Workshop on Bispectrum @ YITP 3/29 – 30 2018

Theory of primordial non-Gaussianity and its constraints by bispectrum

Shuntaro Mizuno (YITP)

with Shuichiro Yokoyama (Rikkyo) Phys. Rev. D 91, 123521
with Ichihiko Hashimoto (YITP), Shuichiro Yokoyama (Rikkyo) Phys. Rev. D 94, 043532

Contents

1. Primordial Non-Gaussianity (PNG)

2. Scale-dependent bias from PNG

- 3. Constraints on PNG by Halo/galaxy bispectrum
- 4. Summary and discussions

1. Primordial Non-Gaussianity (PNG)

Generation of primordial perturbations

comoving scales

Constraints from primordial power spectrum

Primordial power spectrum

$$\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle = (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') P_{\zeta}(k)$$

well approximated by $\frac{k^3}{2\pi^2} P_{\zeta}(k) = A_s(k_\star) \left(\frac{k}{k_\star}\right)^{n_s - 1} k_\star = 0.05 \text{Mpc}^{-1}$

Constraints from Planck Ade et al `16

For standard single-field slow-roll inflation models

$$n_{s} - 1 \simeq -2\epsilon - \eta$$
$$r \equiv \frac{P_{h}}{P_{\zeta}} = 16\epsilon$$
$$\epsilon \equiv -\frac{\dot{H}}{H^{2}} \qquad \eta \equiv \frac{\dot{\epsilon}}{H\epsilon}$$

Primordial bispectrum

Primordial bispectrum

dimensionless function

$$\langle \zeta_{\mathbf{k_1}} \zeta_{\mathbf{k_2}} \zeta_{\mathbf{k_3}} \rangle \equiv (2\pi)^3 \delta(\sum_{\mathbf{i}} \mathbf{k_i}) \left[(2\pi)^4 \frac{S(k_1, k_2, k_3)}{(k_1 k_2 k_3)^2} A_s^2 \right]$$

wavevectors \mathbf{k}_i form a tetrahedron in Fourier space

 $S\,$ has information of amplitude as well as shape-dependence $\mbox{-}$ Shape-dependence of bispectrum

In most models, S depends only on $x_2 \equiv k_2/k_1$ and $x_3 \equiv k_3/k_1$

For $k_3 \le k_2 \le k_1$ Allowed region is $1 \ge x_2 \ge x_3$

 $1 \le x_2 + x_3$

Representative types of primordial bispectra

•equilateral-type $f_{
m NL}^{
m equil}$

Maximum in the squeezed limit $k_3 \ll k_2 \simeq k_1$

Maximum in the equilateral limit $k_3 \simeq k_2 \simeq k_1$

Generated by non-linear dynamics Ex.) Multi-field model Generated by intrinsic nonlinearity of inflaton perturbation

Local-type PNG from multi-field model

- Schematic graphs for curvature perturbation (δN)

Consistency relation

 Squeezed-limt bispectrum from single field inflation Maldacena `03, Creminelli, Zaldarriaga `04

$$\lim_{k_3 \to 0} B_{\zeta}(k_1, k_2, k_3) = (1 - n_s(k_1)) P_{\zeta}(k_1) P_{\zeta}(k_3)$$

Conservation of ζ_k on super-Hubble scales $\longrightarrow k_3$ mode locally acts as a background field

 \implies Detection of $f_{\rm NL}^{\rm local}$ rule out most single field inflation models !!

 Loop hole Chen, Firouzjahi, Namjoo, Sasaki `13

Based on non-attractor background solution, we can violate this, as the 'decaying' mode can become important on large scales

Intrinsic non-linearity of inflaton perturbation

Expansion of the action

$$g_{\mu\nu}(t,x) = \bar{g}_{\mu\nu}(t) + \delta g_{\mu\nu}(t,x) \qquad \phi(t,x) = \bar{\phi}(t) + \delta \phi(t,x)$$

$$\implies S = \bar{S} + S^{(2)}(\delta g_{\mu\nu}, \delta \phi) + S^{(3)}(\delta g_{\mu\nu}, \delta \phi) + \cdots$$
interactions of inflaton fluctuation

• In-in formalism Calzetta and Hu `87, Weinberg `05

The expectation value of an observable O(t)

$$\langle in|O(t)|in\rangle = \langle 0| \left[\bar{T}\exp\left(i\int_{-\infty}^{t} \underline{H_{I}(t')}dt'\right)\right]O^{I}(t) \left[T\exp\left(-i\int_{-\infty}^{t} \underline{H_{I}(t'')}dt''\right)\right]|0\rangle$$

interaction Hamiltonian

At leading order $\Longrightarrow \langle O(t) \rangle = 2 \operatorname{Re} \left[-i \int_{-\infty}^{t} dt' \langle 0 | O^{I}(t) H_{I}(t') | 0 \rangle \right]$

Equilateral-type PNG from k-inflation

•Model Chen, et al, `07 Arroja, SM, Koyama, Tanaka, `09

$$\mathcal{L} = P(\phi, X) \quad \text{with} \quad X = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$$

Ex1) Canonical $P(\phi, X) = X - V(\phi)$
Ex2) DBI $P(\phi, X) = -f(\phi)^{-1}\sqrt{1 - 2Xf(\phi)} + f(\phi)^{-1} + V(\phi)$

Sound speed

 $c_s^2 = \frac{P_{,X}}{P_{,X} + 2XP_{,XX}}$ is related with intrinsic non-linearity $f_{\rm NL}^{\rm equil} \sim 1/c_s^2 \qquad g_{\rm NL}^{\rm equil} \sim 1/c_s^4 \text{ (trispectrum)}$

Also generated in more general higher-derivative scenarios as well as effective field theory of inflation • Constraints from CMB and perspectives • Constraints from Planck (CMB) Ade et al `16

 $f_{\rm NL}^{\rm local} = 0.8 \pm 5.0$

$$f_{\rm NL}^{\rm equil} = -4 \pm 43$$

(68% CL)

• $f_{\rm NL}^{\rm local}$ from multifield scenarios is very model-dependent, but large class of spectator models predicts $|f_{\rm NL}^{\rm local}| \ge O(1)$ Suyama, Takahashi, Yamaguchi, Yokoyama `13

• The bounds on $f_{\rm NL}^{\rm equil}$ translate into a limit on c_s $c_s \ge 0.020 \ (95\% {\rm CL})$

Strong coupling scale in EFT $\Lambda_{\star} \sim \frac{1}{\sqrt{\zeta f_{\rm NL}^{\rm equil}}} H_{inf}$

Unless $|f_{\rm NL}^{\rm equil}| \le 1$, new physics appears much below $M_{\rm Pl}$ Baumann, Green `11

2. Scale-dependent bias from PNG

Simple picture of bias

Small scale density peaks exceeding threshold collapse under their own gravity and form virialized objects

Peak-background split

$$\delta_m = \delta_{short} + \delta_{long}$$

Large-scale fluctuations δ_{long} raise local background density,

Simple picture of bias

Small scale density peaks exceeding threshold collapse under their own gravity and form virialized objects

Peak-background split

$$\delta_m = \delta_{short} + \delta_{long}$$

Large-scale fluctuations δ_{long} raise local background density, which lowers effective threshold for collapse and enhances number of peaks above threshold !!

Influence of local-type PNG on bias Dalal et al, `08, (See also Sloser et al, `08)

local model of PNG

$$\Phi(x) = \phi_G(x) + f_{\rm NL}^{\rm local}(\phi_G^2(x) - \langle \phi_G^2 \rangle)$$

peak-background split of Gaussian potential fluctuations:

$$\phi_G(x) = \phi_s(x) + \phi_l(x)$$

$$\Phi(x) = (1 + \underline{f_{\mathrm{NL}}^{\mathrm{local}}}\phi_l(x))\phi_s(x) + \phi_l(x) + f_{\mathrm{NL}}^{\mathrm{local}}(\phi_s^2(x) + \phi_l^2(x) - \langle \phi_s^2(x) \rangle - \langle \phi_l^2(x) \rangle)$$

long wavelength modes add to local background density $+\delta_{long}$ and modulate amplitude on small scales $\times f_{\rm NL}\phi_l$

$$\Delta b = f_{\rm NL}^{\rm local} (b_{\rm G} - 1) \frac{3\delta_c \Omega_m H_0^2}{k^2 T(k) D(a)}$$

Constraints on local-type PNG

Dalal et al `08

 Current constraints: (95 % CL) Leistedt, Peiris, Roth `14 $-49 < f_{\rm NL}^{\rm local} < 31$ $-2.7 \times 10^5 < g_{\rm NL}^{\rm local} < 1.9 \times 10^5$ Forecast constraints: Yamauchi et al `14 $\Delta f_{\rm NL}^{\rm local} \simeq 0.1$ (SKA)

We expect that the constraint on local-type PNG will be much tighter How about equilateral-type PNG ?

Integrated Perturbation Theory (iPT)

Matsubara `12, `13, Bernardeau et al `08

Multi-point propagator of biased objects

 $\left\langle \frac{\delta^n \delta_X(\mathbf{k})}{\delta \delta_{\mathrm{L}}(\mathbf{k}_1) \delta \delta_{\mathrm{L}}(\mathbf{k}_2) \cdots \delta \delta_{\mathrm{L}}(\mathbf{k}_n)} \right\rangle = (2\pi)^{3-3n} \delta(\mathbf{k}_1 + \mathbf{k}_2 + \dots + \mathbf{k}_n) \Gamma_X^{(n)}(\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_n)$ Gravitational evolution, bias, ...

- δ_X : number density field of the biased objects (Halo/ Galaxy)
- $\delta_{\rm L}$: linear density field which is related with primordial curvature perturbation ζ through

$$\delta_{\rm L}(k) = \mathcal{M}(k)\zeta(k); \, \mathcal{M}(k) = \frac{2}{3} \frac{D(z)}{D(z_*)(1+z_*)} \frac{k^2 T(k)}{H_0^2 \Omega_{\rm m0}}$$

D(a) : growth factor T(k) : transfer function

large scale behavior of the spectra of biased objects

Halo/Galaxy power spectrum with PNG

Diagrams for the power spectrum of the biased objects

3. Constraints on PNG by Halo/galaxy bispectrum

Scale-dependence of halo/galaxy bispectrum (Local-type PNG) Yokoyama, Matsubara, Taruya `14

Forecast constraints

Hashimoto, Taruya, Matsubara, Namikawa, Yokoyama `16 Hashimoto, SM, Yokoyama `16

Can LSS obtain more severer constraints than CMB?

Ongoing/future surveys on LSS

	$f_{ m sky}$	zm	$\bar{n}_{\rm s}$ [arcmin ⁻²]
HSC [21]	0.0375 (1,500 deg ²)	1.0	35
DES [22]	0.125 (5,000 deg ²)	0.5	12
LSST [23]	$0.5 (20,000 deg^2)$	1.5	100

sky coverage mean source redshift mean number density of source

Expected constraints on PNG

Local-type from P + B (halo + lens)

	HSC	DES	LSST	CMB
	marginalized	marginalized	marginalized	un-marginalized
$\sigma(f_{\rm NL})$	15	11	1.0	5.1
$\sigma(g_{\rm NL})$	1.4×10^{5}	2.0×10^{5}	4.7×10^{3}	1.4×10^{5}
$\sigma(\tau_{\rm NL})$	6.0×10^{3}	8.9×10^{3}	10	1.4×10^{3}

Equilateral-type from B (halo + lens)

	HSC	DES	LSST	СМВ
	marginalized	marginalized	marginalized	un-marginalized
$\sigma(f_{\rm NL})$	2.1×10^{3}	1.1×10^{3}	6.4×10^{2}	43
$\sigma(g_{\rm NL})$	2.7×10^{8}	7.7×10^{8}	4.4×10^{7}	1.3×10^6

4. Summary and discussions

Summary

• PNG has information on various types of nonlinearity of inflation models and is helpful to distinguish between them

• Currently, from CMB, no significant PNG is observed and the simplest single-field slow-roll inflation models are consistent

• From scale-dependent bias, the future/ongoing projects on LSS can constrain $f_{\rm NL}^{\rm local}$ more and we can expect $\Delta f_{\rm NL}^{\rm local} \simeq 0.1$

• From halo/galaxy bispectrum, we can constrain $f_{\rm NL}^{\rm equil}$, but constraints from LSS are looser than that from CBM

Discussions

• Multitracer technique (Yamauchi et al `16) is helpful and gets $\Delta f_{
m NL}^{
m equil} \sim 20$ for SKA, slightly better than Planck

•We can constrain $f_{\rm NL}^{\rm equil}$ more from information of small scales if we specify nonlinear and nonlocal bias (Gleyzes et al `16)

• PNG is also generated by models with Exited initial states, resonance and feature models, models with gauge fields,...