real-space VI dipole has been already presented in Okumura
et al. (2019). The octopole measured from the simulations shows a
behaviour very similar to the dipole. The octopole-to-dipole ratio of
the VI correlation in real space is shown in the lower left-hand panel
of Fig. 3. Although the measured VI multipoles start to deviate from
the NLA model at r ∼ 60 h−1 Mpc, the octopole-to-dipole ratio is
consistent with the prediction of the tidal alignment model, −1,
within 1 per cent to slightly smaller scales.

The multipoles of the VI correlation function in redshift space
are significantly suppressed, even at BAO scales, as shown in
the right-hand side of the upper right-hand set of Fig. 2. The
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Figure 2. Multipole components of alignment statistics of subhaloes with mass Mh ≥ 1013 M", ξ (R,S)
h+," (upper left-hand set), ξ (R,S)

v+," (upper right-hand set), ξ (R,S)
+,"

(lower left-hand set), and ξ
(R,S)
−," (lower right-hand set). In each set, the left- and right-hand panels show the multipoles in real and redshift space, respectively.

While the points show the measurements from N-body simulations, the dotted and dashed curves are the corresponding LA and NLA model predictions,
respectively.

BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
2008). The upper left-hand panel of Fig. 6 shows the ratios of
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While the points show the measurements from N-body simulations, the dotted and dashed curves are the corresponding LA and NLA model predictions,
respectively.

BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
2008). The upper left-hand panel of Fig. 6 shows the ratios of
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While the points show the measurements from N-body simulations, the dotted and dashed curves are the corresponding LA and NLA model predictions,
respectively.

BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
2008). The upper left-hand panel of Fig. 6 shows the ratios of
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While the points show the measurements from N-body simulations, the dotted and dashed curves are the corresponding LA and NLA model predictions,
respectively.

BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
2008). The upper left-hand panel of Fig. 6 shows the ratios of
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Figure 2. Multipole components of alignment statistics of subhaloes with mass Mh ≥ 1013 M", ξ (R,S)
h+," (upper left-hand set), ξ (R,S)

v+," (upper right-hand set), ξ (R,S)
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(R,S)
−," (lower right-hand set). In each set, the left- and right-hand panels show the multipoles in real and redshift space, respectively.

While the points show the measurements from N-body simulations, the dotted and dashed curves are the corresponding LA and NLA model predictions,
respectively.

BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
2008). The upper left-hand panel of Fig. 6 shows the ratios of
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makes sense because the density-weighted velocities are known to
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massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
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space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.
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≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
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BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
2008). The upper left-hand panel of Fig. 6 shows the ratios of

MNRAS 494, 694–702 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/494/1/694/5805209 by Kyoto U
niversity Library user on 04 April 2020

Anisotropic correlations of halo ellipticities 699

Figure 2. Multipole components of alignment statistics of subhaloes with mass Mh ≥ 1013 M", ξ (R,S)
h+," (upper left-hand set), ξ (R,S)

v+," (upper right-hand set), ξ (R,S)
+,"

(lower left-hand set), and ξ
(R,S)
−," (lower right-hand set). In each set, the left- and right-hand panels show the multipoles in real and redshift space, respectively.

While the points show the measurements from N-body simulations, the dotted and dashed curves are the corresponding LA and NLA model predictions,
respectively.

BAO features detected in real space are smeared out in redshift
space. Still, the octopole-to-dipole ratio is consistent with −1, as
predicted by the LA/NLA models (the lower left-hand panel of
Fig. 3), though the accuracy gets slightly worse, to ∼3 per cent. The
ratios of the VI correlation multipoles in redshift and real space are
shown in the upper right-hand panel of Fig. 4. We clearly see the
suppression of the redshift-space correlation at small scales. The
suppression of the VI correlation is due to the non-linear RSDs,
and it reaches ∼40 per cent at r = 30 h−1 Mpc. It qualitatively
makes sense because the density-weighted velocities are known to
be significantly affected by the FoG effect (Okumura et al. 2014).
However, the FoG effect appeared at scales much larger than we
expected. We will investigate it using non-linear perturbation theory
in future work.

4.4 Halo mass dependence of IA

So far, we have analysed only one subhalo sample, with mass Mh

≥ 1013 M". It is, however, well known that the amplitude of IAs
strongly depends on the halo mass (Jing 2002; see also Xia et al.

2017; Piras et al. 2018, for recent studies). Thus, we analyse a more
massive subhalo catalogue, with mass Mh ≥ 1014 M", and repeat
the above analysis. Since except for the amplitude, behaviours of
the alignment statistics are more or less the same as the results
presented so far, we will show only the results of the multipoles
correlation functions, not those of the two-dimensional correlation
functions.

First, we find that the parameter of the IA amplitude is C̃1/a
2 =

1.50. Compared to the subhalo sample with Mh ≥ 1013 M", the
amplitude is increased by a factor of 1.6 and it is less significant than
the bias (a factor of 1.9 enhancement). Fig. 5 shows the multipole
correlation functions in real and redshift space. The monopole of the
GI correlation function in real space has been presented in Okumura
et al. (2019) for this massive halo sample. The non-linearities of the
GI correlation are slightly more significant than those in the less
massive haloes in both real and redshift space. As already seen in
Okumura et al. (2019), the BAO features in the GI function are
more significant than the NLA model prediction because in peak
theory the BAO features are amplified for higher peaks (Desjacques
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Geometric & dynamical constraints
3

Figure 1. Left : Two-dimensional error contours (68%C.L.) on the geometric distances, dA(z) and H(z), and the growth of structure,
f �8(z), obtained from BOSS CMASS at z = 0.50. Right : One-dimensional marginalized errors on the growth of structure (top) and
geometric distances (bottom), obtained from BOSS LOWZ (z = 0.33), CMASS (z = 0.50) and DESI LRG (0.6  z  1.2), plotted against
the redshift. Solid lines indicate the fiducial model predictions. The errors on dA are multiplied by 5 for illustration.

tive purpose, we consider the Baryon Oscillation Spec-
troscopic Survey (BOSS) LOWZ and CMASS galaxies,
which are the largest samples to date at z ' 0.33 and
0.50. Further, we consider the upcoming survey, Dark
Energy Survey Instrument (DESI), and combine its LRG
samples at 0.6  z  1.2 with BOSS galaxies to examine
how the cosmological parameters are better constrained
when combining the IA statistics. Note that with a pre-
cision measurement of IAs, we can further extend the
analysis up to z ⇠ 2.4 (Takada et al. 2014). Below, we
assume a flat ⇤CDM model determined by Planck Col-
laboration et al. (2016) as our fiducial cosmology. For pa-
rameters characterizing the surveys and observed galax-
ies (i.e., Vsurvey, ngal, and b1), we adopt Table I of Shi-
raishi et al. (2017) for BOSS samples, and Table 2.3 of
DESI Collaboration et al. (2016) for DESI LRG samples.
To make a conservative estimate, we restrict the analysis
to large scales where the linear theory is safely applied,

and set kmin and kmax to 2⇡/V 1/3
survey and 0.1hMpc�1,

respectively.
The results of the Fisher matrix calculations are shown

in Figure 1, where we separately plot the results using
Pgg alone (black), PEE alone (red), and those using the
three power spectra (blue), labeled respectively as GG,
II, and GG+GI+II. Here, the redshift-dependent am-
plitude of E-mode ellipticity eC1 was chosen as eC1 =
c1/(1 + z)2 with the fiducial value of c1 = 0.75, close
to the one found in SDSS LRG samples (Okumura et al.
2009; Blazek et al. 2011), setting q to zero. Further, we
adopt �� = 0.3 for all surveys as a typical shape noise
(Schmidt et al. 2015).
The left panel of Figure 1 plots the expected two-

dimensional error (68%C.L.) on the growth of structure
and geometric distances, f(z), dA(z) and H(z), normal-

ized by their fiducial values, and we specifically show
the results from the BOSS CMASS samples. The linear
growth rate determined through RSD [i.e., Eqs. (3) and
(4)] is known to degenerate with the power spectrum am-
plitude (Percival & White 2009), and the constraint on
the growth rate here is plotted in the form of f �8(z),
with �8 being the fluctuation amplitude at 8h�1 Mpc.
Clearly, the combination of galaxy clustering data with
the IA correlations leads to tighter constraints, and for
the CMASS samples, the one-dimensional marginalized
error on each parameter is improved by a factor of 1.7�2,
compared to the one obtained from the Pgg data alone.
This is mainly because the auto-power spectrum PEE
is insensitive to the RSD e↵ect. The IA statistics then
tighten the constraints on the geometric distances, and
this helps breaking the degeneracy between geometric
distances and f�8 through the Pgg and PgE data.
These trends are essentially the same for BOSS LOWZ

and DESI LRG samples at z . 0.8. Right panel of Fig-
ure 1 summarizes the one-dimensional marginalized er-
rors on f �8 (top), dA and H (bottom), plotted as func-
tion of z. Because of the redshift-dependent amplitude
eC1 / (1 + z)�2, the E-mode ellipticity starts to be dom-
inated by the shape noise as increasing z, and in our
setup, the errors on the geometric distances from PEE
data become inflating at z & 0.8. Still, the use of IA
statistics is beneficial, and combining the PEE and PgE
data, the constraint on each parameter is improved by
⇠ 17% even at z = 0.95.
The results in Figure 1 are the model-independent

geometric and dynamical constraints, and these can
be translated into the specific cosmological model con-
straints (Seo & Eisenstein 2003). As an explicit demon-
stration, we consider a flat CDM model having the dark

RSD & BAO can be measured 
from GI & II correlations

{dA(zi), H(zi), f σ8(zi)}

AT & Okumura (’20)

arXiv:2001.05962

GG :   galaxy clustering

II :   IA statistics

GG+GI+II :  both combined
BOSS CMASS



Fisher forecast
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f �8(z), obtained from BOSS CMASS at z = 0.50. Right : One-dimensional marginalized errors on the growth of structure (top) and
geometric distances (bottom), obtained from BOSS LOWZ (z = 0.33), CMASS (z = 0.50) and DESI LRG (0.6  z  1.2), plotted against
the redshift. Solid lines indicate the fiducial model predictions. The errors on dA are multiplied by 5 for illustration.
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samples at 0.6  z  1.2 with BOSS galaxies to examine
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when combining the IA statistics. Note that with a pre-
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the results from the BOSS CMASS samples. The linear
growth rate determined through RSD [i.e., Eqs. (3) and
(4)] is known to degenerate with the power spectrum am-
plitude (Percival & White 2009), and the constraint on
the growth rate here is plotted in the form of f �8(z),
with �8 being the fluctuation amplitude at 8h�1 Mpc.
Clearly, the combination of galaxy clustering data with
the IA correlations leads to tighter constraints, and for
the CMASS samples, the one-dimensional marginalized
error on each parameter is improved by a factor of 1.7�2,
compared to the one obtained from the Pgg data alone.
This is mainly because the auto-power spectrum PEE
is insensitive to the RSD e↵ect. The IA statistics then
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IA as a promising early-universe probe

Anisotropic primordial non-Gaussianity (PNG)

Schmidt et al. (’15), Kogai et al. 
(’18, ’20); Akitsu et al. (’20)

IA is given as a tensor field, and thus can be a sensitive probe to 
what is difficult to detect with galaxy density field

In contrast to galaxy density field given as a scalar quantity, 
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Using N -body simulations for the first time, we show that the anisotropic primordial non-
Gaussianity (PNG) causes a scale-dependent modification, given by 1/k2 at small k limit, in the
three-dimensional power spectra of halo shapes (intrinsic alignments), whilst the conventional power
spectrum of halo number density field remains una�ected. We discuss that wide-area imaging and
spectroscopic surveys observing the same region of the sky allow us to constrain the quadrupole
PNG coe�cient fs=2

NL at a precision comparable with that of the cosmic microwave background.

Introduction – An observational exploration of non-
Gaussianity in the primordial perturbations, which are
the seeds of cosmic structures, gives a powerful test of the
physics in the early universe such as inflation [1–3]. The
cosmic microwave background (CMB) anisotropies and
wide-area galaxy surveys can be used to pursue the pri-
mordial non-Gaussianity (PNG) from their observables
[4–8] and these two carry complementary information.

Suppose that �(x) is the primordial potential field.
The simplest PNG model is a local-type one, and its bis-
pectrum is generally, as in given by Refs. [8, 9]:

B�(k1, k2, k3)
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where k̂ © k/k, P„(k) is the power spectrum of a Gaus-
sian field, denoted as „(x), and L¸ is the Legendre poly-
nomial of order ¸; L0(µ) = 1 and L2(µ) = (3µ

2 ≠ 1)/2.
The coe�cient, f

s=¸
NL , is a parameter to characterize the

amplitude of the local PNG at each order ¸. Due to the
orthogonality of the Legendre polynomials L¸, the PNG
modes of di�erent ¸ are independent with each other, and
are expected to carry complementary information on the
physics in the early universe, if detected or constrained
separately. The isotropic PNG model with s = 0 has
been well studied in the literature [2, 6]. The reality
condition of „(x) ensures that the odd multipoles should
vanish in the squeezed limit, where one of wavevectors is
much smaller than the other two. Thus, in this Letter
we focus on the anisotropic PNG described by the s = 2
term in the above bispectrum, which is the leading-order
anisotropic PNG model among PNGs that have greater
amplitudes in the squeezed limit1.

1
Our notation fs=2

NL is di�erent from the notation A2 used in

Ref. [9]; the relation is A2 = 4fs=2
NL .

The anisotropic PNG can be generated in several in-
flationary scenarios: the solid inflation [10], the non-
Bunch-Davies initial states [11], and the existence of vec-
tor fields [8, 12–15] and higher-spin fields [3, 16, 17] in
the inflationary epoch. Although the predicted bispec-
trum generally has a particular scale dependence such as
L¸(k̂1 ·k̂2) æ (k1/k2)�¸ L¸(k̂1 ·k̂2) in Eq. (1), we consider
a model with �2 = 0 for simplicity.

Nonlinear transformation from anisotropic PNG – To
realize the PNG given by the s = 2 term in the bispec-
trum Eq. (1), we consider the following nonlinear trans-
formation of „:

�(x) = „(x) + 2
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where ”
K
ij is the Kronecker delta function. One can eas-

ily confirm that the non-Gaussian field � leads to the
bispectrum with s = 2 in Eq. (1).

For galaxy surveys, the mass density fluctuation field,
”(x), instead of the primordial potential �(x), is more
relevant for observables. These fields in the linear regime
are related to each other via ”(k) = M(k, z)�(k), where
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0 ), with T (k) and

D(z) denoting the transfer function and the linear growth
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Using N -body simulations for the first time, we show that the anisotropic primordial non-
Gaussianity (PNG) causes a scale-dependent modification, given by 1/k2 at small k limit, in the
three-dimensional power spectra of halo shapes (intrinsic alignments), whilst the conventional power
spectrum of halo number density field remains una�ected. We discuss that wide-area imaging and
spectroscopic surveys observing the same region of the sky allow us to constrain the quadrupole
PNG coe�cient fs=2

NL at a precision comparable with that of the cosmic microwave background.

Introduction – An observational exploration of non-
Gaussianity in the primordial perturbations, which are
the seeds of cosmic structures, gives a powerful test of the
physics in the early universe such as inflation [1–3]. The
cosmic microwave background (CMB) anisotropies and
wide-area galaxy surveys can be used to pursue the pri-
mordial non-Gaussianity (PNG) from their observables
[4–8] and these two carry complementary information.

Suppose that �(x) is the primordial potential field.
The simplest PNG model is a local-type one, and its bis-
pectrum is generally, as in given by Refs. [8, 9]:

B�(k1, k2, k3)

= 2
ÿ

¸=0,1,2,···
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where k̂ © k/k, P„(k) is the power spectrum of a Gaus-
sian field, denoted as „(x), and L¸ is the Legendre poly-
nomial of order ¸; L0(µ) = 1 and L2(µ) = (3µ

2 ≠ 1)/2.
The coe�cient, f

s=¸
NL , is a parameter to characterize the

amplitude of the local PNG at each order ¸. Due to the
orthogonality of the Legendre polynomials L¸, the PNG
modes of di�erent ¸ are independent with each other, and
are expected to carry complementary information on the
physics in the early universe, if detected or constrained
separately. The isotropic PNG model with s = 0 has
been well studied in the literature [2, 6]. The reality
condition of „(x) ensures that the odd multipoles should
vanish in the squeezed limit, where one of wavevectors is
much smaller than the other two. Thus, in this Letter
we focus on the anisotropic PNG described by the s = 2
term in the above bispectrum, which is the leading-order
anisotropic PNG model among PNGs that have greater
amplitudes in the squeezed limit1.

1
Our notation fs=2

NL is di�erent from the notation A2 used in

Ref. [9]; the relation is A2 = 4fs=2
NL .

The anisotropic PNG can be generated in several in-
flationary scenarios: the solid inflation [10], the non-
Bunch-Davies initial states [11], and the existence of vec-
tor fields [8, 12–15] and higher-spin fields [3, 16, 17] in
the inflationary epoch. Although the predicted bispec-
trum generally has a particular scale dependence such as
L¸(k̂1 ·k̂2) æ (k1/k2)�¸ L¸(k̂1 ·k̂2) in Eq. (1), we consider
a model with �2 = 0 for simplicity.

Nonlinear transformation from anisotropic PNG – To
realize the PNG given by the s = 2 term in the bispec-
trum Eq. (1), we consider the following nonlinear trans-
formation of „:

�(x) = „(x) + 2
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where ”
K
ij is the Kronecker delta function. One can eas-

ily confirm that the non-Gaussian field � leads to the
bispectrum with s = 2 in Eq. (1).

For galaxy surveys, the mass density fluctuation field,
”(x), instead of the primordial potential �(x), is more
relevant for observables. These fields in the linear regime
are related to each other via ”(k) = M(k, z)�(k), where
M(k, z) © (2/3)k2

T (k)D(z)/(�m0H
2
0 ), with T (k) and

D(z) denoting the transfer function and the linear growth
factor, respectively. As discussed in Ref. [9], in the pres-
ence of the above PNG, the amplitude of the local small-
scale power spectrum at x has a modulation depending
on the long-wavelength potential Â
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Using N -body simulations for the first time, we show that the anisotropic primordial non-
Gaussianity (PNG) causes a scale-dependent modification, given by 1/k2 at small k limit, in the
three-dimensional power spectra of halo shapes (intrinsic alignments), whilst the conventional power
spectrum of halo number density field remains una�ected. We discuss that wide-area imaging and
spectroscopic surveys observing the same region of the sky allow us to constrain the quadrupole
PNG coe�cient fs=2

NL at a precision comparable with that of the cosmic microwave background.

Introduction – An observational exploration of non-
Gaussianity in the primordial perturbations, which are
the seeds of cosmic structures, gives a powerful test of the
physics in the early universe such as inflation [1–3]. The
cosmic microwave background (CMB) anisotropies and
wide-area galaxy surveys can be used to pursue the pri-
mordial non-Gaussianity (PNG) from their observables
[4–8] and these two carry complementary information.

Suppose that �(x) is the primordial potential field.
The simplest PNG model is a local-type one, and its bis-
pectrum is generally, as in given by Refs. [8, 9]:

B�(k1, k2, k3)

= 2
ÿ

¸=0,1,2,···
f

s=¸
NL
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L¸(k̂1 · k̂2)P„(k1)P„(k2) + 2 perms.

È
,

(1)

where k̂ © k/k, P„(k) is the power spectrum of a Gaus-
sian field, denoted as „(x), and L¸ is the Legendre poly-
nomial of order ¸; L0(µ) = 1 and L2(µ) = (3µ

2 ≠ 1)/2.
The coe�cient, f

s=¸
NL , is a parameter to characterize the

amplitude of the local PNG at each order ¸. Due to the
orthogonality of the Legendre polynomials L¸, the PNG
modes of di�erent ¸ are independent with each other, and
are expected to carry complementary information on the
physics in the early universe, if detected or constrained
separately. The isotropic PNG model with s = 0 has
been well studied in the literature [2, 6]. The reality
condition of „(x) ensures that the odd multipoles should
vanish in the squeezed limit, where one of wavevectors is
much smaller than the other two. Thus, in this Letter
we focus on the anisotropic PNG described by the s = 2
term in the above bispectrum, which is the leading-order
anisotropic PNG model among PNGs that have greater
amplitudes in the squeezed limit1.

1
Our notation fs=2

NL is di�erent from the notation A2 used in

Ref. [9]; the relation is A2 = 4fs=2
NL .

The anisotropic PNG can be generated in several in-
flationary scenarios: the solid inflation [10], the non-
Bunch-Davies initial states [11], and the existence of vec-
tor fields [8, 12–15] and higher-spin fields [3, 16, 17] in
the inflationary epoch. Although the predicted bispec-
trum generally has a particular scale dependence such as
L¸(k̂1 ·k̂2) æ (k1/k2)�¸ L¸(k̂1 ·k̂2) in Eq. (1), we consider
a model with �2 = 0 for simplicity.

Nonlinear transformation from anisotropic PNG – To
realize the PNG given by the s = 2 term in the bispec-
trum Eq. (1), we consider the following nonlinear trans-
formation of „:

�(x) = „(x) + 2
3f
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where ”
K
ij is the Kronecker delta function. One can eas-

ily confirm that the non-Gaussian field � leads to the
bispectrum with s = 2 in Eq. (1).

For galaxy surveys, the mass density fluctuation field,
”(x), instead of the primordial potential �(x), is more
relevant for observables. These fields in the linear regime
are related to each other via ”(k) = M(k, z)�(k), where
M(k, z) © (2/3)k2

T (k)D(z)/(�m0H
2
0 ), with T (k) and

D(z) denoting the transfer function and the linear growth
factor, respectively. As discussed in Ref. [9], in the pres-
ence of the above PNG, the amplitude of the local small-
scale power spectrum at x has a modulation depending
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Using N -body simulations for the first time, we show that the anisotropic primordial non-
Gaussianity (PNG) causes a scale-dependent modification, given by 1/k2 at small k limit, in the
three-dimensional power spectra of halo shapes (intrinsic alignments), whilst the conventional power
spectrum of halo number density field remains una�ected. We discuss that wide-area imaging and
spectroscopic surveys observing the same region of the sky allow us to constrain the quadrupole
PNG coe�cient fs=2

NL at a precision comparable with that of the cosmic microwave background.

Introduction – An observational exploration of non-
Gaussianity in the primordial perturbations, which are
the seeds of cosmic structures, gives a powerful test of the
physics in the early universe such as inflation [1–3]. The
cosmic microwave background (CMB) anisotropies and
wide-area galaxy surveys can be used to pursue the pri-
mordial non-Gaussianity (PNG) from their observables
[4–8] and these two carry complementary information.

Suppose that �(x) is the primordial potential field.
The simplest PNG model is a local-type one, and its bis-
pectrum is generally, as in given by Refs. [8, 9]:

B�(k1, k2, k3)

= 2
ÿ

¸=0,1,2,···
f

s=¸
NL

Ë
L¸(k̂1 · k̂2)P„(k1)P„(k2) + 2 perms.

È
,

(1)

where k̂ © k/k, P„(k) is the power spectrum of a Gaus-
sian field, denoted as „(x), and L¸ is the Legendre poly-
nomial of order ¸; L0(µ) = 1 and L2(µ) = (3µ

2 ≠ 1)/2.
The coe�cient, f

s=¸
NL , is a parameter to characterize the

amplitude of the local PNG at each order ¸. Due to the
orthogonality of the Legendre polynomials L¸, the PNG
modes of di�erent ¸ are independent with each other, and
are expected to carry complementary information on the
physics in the early universe, if detected or constrained
separately. The isotropic PNG model with s = 0 has
been well studied in the literature [2, 6]. The reality
condition of „(x) ensures that the odd multipoles should
vanish in the squeezed limit, where one of wavevectors is
much smaller than the other two. Thus, in this Letter
we focus on the anisotropic PNG described by the s = 2
term in the above bispectrum, which is the leading-order
anisotropic PNG model among PNGs that have greater
amplitudes in the squeezed limit1.

1
Our notation fs=2

NL is di�erent from the notation A2 used in

Ref. [9]; the relation is A2 = 4fs=2
NL .

The anisotropic PNG can be generated in several in-
flationary scenarios: the solid inflation [10], the non-
Bunch-Davies initial states [11], and the existence of vec-
tor fields [8, 12–15] and higher-spin fields [3, 16, 17] in
the inflationary epoch. Although the predicted bispec-
trum generally has a particular scale dependence such as
L¸(k̂1 ·k̂2) æ (k1/k2)�¸ L¸(k̂1 ·k̂2) in Eq. (1), we consider
a model with �2 = 0 for simplicity.

Nonlinear transformation from anisotropic PNG – To
realize the PNG given by the s = 2 term in the bispec-
trum Eq. (1), we consider the following nonlinear trans-
formation of „:

�(x) = „(x) + 2
3f
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where Âij is the trace-less tensor that has the same di-
mension as „, defined as
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where ”
K
ij is the Kronecker delta function. One can eas-

ily confirm that the non-Gaussian field � leads to the
bispectrum with s = 2 in Eq. (1).

For galaxy surveys, the mass density fluctuation field,
”(x), instead of the primordial potential �(x), is more
relevant for observables. These fields in the linear regime
are related to each other via ”(k) = M(k, z)�(k), where
M(k, z) © (2/3)k2

T (k)D(z)/(�m0H
2
0 ), with T (k) and

D(z) denoting the transfer function and the linear growth
factor, respectively. As discussed in Ref. [9], in the pres-
ence of the above PNG, the amplitude of the local small-
scale power spectrum at x has a modulation depending
on the long-wavelength potential Â
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Endlich et al. (’13), 
Shiraishi et al. (’13), 
Arkani-Hamed & 
Maldacena (’15), 
Lee et al. (’16)

∝ k−2

2

where k is a short-wavelength mode and P”(k) is the
global matter auto-power spectrum. Since Â

L
ij is the

trace-less tensor, Â
L
ij causes a quadrupolar modulation

in the power of short mode fluctuations.
Intrinsic alignment and PNG – The linear intrinsic

alignment (IA) model [9, 18, 19] predicts that the shapes
of galaxies originate from the gravitational tidal field as

“ij(x) = bKKij(x), (5)

where “ij is the (3◊3)-tensor to characterize the shape of
each galaxy and Kij is the tidal field at the galaxy’s posi-
tion. We define the tidal field as Kij = (ˆiˆj/ˆ

2 ≠”
K
ij/3)”

so that Kij has the same dimension as that of the mass
density fluctuations. This relation holds on scales suf-
ficiently larger than the reach of galaxy and halo for-
mation physics. Here bK is the linear shape “bias” co-
e�cient, which can be interpreted as a response of the
galaxy shape to the long-wavelength tidal field, whereas
the linear “density” bias parameter b1 gives a response of
the galaxy number density to the long-wavelength mass
density fluctuation [20–22]. For adiabatic, Gaussian ini-
tial conditions, bK takes a constant value at the limit of
a su�ciently large smoothing scale or k æ 0 in Fourier
space, and the value varies with the type of galaxies.
However, the anisotropic PNG breaks the condition, and
causes a characteristic scale-dependent modification in
bK , as the isotropic PNG does for the density tracers [6].

As we discussed in Eq. (4), the anisotropic PNG in-
duces the coupling between the local tidal field, Kij , and
the long-wavelength quadrupole potential, Âij . Similarly
to the e�ect of isotropic PNG on the density distribution
of galaxies, this mode-coupling leads to a scale-dependent
modification in the IA of galaxy shapes as pointed out
by Ref. [9]:

“ij(k) ƒ
#
bK + 12bÂf

s=2
NL M≠1(k)

$
Kij(k), (6)

where bÂ is a parameter to characterize the response of
galaxy shapes to the long-wavelength quadrupole poten-
tial, defined as bÂ © ˆ“ij/ˆ(2f

s=2
NL Âij). The second term

on the r.h.s. shows that the anisotropic PNG induces a
scale-dependence of 1/k

2 in the IA e�ect at very small
k, as in the e�ect of the local-type isotropic PNG on
the galaxy density bias parameter [6]. In the following
we treat bK and bÂ as free parameters, and then estimate
their values (the value of bÂ for the first time) for a sample
of halos from N -body simulations adopting the Gaussian
and the anisotropic PNG initial conditions, respectively.
If we use the peak theory for the nearly random, Gaussian
field, extending the formula in Refs. [23, 24], we might be
able to estimate a relation between bK and bÂ for halos.
However, this is beyond the scope of this Letter, and will
be our future work. We also note that an apparent in-
frared divergence at the limit k æ 0 should be restored if
properly taking into account the finite survey region and
relativistic e�ects [e.g. see Refs. 25–27, for the discussion

on the density bias parameter]. Since we are interested
in the IA e�ect on subhorizon scales, we can safely ignore
the relativistic e�ect.

Initial conditions, simulations, and IA measurements
– To generate the initial conditions for N -body simu-
lations with the anisotropic PNG, we modified 2LPTic,
developed in Ref. [28, 29]. First, in Fourier space we gen-
erate a Gaussian random field „(k) using the assumed
P„(k), and prepare the auxiliary field Âij(k) according
to Eq. (3). Then Fourier transforming „(k) and Âij(k)
to real space, we construct the non-Gaussian field �(x)
following Eq. (2). We solve the Lagrangian dynamics
up to the second order based on the non-Gaussian field
� and the matter transfer function computed by CLASS
[30]. Throughout this Letter we employ a flat �CDM
cosmology consistent with the Planck satellite [31]. We
confirmed that the bispectrum measured from the � field
generated with this procedure is consistent with the s = 2
term of Eq. (1).

We then evolve the particle distribution using a newly
developed N -body solver based on the Tree Particle-
Mesh (PM) scheme [32]. It is based on a general-purpose
framework for particle methods, FDPS [33, 34], with the
PM part originally implemented in GreeM [35–37]. We
further accelerate the calculation of gravitational force
term with a 512-bit SIMD instruction set in a similar
manner as in the Phantom-GRAPE library [38–40] and
optimize the memory footprint for e�cient execution in
high-performance parallel environments. The final accu-
racy of the code is tuned such that it reproduces the mat-
ter power spectrum from a Gadget2 [41] run started from
an identical initial condition with the accuracy parame-
ters used in [42], to within one percent up to the particle
Nyquist frequency. We adopt Npart = 20483 particles
and 4.096 h

≠1Gpc for the comoving simulation box size.
The particle mass is mp ƒ 7.0 ◊ 1011

h
≠1

M§. For com-
parison, we also run simulations for a Gaussian initial
condition and the isotropic (s = 0) PNG model, using
the same initial seeds. In summary we run 6 simulations
in total; one Gaussian simulation and 5 simulations with
f

s=0
NL = 500 and f

s=2
NL = ±100 and ±500. We study the

shapes of halos identified by Rockstar [43], as a proxy
of the galaxy IA e�ect. We use the Rockstar output to
infer the virial mass of each halo, denoted as Mvir [44].

To measure the IA correlations from simulations, we
use a novel method developed in Ref. [44]. First we
measure the inertia tensor defined by member parti-
cles of each halo according to Iij =

q
p w(rp)�x

i
p�x

j
p,

where �x
i
p is the relative position of each member parti-

cle from the halo center, and w(rp) is the 1/r
2
p radial

weight; that is, we up-weight inner member particles
assuming that those are better proxies of stellar parti-
cles if a galaxy forms at the center. Taking the z-axis
to the line-of-sight direction, we define the two elliptic-
ity components, ‘

h
1 , ‘

h
2 , for each halo from the (2 ◊ 2)

sub-matrix of Iij in the xy-plane as an observable halo

( ̂ki
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The lth multipole moment of the power spectrum at wave
number k is defined as

PðlÞ
δE ðkÞ ¼

2lþ 1

2

Z
1

−1
dμLlðμÞPδEðk; μÞ: ð9Þ

In practice we use a discrete summation, instead of the
integral, over the grid points in Fourier space corresponding
to each k bin, spaced by the fundamental mode kf ¼ 2π=L
(L is the side length of a simulation box) for the meas-
urement of the spectra from simulation realizations. We
similarly estimate, from each simulation, the halo-matter
power spectrum, Pδh, and the multipole moments for the
autospectrum of the halo shape E-field, PEE, and for the
cross-power spectrum between the E-field and the halo
number density field, PhE. We set the minimum wave
number, kmin ¼ 0.002 hMpc−1, and adopt the bin width:
Δ ln k ¼ 0.26 (10 bins in one decade of k). In this paper we
do not include the redshift-space distortion effect due to
peculiar velocities of halos for simplicity.

IV. RESULTS

The middle and right panels of Fig. 1 show the main
result of this paper. The PNG simulation confirms that the
anisotropic (s ¼ 2) PNG induces a scale-dependent modi-
fication in the IA power spectra in small k bins in the linear
regime compared to the Gaussian simulation, but does not
change the halo-matter power spectrum, Pδh around the
same scale shown in the left panel. On the other hand, the
isotropic (s ¼ 0) PNG does not alter the IA power spectra,
but does alter Pδh as shown in Ref. [6]. Thus, the scale-
dependent bias of the IA power spectra is a unique feature
originating from the anisotropy in the PNG; hence, if
detected, it would serve as a smoking gun evidence of the
s ¼ 2 PNG. For all cases we confirmed that after the zero
lag subtraction the B-mode auto- and cross-power spectra

are consistent with zero within errors on large scales, which
means that all the B-mode power spectra are not affected by
both PNGs.
In Fig. 2 we compare the best-fit model predictions with

the simulated IA power spectra for different values of fs¼2
NL .

To estimate the best-fit model, we first estimate bK in Eq. (5)
by comparing PδE and Pδ up to k ¼ 0.05 hMpc−1 for the
Gaussian simulation assuming the Gaussian covariance.
Then we estimate bψ in Eq. (6) in the sameway by using the
simulated spectra measured from all the PNG simulations
with different fs¼2

NL values up to k¼0.05hMpc−1, varying
bψ as the only free parameter. The figure shows that the best-
fit model predictions are consistent with the data points
within the error bars.
Figure 3 shows the estimated bK and bψ for different

mass-threshold samples of halos at different redshifts. The
results for different box-size simulations are not in perfect
agreement with each other. This would be ascribed to the
dependence of halo shape estimation, Iij, on the number of
member particles even for halos of a fixed mass scale, as
discussed in Appendix C of Ref. [19] and Ref. [45].
Nevertheless we find that the ratio of bψ=bK is not sensitive
to the simulation resolution. The ratio does not vary with
halo samples and redshifts significantly, displaying
bψ=bK ∼ 0.17 for all the cases shown in the plot. Hence
we believe that the following results obtained assuming a
ratio around this value would be robust against the
numerical resolution issue. The same sign of bK and bψ
implies that the response of halo shapes to the large-scale
tidal field (bK) is similar to that to the quadrupolar
modulation in the small-scale fluctuations (bψ ); an initial
density peak is likely to collapse first in the direction of the
largest eigenvector of Kij and ψ ij.
Now we estimate the ability of a wide-area galaxy survey

to constrain the anisotropic PNG amplitude, using the
Fisher information matrix:

FIG. 1. The matter-halo power spectrum (left panel), the monopole moment of the cross-power spectrum of matter and halo shapes
(middle), and the monopole moment of shape-shape autospectrum (right) for various initial conditions; Gaussian (blue), isotropic PNG
(orange) and anisotropic PNG (green) initial conditions, respectively. Here we assume ðfs¼0

NL ; fs¼2
NL Þ ¼ ð500; 0Þ or (0, 500) for the

isotropic or anisotropic PNG case [Eq. (1)], respectively. These are measured for the halo sample with Mvir > 1014 h−1 M⊙ at z ¼ 0.
The errorbars denote the Gaussian errors for a volume of V ¼ 69 ðh−1 GpcÞ3.
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IV. RESULTS

The middle and right panels of Fig. 1 show the main
result of this paper. The PNG simulation confirms that the
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regime compared to the Gaussian simulation, but does not
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dependent bias of the IA power spectra is a unique feature
originating from the anisotropy in the PNG; hence, if
detected, it would serve as a smoking gun evidence of the
s ¼ 2 PNG. For all cases we confirmed that after the zero
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means that all the B-mode power spectra are not affected by
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In Fig. 2 we compare the best-fit model predictions with
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Gaussian simulation assuming the Gaussian covariance.
Then we estimate bψ in Eq. (6) in the sameway by using the
simulated spectra measured from all the PNG simulations
with different fs¼2

NL values up to k¼0.05hMpc−1, varying
bψ as the only free parameter. The figure shows that the best-
fit model predictions are consistent with the data points
within the error bars.
Figure 3 shows the estimated bK and bψ for different

mass-threshold samples of halos at different redshifts. The
results for different box-size simulations are not in perfect
agreement with each other. This would be ascribed to the
dependence of halo shape estimation, Iij, on the number of
member particles even for halos of a fixed mass scale, as
discussed in Appendix C of Ref. [19] and Ref. [45].
Nevertheless we find that the ratio of bψ=bK is not sensitive
to the simulation resolution. The ratio does not vary with
halo samples and redshifts significantly, displaying
bψ=bK ∼ 0.17 for all the cases shown in the plot. Hence
we believe that the following results obtained assuming a
ratio around this value would be robust against the
numerical resolution issue. The same sign of bK and bψ
implies that the response of halo shapes to the large-scale
tidal field (bK) is similar to that to the quadrupolar
modulation in the small-scale fluctuations (bψ ); an initial
density peak is likely to collapse first in the direction of the
largest eigenvector of Kij and ψ ij.
Now we estimate the ability of a wide-area galaxy survey

to constrain the anisotropic PNG amplitude, using the
Fisher information matrix:

FIG. 1. The matter-halo power spectrum (left panel), the monopole moment of the cross-power spectrum of matter and halo shapes
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(orange) and anisotropic PNG (green) initial conditions, respectively. Here we assume ðfs¼0
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isotropic or anisotropic PNG case [Eq. (1)], respectively. These are measured for the halo sample with Mvir > 1014 h−1 M⊙ at z ¼ 0.
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urement of the spectra from simulation realizations. We
similarly estimate, from each simulation, the halo-matter
power spectrum, Pδh, and the multipole moments for the
autospectrum of the halo shape E-field, PEE, and for the
cross-power spectrum between the E-field and the halo
number density field, PhE. We set the minimum wave
number, kmin ¼ 0.002 hMpc−1, and adopt the bin width:
Δ ln k ¼ 0.26 (10 bins in one decade of k). In this paper we
do not include the redshift-space distortion effect due to
peculiar velocities of halos for simplicity.
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result of this paper. The PNG simulation confirms that the
anisotropic (s ¼ 2) PNG induces a scale-dependent modi-
fication in the IA power spectra in small k bins in the linear
regime compared to the Gaussian simulation, but does not
change the halo-matter power spectrum, Pδh around the
same scale shown in the left panel. On the other hand, the
isotropic (s ¼ 0) PNG does not alter the IA power spectra,
but does alter Pδh as shown in Ref. [6]. Thus, the scale-
dependent bias of the IA power spectra is a unique feature
originating from the anisotropy in the PNG; hence, if
detected, it would serve as a smoking gun evidence of the
s ¼ 2 PNG. For all cases we confirmed that after the zero
lag subtraction the B-mode auto- and cross-power spectra

are consistent with zero within errors on large scales, which
means that all the B-mode power spectra are not affected by
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In Fig. 2 we compare the best-fit model predictions with

the simulated IA power spectra for different values of fs¼2
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To estimate the best-fit model, we first estimate bK in Eq. (5)
by comparing PδE and Pδ up to k ¼ 0.05 hMpc−1 for the
Gaussian simulation assuming the Gaussian covariance.
Then we estimate bψ in Eq. (6) in the sameway by using the
simulated spectra measured from all the PNG simulations
with different fs¼2

NL values up to k¼0.05hMpc−1, varying
bψ as the only free parameter. The figure shows that the best-
fit model predictions are consistent with the data points
within the error bars.
Figure 3 shows the estimated bK and bψ for different

mass-threshold samples of halos at different redshifts. The
results for different box-size simulations are not in perfect
agreement with each other. This would be ascribed to the
dependence of halo shape estimation, Iij, on the number of
member particles even for halos of a fixed mass scale, as
discussed in Appendix C of Ref. [19] and Ref. [45].
Nevertheless we find that the ratio of bψ=bK is not sensitive
to the simulation resolution. The ratio does not vary with
halo samples and redshifts significantly, displaying
bψ=bK ∼ 0.17 for all the cases shown in the plot. Hence
we believe that the following results obtained assuming a
ratio around this value would be robust against the
numerical resolution issue. The same sign of bK and bψ
implies that the response of halo shapes to the large-scale
tidal field (bK) is similar to that to the quadrupolar
modulation in the small-scale fluctuations (bψ ); an initial
density peak is likely to collapse first in the direction of the
largest eigenvector of Kij and ψ ij.
Now we estimate the ability of a wide-area galaxy survey

to constrain the anisotropic PNG amplitude, using the
Fisher information matrix:

FIG. 1. The matter-halo power spectrum (left panel), the monopole moment of the cross-power spectrum of matter and halo shapes
(middle), and the monopole moment of shape-shape autospectrum (right) for various initial conditions; Gaussian (blue), isotropic PNG
(orange) and anisotropic PNG (green) initial conditions, respectively. Here we assume ðfs¼0

NL ; fs¼2
NL Þ ¼ ð500; 0Þ or (0, 500) for the

isotropic or anisotropic PNG case [Eq. (1)], respectively. These are measured for the halo sample with Mvir > 1014 h−1 M⊙ at z ¼ 0.
The errorbars denote the Gaussian errors for a volume of V ¼ 69 ðh−1 GpcÞ3.
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clear from Fig. 4, the two parameters (fs¼0
NL and fs¼2

NL ) can be
simultaneously constrained from the combined measure-
ments of Phh and PhE. Although the effects of the s ¼ 0 and
s ¼ 2 PNGs to the scale-dependent bias in PhE are
degenerate with each other, the degeneracy can be broken
by adding Phh, which is solely dependent on the s ¼ 0
PNG. Second, the E-mode autopower spectrum plays a
little role in determining PNGs. This is consistent with the
fact that the signal-to-noise ratio for the E-mode autopower
spectrum is much smaller than that of PhE (see also [19] for
a similar discussion). Third, the errors of fs¼2

NL are only
slightly degraded when taking into account the lensing
contribution in the covariance matrix. To summarize, a
wide-area galaxy survey enables us to obtain the precision
σðfs¼2

NL Þ ≃ 4 or σðbψfs¼2
NL Þ ≃ 0.1. Note that, if we change the

minimum wave number to kmin ¼ 0.005 hMpc−1 from our
default choice of kmin ¼ 0.002 hMpc−1, the precision is
slightly degraded to σðfs¼2

NL Þ ≃ 5. These results suggest that
the anisotropic PNG can be detected at more than 1σ, if the
true value of fs¼2

NL is larger than ∼5 by a wide-area galaxy
survey with a setting similar to that considered here. The
precision of the IA power spectrum is much better than the
forecast in Ref. [9] which is based on the angular IA power
spectrum instead of the 3D IA power spectrum. This
improvement reflects the power of the 3D power spectrum,
which allows us to access much more Fourier modes than in

the 2D angular power spectrum. Furthermore, this result is
better than the current CMB constraint, σðfs¼2

NL Þ ≃ 19 [5].
We also note that the constraint is degraded to
σðfs¼2

NL Þ ∼ 40, still comparable to the current CMB con-
straint, even if we assume tracers with a weaker response to
the large-scale tidal field and the anisotropic PNG by a
factor of ten, bK ¼ −0.015, instead of bK ¼ −0.15. In any
case it should be noted that the IA method constrains the
anisotropic PNG at different redshifts and for different
length scales compared to the CMB constraints, and the
two methods are complementary to each other.

V. DISCUSSION

In this paper we have shown that the IA power spectra,
measured from the wide-area spectroscopic and imaging
surveys of galaxies for the same region of the sky, can be
used to constrain the anisotropic PNG at a precision
comparable to or even better than the current CMB
constraint. Here an imaging survey is needed to measure
shapes of individual galaxies, while a spectroscopic survey
is needed to obtain their three-dimensional positions. A
further improvement can be obtained, e.g., by having a
larger volume covering up to a higher redshift, combining
the bispectrum information of both the number density [48]
and IA, combining the IA power spectra of different

FIG. 4. The 1σ error contours in a two-parameter space of the anisotropic and isotropic PNG parameters ðfs¼2
NL ; fs¼0

NL Þ, expected for a
hypothetical survey volume of 69 ðh−1 GpcÞ3 corresponding to a galaxy survey of the redshift range z ¼ ½0.5; 1.4% and the solid-angle
coverage fsky ¼ 0.7. Here we consider, as a proxy of galaxy sample, a mass-threshold sample of halos withMvir ≥ 1013 h−1 M⊙, which
have the number density of 2.9 × 10−4 ðh−1 MpcÞ−3 that is comparable with that for luminous red galaxies. Here we employ fs¼0

NL ¼
fs¼2
NL ¼ 0 for the fiducial values, i.e., the Gaussian initial conditions. Therefore the size of contours displays the precision of such a

galaxy survey for discriminating the PNG initial conditions; if the universe has the PNG condition outside the contours, the galaxy
survey can detect the PNG condition at more than 1σ from the measured IA and density power spectra. Here we show the results for four
cases: the blue- and red-solid contours show the results obtained using Phh and PhE with and without the lensing contribution to the
covariance matrix (see text for details). The respective dashed contours show the results further including PEE, combining Phh, PhE and
PEE without lensing (dashed red) and with the lensing (solid red). For the Fisher matrix calculation we employ kmin ¼ 0.002 and
kmax ¼ 0.1 hMpc−1 for the minimum and maximum wave numbers, respectively.
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In practice we use a discrete summation, instead of the
integral, over the grid points in Fourier space corresponding
to each k bin, spaced by the fundamental mode kf ¼ 2π=L
(L is the side length of a simulation box) for the meas-
urement of the spectra from simulation realizations. We
similarly estimate, from each simulation, the halo-matter
power spectrum, Pδh, and the multipole moments for the
autospectrum of the halo shape E-field, PEE, and for the
cross-power spectrum between the E-field and the halo
number density field, PhE. We set the minimum wave
number, kmin ¼ 0.002 hMpc−1, and adopt the bin width:
Δ ln k ¼ 0.26 (10 bins in one decade of k). In this paper we
do not include the redshift-space distortion effect due to
peculiar velocities of halos for simplicity.

IV. RESULTS

The middle and right panels of Fig. 1 show the main
result of this paper. The PNG simulation confirms that the
anisotropic (s ¼ 2) PNG induces a scale-dependent modi-
fication in the IA power spectra in small k bins in the linear
regime compared to the Gaussian simulation, but does not
change the halo-matter power spectrum, Pδh around the
same scale shown in the left panel. On the other hand, the
isotropic (s ¼ 0) PNG does not alter the IA power spectra,
but does alter Pδh as shown in Ref. [6]. Thus, the scale-
dependent bias of the IA power spectra is a unique feature
originating from the anisotropy in the PNG; hence, if
detected, it would serve as a smoking gun evidence of the
s ¼ 2 PNG. For all cases we confirmed that after the zero
lag subtraction the B-mode auto- and cross-power spectra

are consistent with zero within errors on large scales, which
means that all the B-mode power spectra are not affected by
both PNGs.
In Fig. 2 we compare the best-fit model predictions with

the simulated IA power spectra for different values of fs¼2
NL .

To estimate the best-fit model, we first estimate bK in Eq. (5)
by comparing PδE and Pδ up to k ¼ 0.05 hMpc−1 for the
Gaussian simulation assuming the Gaussian covariance.
Then we estimate bψ in Eq. (6) in the sameway by using the
simulated spectra measured from all the PNG simulations
with different fs¼2

NL values up to k¼0.05hMpc−1, varying
bψ as the only free parameter. The figure shows that the best-
fit model predictions are consistent with the data points
within the error bars.
Figure 3 shows the estimated bK and bψ for different

mass-threshold samples of halos at different redshifts. The
results for different box-size simulations are not in perfect
agreement with each other. This would be ascribed to the
dependence of halo shape estimation, Iij, on the number of
member particles even for halos of a fixed mass scale, as
discussed in Appendix C of Ref. [19] and Ref. [45].
Nevertheless we find that the ratio of bψ=bK is not sensitive
to the simulation resolution. The ratio does not vary with
halo samples and redshifts significantly, displaying
bψ=bK ∼ 0.17 for all the cases shown in the plot. Hence
we believe that the following results obtained assuming a
ratio around this value would be robust against the
numerical resolution issue. The same sign of bK and bψ
implies that the response of halo shapes to the large-scale
tidal field (bK) is similar to that to the quadrupolar
modulation in the small-scale fluctuations (bψ ); an initial
density peak is likely to collapse first in the direction of the
largest eigenvector of Kij and ψ ij.
Now we estimate the ability of a wide-area galaxy survey

to constrain the anisotropic PNG amplitude, using the
Fisher information matrix:

FIG. 1. The matter-halo power spectrum (left panel), the monopole moment of the cross-power spectrum of matter and halo shapes
(middle), and the monopole moment of shape-shape autospectrum (right) for various initial conditions; Gaussian (blue), isotropic PNG
(orange) and anisotropic PNG (green) initial conditions, respectively. Here we assume ðfs¼0

NL ; fs¼2
NL Þ ¼ ð500; 0Þ or (0, 500) for the

isotropic or anisotropic PNG case [Eq. (1)], respectively. These are measured for the halo sample with Mvir > 1014 h−1 M⊙ at z ¼ 0.
The errorbars denote the Gaussian errors for a volume of V ¼ 69 ðh−1 GpcÞ3.
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clear from Fig. 4, the two parameters (fs¼0
NL and fs¼2

NL ) can be
simultaneously constrained from the combined measure-
ments of Phh and PhE. Although the effects of the s ¼ 0 and
s ¼ 2 PNGs to the scale-dependent bias in PhE are
degenerate with each other, the degeneracy can be broken
by adding Phh, which is solely dependent on the s ¼ 0
PNG. Second, the E-mode autopower spectrum plays a
little role in determining PNGs. This is consistent with the
fact that the signal-to-noise ratio for the E-mode autopower
spectrum is much smaller than that of PhE (see also [19] for
a similar discussion). Third, the errors of fs¼2

NL are only
slightly degraded when taking into account the lensing
contribution in the covariance matrix. To summarize, a
wide-area galaxy survey enables us to obtain the precision
σðfs¼2

NL Þ ≃ 4 or σðbψfs¼2
NL Þ ≃ 0.1. Note that, if we change the

minimum wave number to kmin ¼ 0.005 hMpc−1 from our
default choice of kmin ¼ 0.002 hMpc−1, the precision is
slightly degraded to σðfs¼2

NL Þ ≃ 5. These results suggest that
the anisotropic PNG can be detected at more than 1σ, if the
true value of fs¼2

NL is larger than ∼5 by a wide-area galaxy
survey with a setting similar to that considered here. The
precision of the IA power spectrum is much better than the
forecast in Ref. [9] which is based on the angular IA power
spectrum instead of the 3D IA power spectrum. This
improvement reflects the power of the 3D power spectrum,
which allows us to access much more Fourier modes than in

the 2D angular power spectrum. Furthermore, this result is
better than the current CMB constraint, σðfs¼2

NL Þ ≃ 19 [5].
We also note that the constraint is degraded to
σðfs¼2

NL Þ ∼ 40, still comparable to the current CMB con-
straint, even if we assume tracers with a weaker response to
the large-scale tidal field and the anisotropic PNG by a
factor of ten, bK ¼ −0.015, instead of bK ¼ −0.15. In any
case it should be noted that the IA method constrains the
anisotropic PNG at different redshifts and for different
length scales compared to the CMB constraints, and the
two methods are complementary to each other.

V. DISCUSSION

In this paper we have shown that the IA power spectra,
measured from the wide-area spectroscopic and imaging
surveys of galaxies for the same region of the sky, can be
used to constrain the anisotropic PNG at a precision
comparable to or even better than the current CMB
constraint. Here an imaging survey is needed to measure
shapes of individual galaxies, while a spectroscopic survey
is needed to obtain their three-dimensional positions. A
further improvement can be obtained, e.g., by having a
larger volume covering up to a higher redshift, combining
the bispectrum information of both the number density [48]
and IA, combining the IA power spectra of different
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NL Þ, expected for a
hypothetical survey volume of 69 ðh−1 GpcÞ3 corresponding to a galaxy survey of the redshift range z ¼ ½0.5; 1.4% and the solid-angle
coverage fsky ¼ 0.7. Here we consider, as a proxy of galaxy sample, a mass-threshold sample of halos withMvir ≥ 1013 h−1 M⊙, which
have the number density of 2.9 × 10−4 ðh−1 MpcÞ−3 that is comparable with that for luminous red galaxies. Here we employ fs¼0

NL ¼
fs¼2
NL ¼ 0 for the fiducial values, i.e., the Gaussian initial conditions. Therefore the size of contours displays the precision of such a

galaxy survey for discriminating the PNG initial conditions; if the universe has the PNG condition outside the contours, the galaxy
survey can detect the PNG condition at more than 1σ from the measured IA and density power spectra. Here we show the results for four
cases: the blue- and red-solid contours show the results obtained using Phh and PhE with and without the lensing contribution to the
covariance matrix (see text for details). The respective dashed contours show the results further including PEE, combining Phh, PhE and
PEE without lensing (dashed red) and with the lensing (solid red). For the Fisher matrix calculation we employ kmin ¼ 0.002 and
kmax ¼ 0.1 hMpc−1 for the minimum and maximum wave numbers, respectively.
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Summary
The intrinsic alignment (IA) of galaxies as a novel probe of 

precision cosmology & early-universe physics

• quantitatively explain anisotropies inherent in 3D correlations

The IA for late-type galaxies can be an ideal tracer of large-scale 
tidal fields

Linear alignment (LA) model

• accurately predicts large-scale IA correlations (GI & II)

Forecast study with IA correlations

GG+GI+II improves cosmological constraints by a factor of >1.5

BAO & RSD can be measured


