4th July, 2023 ASIAA seminar @ASIAA

To be or not to be: (non-)universal features in dark matter halos

Atsushi Taruya (YITP, Kyoto Univ.)

Contents

Introduction & motivation Cold dark matter: new universal radial structure of halos Summary

> Y Enomoto, T. Nishimichi & AT, ApJL 950, L13 ('23), arXiv:2302.01531 AT & S. Saga, PRD 106, 103532 ('22), arXiv:2208.06562

Based on

(Non-)universal features of innermost structure of dark matter halos in cold and fuzzy (wave) dark matter models

Fuzzy dark matter: analytical insight into core-halo structure

Introduction: dark matter

- Hypothetical matter component interacting only through gravity
- Accounting for ~30% of the energy content of the universe
- Many observational supports for the evidence of DM

While DM is indispensable for cosmic structure formation, its origin and nature is still mystery

flat rotation curves, gravitational lensing observations, CMB & large-scale structure, ...

DM responsible for structure formation is thought to be non relativistic Peebles ('82, '84), Blumenthal et al. ('84), ... efore recombination \rightarrow baryon catchup

Cold DM (CDM)

Warm DM (WDM)

MDY

formation

th a property:

 $\sigma/m_{\rm DM} \sim \mathcal{O}(1) \,{\rm cm}^2/{\rm g}$

 $m_{\rm DM} \sim \mathcal{O}(10^{-22}) \ {\rm eV}$

Question now well one can observationally diseminate between Diviniouels:

Its structural properties re

In particular, inner str

Cold DM (CDM)

Warm DM (WDM)

m

ravitating bound objects are of DM times exhibit *universal features* anique channel to access nature of DM

 $\sigma/m_{\rm DM} \sim \mathcal{O}(1) \,{\rm cm}^2/{\rm g}$

 $m_{\rm DM} \sim \mathcal{O}(10^{-22}) \ {\rm eV}$

g universal features are very important toward observational probe of DM

$m_{\rm DM} \sim 100 \,{\rm GeV}$

Based on analytical treatment, **Cosmological dependence of core-halo structures** AT & S. Saga, PRD 106, 103532 ('22), arXiv:2208.06562

Rest of talk

Based on numerical simulations,

New universal feature in multi-stream structures of DM halos

Y Enomoto, T. Nishimichi & AT, ApJL 950, L13 ('23), arXiv:2302.01531

Cold dark matter (CDM) halo

Baseline DM in the concordant cosmological model (ACDM)

Cuspy structure

Radial density p (Navarro, Frenk & White '96)

CDM halo

Pseudo-phase space density

(Taylor & Navarro '01)

A more profound & universal property as a distinct feature of CDM?

Studied extensively by N-body simulations

orofile
$$\rho(r) \propto r^{\alpha} r^{-\alpha}$$
 ($\alpha = 1 - 1.5$)

(c.f. prompt cusp of $\rho \propto r^{-3/2}$ of first halos) (Ishiyama et al. '10; Delos & White'22)

 $Q(r) \equiv \rho(r) / \{\sigma_{\rm v}(r)\}^3$ $\propto r^{-\alpha_{\rm Q}} \quad (\alpha_{\rm O} = 1.875)$

nature of CDM halos

- vides a distinctive feature in CDM halos
- ity dispersion at an early time
 - Through accretion/merger processes

Onion-like structure

Multi-stream structures with an outer sharp boundary (=Splashback radius)

(e.g., Diemer & Kravtsov '14; Adhikari et al. '14)

- Is there fundamental universal feature hidden in phase space?

Characterizing multi-stream flow in simulations

Only one snapshot is insufficient to reveal what is happening inside halo

Provided the animation, one can deduce multistream flow

trajectories o f dark Key matter particles

Tracing multi-stream flow with particles

Using 1,001 snapshot data of cosmological N-body simulations over z=0-5

Keep track of apocenter passage(s) for particle trajectories and count the number of <u>apocenter passages</u>, *p*, for each particle

 $\Lambda \text{CDM}, L_{\text{box}} = 41 \, h^{-1} \text{Mpc} \& N_{\text{dm}} = 500^3$

- (Sugiura et al. '20)
- See also Diemer ('17)

φ

Stacked multi-stream radial profiles Enomoto, Nishimichi & AT ('23) $[242, 1340] M_{10}$ $[1,340, 15,300] M_{10}$ $r_{p} = 40$ p = 4(p = 30p = 30p = 20p = 20n = 10p = 10# of apocenter passag 10^{-1} 10^{0} 10^{-1} 10^{0} 10^{-10} 10^{-1} $p \times r/R_{\rm vir}$ г $\log_{10} \{A(p)/\overline{\rho_{\rm m}}\} = 4.89 - 0.119 \log_{10}(M_{10})$ $\pm \left\{ \frac{1}{2} + 0.243 \log_{10}(M_{10}) \right\} p^{-9/40}$ $\log_{10} \{ S(p)/R_{\text{vir}} \}^{46} - 0.0474 \log_{10}(M_{10}) \otimes (M_{10}) \otimes (M_{1$

Total profiles from multi-stream profiles

Comparison with self-similar solutions Enomoto, Nishimichi & AT ('23, in prep.) spherical

Self-similar solutions of collisionless shell (Filmore & Goldreich '84; Bertschinger '85; Sikivie et al. '97; Nusser '01)

Parameters: (ϵ, L)

initial slope & angular momentum

Comparison with self-similar solutions

Self-similar solutions of collisionless shell (Filmore & Goldreich '84; Bertschinger '85; Sikivie et al. '97; Nusser '01)

features, taking presumably angular momentum distribution into account

Enomoto, Nishimichi & AT ('23, in prep.)

Parameters: (ϵ, L)

spherical

initial slope & angular momentum

Fuzzy dark matter (FDM) halo

Radius: $r_{\rm c}$

Fuzzy DM halo

Intriguingly,

Mass: M_c

Properties of soliton core seem to be tightly related to those of overall halo $(\rightarrow next)$ $(r_{c} \& M_{c})$

Alternative DM candidate having a ultralight mass ($m_{\rm DM} \sim 10^{-22} \, {\rm eV}$) \rightarrow very long de Broglie wavelength ($\lambda_{dB} \sim 0.5$ kpc)

Core-halo relations

Soliton core size (r_c) & mass (M_c) are correlated with halo mass (M_h) ,

Core-halo relations (Schive et al. '14) $r_{\rm c} \propto m_{\rm DM}^{-1} M_{\rm h}^{-1/3}, \quad M_{\rm c} \propto m_{\rm DM} M_{\rm h}^{1/3}$

→ Used for observational constraints on DM mass (e.g., Schive et al. '14, Safarzadeh & Spergel '20; Hayashi & Obata '20)

c.f. Latest numerical works: Schwabe et al. '16, Du et al. '17, Mocz et al. '17, Nori & Baldi '21, Mina et al. '22, Chan et al. '22

Can we better understand analytically the core-halo relations?

Making use of $\alpha \gg 1$, one can obtain accurate approximate solutions (\rightarrow next) (with technique beyond WKB approx.) Super

Asymptotic behaviors of the n=1 solution gives analytical core-halo relations (\rightarrow next)

Analytic description of soliton core

Analytical core-halo relations (AT & Saga '22)

$$r_{\rm c} \propto m_{\rm DM}^{-1} M_{\rm h}^{-1/3} \left\{ \frac{g(c_{\rm vir})}{1 + \mathscr{E}_{1,0}/\alpha} \right\}^{1/2}$$
$$g(c_{\rm vir}) \equiv \frac{\ln(1 + c_{\rm vir})}{c_{\rm vir}} - \frac{1}{1 + c_{\rm vir}}$$

- They look similar to the original expressions, but involve additional factors !
- Energy eigenvalue, $\mathscr{E}_{1,0}/\alpha$, is given as a function of parameter α , which depends on $c_{\rm vir}$

Through the concentration-mass relation, $c_{\rm vir}(M_{\rm h})$, predicted core-halo relations show a *non-trivial* dependence on halo mass $(\rightarrow next)$

Predictions exhibit *non power-law behaviors* with *a large scatter* (consistent with simulations?)

Predicted core-halo relations

Predictions exhibit *non power-law behaviors* with *a large scatter* (consistent with simulations?)

 10^{10}

 $M_h [M_{\odot}]$

 10^{12}

Simulation data shown here are not obtained from a relevant setup with small-scale cutoff

Box size of these simulations is still insufficient et al. '01) $(L_{\rm box} = 300 \,{\rm kpc} \,\&\, 10 \,h^{-1}{\rm Mpc})$ et al. '21) 100 10^{-1} Lognormal scatter $10^0 \qquad m_{22} = 0.8$ of 0.16 dex 10^{-2}

Predicted core-halo relations

Soliton's self-gravity ignored in the analysis in fact gives a nonnegligible impact (but our perturbative estimation suggests only ~20% change)

Simulation data shown here are not obtained from a relevant setup with small-scale cutoff

Box size of these simulations is still insufficient $(L_{\rm box} = 300 \,{\rm kpc} \,\&\, 10 \,h^{-1}{\rm Mpc})$

ults

et al. '01) et al. '21)

Lognormal scatter of 0.16 dex 10^{12} $M_h [M_{\odot}]$

aw behaviors with *a large scatter* (consistent with simulations?)

Predicted core-halo relations

Soliton's self-gravity ignored in the analysis in fact gives a nonnegligible impact

(but our perturbative estimation suggests only ~20% change) aw behaviors with

Simulation data shown here are not obtained from a relevant setup with small-scale cutoff

Box size of these simulations is still insufficient $(L_{\rm box} = 300 \,{\rm kpc} \,\&\, 10 \,h^{-1}{\rm Mpc})$

 $c_{\rm vir}(M_{\rm h})$ ults

et al. '01) et al. '21)

A further investigation is necessary

Lognormal scatter of o.16 dex 10^{12} $M_h [M_{\odot}]$

a large scatter (consistent with simulations?)

Summary

To be or not to be... (non-)universal features of innermost structure of dark matter halos based on analytical & numerical study

Cold dark matter (CDM)

A new universal feature found in multi-stream structures (self-similar solutions fail to explain)

Fuzzy dark matter (FDM) AT & S. Saga, PRD 106, 103532 ('22), arXiv:2208.06562

A missing factor in core-halo relations found analytically \rightarrow non power-law core-halo relation with a large scatter

Understanding (non-)universal features in DM halos largely impacts cosmology

Y Enomoto, T. Nishimichi & AT, ApJL 950, L13 ('23), arXiv:2302.01531

Radial multi-stream profiles $\rho_{\text{stream}}(r;p) = \frac{A(p)}{x(1+x^7)}; \quad x \equiv \frac{r}{S(p)}$ With A(p) & S(p) described by a simple fitting form

