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Repulsive gravity
IN BHT massive gravity
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that our conclusion and the future discussion.

2 BHT massive gravity and static circularly symmetry black hole solution

The action of BHT massive gravity is given by [1]

S =

1 3 1
/—a —0\—- —K 2.1
167rG_/dJL g(R A m? >7 @1)
where K is
ng 3 2
K = R,,R" — gR . (2.2)
The source-free field equation can be read

1
72K;u/ =0, (23)

g, —
G+ Ay 2m

where
1 9 o8 13,
K, =20R,, — §(VMVUR + guwOR) — 8RR + 5RRW + g | SR Rop — §R . (2.4)

When a spacetime has a constant curvatu

is also simplified as K, = —1Agu, [1, 5].

with two different radii, determined by

geodesic of E?=30
horizon

Ay =2m(

from Eq.(2.3). A special case defined as :
m? =

geodesic of S| —

horizon

geodesic of E%=15

Q

67

region I

region 11Ty

region Il

Figure 4: Behaviors of the geodesics for the parameter region I and III.



Motivation

Quantum Gravity?

Quantum Geometry?

Naturale Criterion?



Candidates of quantum gravity

m string theory
m string field theory
. matrix models

® [oop quantum gravity
® (causal) dynamical triangulation

B noncommutative geometry



Old history
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Quantized Space-Time
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Department of Physics, Novthwestern Universily, Evanston, Ilineis
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It {s usually assumed that spacc-time is a continuum. This assumption is not required by
Lorentz invariance. [n this paper we give an example of a Lorentz invariant discrete space-time.

HE problem of the interaction of matter

and fields has not been satisfactorily solved
to this date. The root of the trouble in present
field theories scems to lic in the assumption of
point interactions between matter and fields.
On the other hand, no relativistically invariant
Hamiltonian theory. is known for any form of
interaction other than point interactions.

Even for the case of point interactions the
relativistic invariance is of a formal nature only,
as the equations for quantized interacting fields
have ne selutions. The uses of source functions,
or of a cut-off in momentum space to replace
infinity by a finite number are distasteful arbi-

trary procedures, and neither process has yet
been formulated in a relativistically invariant
manner. [t mav not be possible to do this.

It is possible that the usual four-dimensional
continuous space-time does not provide a suitable
framework within which interacting matter and
ficlds can be described. | have chosen the idea
that a modification of the ordinary concept of
space-time may be necessary hecause the *'ele-
mentary” particles have fixed - masses and
associated Compton wave-lengths.

The special theory of relativity may be based
on the invariance of the indefinite quadratic form

SP=cr—x— 2 (1)




Old history

that the usual assumptions concerning the con-
tinuous nature of space-time are not necessary
for Lorentg invariance. This result is the mini-
mum cbjective of this work,

The ten operaters defined in {3) and (4} have
a total of forty-five commutators. Only six of
these commutators differ from the ordinary ones
and these six are

[x, y1=(Ga*/ W) Ly,
[3’1 2] = ('iag/rh) Lz:

[z, x]=(ia2/B).Ly,,

(¢, x] = (da*/he) M.,
[t y]1=(ia*/ k) My, (5)

[t 5] ={Ea?/he) M,.

We see from these commutators that if we take
the limit ¢—0 keeping % and ¢ fixed, our quan-
tized space-time changes to the ordinary con-
tinuous space-time,

LULLLLLULE WiLL VLT GUULISL) GUM HAYT LG Saim.
commutators with L., Ly, L., M, M,, M; as do
the usual cxpressions for the space or time «is-
placement operators. In addition, each has a
continuous spectrum running from minus infinity
to plus infinity. Their commutators with the co-
ordinates and time are not the same as usual and
are given by

Lz, pe =i 1+ (a/B)*px* ]

[4 pe]=4R[1—(a/ke)*pe];

[, 2] = Ly pol=1h{a/B)*pupy;

(&, pi=c[ps t]=3h(a/h)pape; etc.

Here we note that if all the components of the
momentum ate small compared to A/a and the
energy is small compared to ke/e then these
commutators approach those which are given in
orinary quantum mechanics. Further, as we take

(8)

deformation of spacetime — deformation of
algebraic structure of functions on it



A realization of noncommutativity

= Noncommutativity between space coordinates

[z, y] =40, @ :constant parameter

[Z 2]_1 (Z:x+iy z::c—z'y)
— 1A= Vag '~ Ve

m g readlization: Wick-Voros product

(f % 9)(7) = exp (i 0 ) F( 2)g(=", 2"

0z' 02"
$

[z, 2]y =z2xz—2z%x2z=1 cf) Ja,a’] =1

2l=z"=z



A field theory on
noncommutative space

on a commutative space:
5= /dtd% (0:00:0+ 207 + )

$

on a noncommutative space:

L

S= dtd’s 00 x0z0+ Zpx o+

algebraic structure of functions is changed
by introducing noncommutativity




Applications to gravity

m Gauge theories of gravitation
[Chamseddine, Chaichian-Setare-Tureanu-Zet, Banados-Chandia-Grandi-Schaposnik-Silva, ... ]

m (2+1)dim CS theory ~ (2+1)dim gravity — NC version

dA+A- A=0 — dA+AxA=0 — L=exR

m Twisted diffeomorphism [Aschieri-Dimitrijevic-Meyer-Wess]
0eVy = —E % (0,V,) — (9,£°) xV,, and so on

m Deformation in source terms [Nicolini, Baneriee, Mukheriee, Rahaman, SK, ...]

5(r) — e /% (width ~ 6)



Fuzzy object as BH source

= point mass — Gaussian distribution: §(r) - 6—r2/29

m BH solution with a smeared point mass as a source
m Schwarzschild-like [Nicolini et al (2006)], RN-like [Ansoldi et al (2007)],
m Kerr-like [Smailagic et al (2007)], (1+1)-dim. [Mureika et al (2011)]
m BT/-like [Roahaman et al (2011), Larranaga et al. (2011), SK (20146)], ....

m BH solution with fuzzy disc or fuzzy annulus as source [SK (2016)]

PRl

fuzzy disc N ’

L P

m ordinary gravitational solutions with NC inspired sources



Round way:
space & functions on it

r — ) 4 .
commutative noncommutative

algebra of funcftions ) | clgebra of functions

g = q - noncommutative * *
\_ f g 9 f Y, deformation \_ f g¢g f )

! !

4 . ) (- N
manifold Quantum Space

—
coordinate: coordinate: ¢

commutative quantization of geometry: ¢
U vV 2 ry. <
\_ ) geometrye \_ Y




Example: Fuzzy Sphere

commutative algebra of
spherical harmonics

F6,0) = amYm(0,9)

L]

Two-sphere S2

—

noncommutative
deformation

a quantization of
geometry

(noncommu’rc’rive olgebro\
of deformed spherical
harmonics

f(6,0) = aimYim(6, )
f(0,0)*g(0,0) B g(0,0) * (0, 9)

1

Fuzzy Sphere

[




Noncommutative Solitons

m g scalar field theory on NC plane
[Gopakumar- Minwalla- Strominger, Kraus-Larsen, ... (2000)]

FE = / d? 2V, (P) — no kinetic term
D

b b
V*(<I>)=§2<I>*<I>+§3<I>*<I>*<I>+---

m nonftrivial soliton solutions do exist: GMS solitons




Construction of GMS solitons

8‘/*
0P

usually, there is no non-trivial solution (lack of kinetic term)

" FOM: 0=

=P+ 03P *x P+ Dy PxDPxDH -

= if thereis @ = Apn(z,2) . Where pn safisfies pn * pn = Pn

EOM — 0 = (bpA + bz A2 4+ baA3 + -+ )pn projection operator-like

= nontrivial solution: & = A\,p,(z, 2)

At is a solution of the algebraic equation
boX + D3N + b\ + - =0



Functions and Operators:
Weyl-Wigner Correspondence

e algebra of functions N\

function: f(z,y)

star product: T [g

\_ /
[z, y] = 0

algebra of operators
S )

operator: f(x,y)

product

\wi’rh an ordering:

fA

2,9 =140 [2,27] =1

operators acting on
the Fock space

of a harmonic oscillator



Weyl-Wignher
Correspondence

“Harmonic oscillator” in operator formalism:

T+ 10 i) 2% 4 §°
p="N2 =3 Z N=3lz=
20 20 20

H:span{\0>,]1>,|2>,---}



Weyl-Wigner

Correspondence

4 ¥ I )

function f(z,z) = frayZmn

" n=0 Y

l Weyl projection

r \
-~ B

operator f(2',2)=  fiyzimz"

Nn=0

- J




Weyl-Wigner

Correspondence
4 )
function F(z,z) = (z|f|z)
\_ J

Z| 2z F 2|z [ : coherent state

I inverse Weyl projection

4 )
r_ 1

operator f(Z1,2) = fIuzimz"

Nn=0
\_ J




Projection operators
as NC solifons

A
0P

= nontrivial solution: ® = A\,p,(2,2) with Pn LPh = Pn
analogy to
projection operator

[ﬁn:|n><n|]

B EFOM: 0= =P+ b3PAx P+ b PAkDHD -

_2 N
W [Pn(?“) =[d|nlwh| zFe 27 n!(29)”]
correspondence




GMS solitons

m circular symmetric solitons

CLG (/2 t r2 92 2
u(r, ¢, z) = — — exp | ———— | L —_Jexp | ik——— | exp(ild)exp [—i(2p+ |I| + 1)C(2)].
1:6:2) = 05 (u’(ﬁ}) p( u‘z(s}) p (U'z(:)) P( 2R(‘:}) p(alg) exp [—i(2p+ [I| +1)¢(z)]



Fuzzy Disc
and angle state

a finite disc in the Moyal plane
angular noncommutative solitons

SK-Asakawa, JHEP04(2013)145




FUZZY Disc [Lizzi, Vitale, Zampini (2003)]

m Def: finite dim. truncation of a noncommutative plane

| #y =span{]0),]1),]2), - IN = 1)} |

® TWO parameters:
B noncommutativity: 6
m fuzzyness : N

m gpplications:
= matrix model
= quantum Hall effect



Shape of a fuzzy disc
(N=10, 6 =1)




GMS soliton and fuzzy disc .
N=4 case
W

P1 P2-P3

|
-

Po




Another orthonormal basis
. Oﬂgle STOT@S [SK-Asakawa, JHEPO4(2013)145]

® number basis: concentric cutting of a disc
= NV ~ radius operator (N ~ /32 1 §2)

® another basis: radial cutting of disc
m » ~ angle operator

« nontrivial solutions with more general forms
« introduction of the polar coordinate in NC gemoetry



Angle Operator and States

N -
with help of
The angle operator: @ = ¢ | P, LD, | Pegg-Barnett

m=0 phase operator

Figen states of the angle operator: @ | §,,, L= o, | P [

1 Y1
m Relation to the number state | om ) = — einPm In)
v N n=0
s Orthonormality: Cbm | on [L3F dmn
m Angular projection operators:
[ Tm = | om Ulpm | ] )
T

— angular “delta function” peaked at ¥m = ﬁm



Number 2 Angle

1 N—-1

) = eincpm n) .
om) = 7 2 <" )
2
Som_ﬁﬂ-m (m_0717 JN_]‘)
4 N—1 A 4 N-1 A
p = Z¢m|90m> (pm| | amp [ N = Zn|n> (n|
m=0 n=0




Number 2 Angle (cont’d)

/
N e2mi(n’—n)/N _ 1 ’TL > <n’

(N — 1)7r> L el(n' =n)po
n#n’

U=10) 1]+ 1) 2|+ -+ |N =2) (N — 1| + V¥ |[N — 1) (0]

unitary, cyclic operator

Pegg-Barnett formalism in quantum optics



Two descriptions
for fuzzy disc

® paum-kuchen vs shortcake

N =4, Hs=1{[0),[1),]2),]3)}

Po




Algebraic definition
of fuzzy disc

N-1 N—-1
. 2 - 2
V=NV = 61Nn|n><n|:Z|90m+1><90m|7
n=0 m=0
N-1 N-1
[ -— % — Z elPm |90m> <90m| — Z |'n— 1) <n|,
m=0 n=0
- ™

A N N N QT A A i A A
(N,U] = —U + NUpy, [@,V]:NWV, OV =% VU.

. J




Function counterparts of
angular projection operators

4 N1 N\
(N) 1 —2 i (m—n)(p—en)
. (r, Q) = — e 20 e
po (1) N m%;() J/mlnl(20)m+n
L )

N=4 case

not concentric, but fan-shaped, like pieces of cake



Other fuzzy objects:
e.qg.) fuzzy Annulus

any set of N orthonormal operators is allowed for fruncation



Angular NC solitons
as DO-branese

m scalar field on the NC plane
= tachyon filed on a non-BPS D2-brane

® The solution & = Ay
= a DO-brane (rank pp = 1 —» same tension)

= Same thing can be said:
the solution ® = Armm also can be seen as a DO-brane

m Commutative limit (with NB fixed),
angular NC soliton becomes thinner and thinner



NC gravity of
cosmological constant

[Asakawa-SK, CQG27(2010)105014]

" We propose a 3 dim. model with C.C. term only

4 A )
S=—— [ dt d*z det, E
K
1
det, F = geabce‘“’p EZ * Efj * Ef).
\§ ' J

® nfinitely many nontrivial solutions



NC gravity of cosmological
constant (cont’'d)

= Other quantities (metric, determinant, Ricci tensor etc.) are
viewed as composites of vielbeins

® NC metric G = (EZ * E) + E) EZ) Mab

1
2

® “Commutative” metric G = EZ ' ES Tab

® Several kinds of determinants det,G, detG



Equation of motion

= EOM:  €"Pegp {ED, E}=0

® an example of solutions: diagonal ansatz

0.

ES 0 0 Eq :

El = 0 EI 0 = FLi:
0 0 E2 E3 .

= Mutually anfi-commuting = realized by

1) Projection operators

{Ella E%}* — 0’
{Ega E(())}* = 0,
{EJ, E;}, = 0.

[Asakawa-SK (2010)]

2) Dirac gamma maitrices (Clifford algebra)



Solution 1: Diagonal Solution

® Simplest ansatz: diagonal

S =

I

s EOMs: Ep :
E; :
E::

ES 0 O
0 E! 0
0 0 E2

{E117 E%}* = 0,
{E227 E(())}* — 07
{E],E;}, = 0.

mutually anti-commuting
— realized by
the orthogonality of ¢z



m Solution (simplest one)

agpo 0 0
EB — 0 0] ¢1 0 )
0 0 oo

where ag, a1, o : arbitrary constants

B line element ds? = —al2¢odt? + a?p1dz? + o2dady?

2
— 2¢ /0 ( — ajdt® — a2 (1 — %) dz”

4r2 2rt 0
()




® Diverges when 6—0: particular to NC gravity

m Does not have the star inverse,
but has the ordinary inverse of itself.

(det,G, =0 but detG,, # 0)

m Scalar invariants can be defined on commutative space
(we switched to the metric formalism here)

0

(00 = @z = 1/v/2, 0y = i//3)




solution 2: nondiagonal

= Ansatz E) 0 0
=0 B E |

I
0 E! E2

stoMs 0= {E}, B3} — {E7, B3},
0={Ey, B} (a,pn=1,2).




m Solution (simplest one)

appy 0 0
ES — 0 191 19 ;
0 o1 o

® | ine element

ds* = —aggodt® + 2ai, (daz2 + 2dzdy + dy2)
—r2/0 2 7,2 2 2r? 2
= 2e —agdt® — 207 [ 1 — 5 (dx 4 dy)* |.

m Effectively two-dimensional
— Discrepancy b/w manifold & metrical dim.
(typical feature of quantum gravitye)



Solutiond: Clifford algebra-like
" EOM: éPeqe{E,, B} = 0,

— vielbein should be mutually anti-commuting

® The vielbein obeying the Clifford algebra
solves the EOM, e.g.,

Y0 0
Ei=1 0 ~' 0 and {v*,7"} = 2§"1,
0 0 ~?



m Representation of the matrix elements in the harmonic oscillator bo-

¥ =0"=[0)(0]-[1)(1],

v =o' =[1)(0]+]0) (1],

=0 =i[1)(0]—i]0)(1].
= Metric;

= ([0) (O] +[1) (1)

= Ny (¢o + ¢1) «— propotional to
B 4_736_r2/9 the Minkowski spacetime
= 0 77/“/

= Interpolates two vacua, G, =0 and Gy = 1w
— same as the noncommutative scalar solitons



m Scalar invariants

note: defined on commutative space (hot on NC space)

6r2 /0
R= ~3 40(92 — 6770 + 1),
T
e2r2
Rywpr BT = =55 (56" — 10r°0% + 18r"6° — 6r°0 +1°).
Tr
vVpo
R Ry po R*P
Ricci scal Kretschmann invariant
25 50 |
N d 4 40 l"
'1 20
1ifJ.5 1.0 1. 0 'l_..ﬁ 3.0 10 B
» |
' |
— ' 00 0.5 1.0 1.5 o




Two descriptions for fuzzy
disc

® number basis: concentric cutting of a disc

N :radius operator (N ~ /22 1 §2)

® angle basis: radial cutting of disc [SK-Asakawa, 2013]

© :angle operator « with aid of phase state
iINn quantum optics [Pegg-Barnett]




Radius 2 Angle

N —17
|, 3= %L e'"?mInl,
N n=0
2T
Spm:SOO‘F—m (m:O,l, 7N_1)
N
4 ) 4 )
_ NMFE—1 | conjugate N
N= nnif | <= Om|Pm LLfim|
n=0 m=0
g J \ J

« introduction of the polar coordinate in NC geometry
« how about fuzzy sphere? (extension to "3D")



Angular NC solitons in gravity

A 1

S=—— dtd’z B* B =det.B = 5"eq Ej x By x B
e’“’peabc{ES, Eg}* =0

ES 0 0 aor™ 0 0

E=| 0 El 0 |= 0 am” 0
2
U 0 0 aprs
ds* = —a%w(()3)dt2 + 04%7r§3)dx2 + a%wé‘o’)dyz

1 _,2 2r r? V2rs rt
w,(:’)(r, Q) = 3¢ /011 + 912 cos(p — go,(:’)) + 7 {1 + V2 cos[2(p — go,(f))]} + e cos(p — go,(f)) + 7

.. ,;\ B




Analogy to Gaussian beam

m Gaussian beam

|E(r, 2)|? wo \° —2r?
I(r,z) = =1 :
(r:2) 27 "\w(z) P w?(z) )




Analogy to Gaussian beam

m | aguerre-Gaussian beam

CLG [ /2 : 2 92 p2
u(r, ¢, z) = p ( ) exp ( ) Lp( ( — ) exp (ik ) exp(ilg)exp [—i(2p+ |I| + 1)((2)],

w(z) \ w(z) Cw?(2) w?( z) 2R(z)

~N

GMS
solitons

angular NC solitons




Example: Fuzzy Sphere

commutative algebra of
spherical harmonics

f(@, qb) = Z alelm(Ha gb)

g

‘ J

4 )

Two-sphere S2

—

noncommutative
deformation

—

a quantization of
geometry

fnoncommu’rc’rive olgebro\
of deformed spherical
harmonics

£f(6,0) =  amYim(6,9)
f(0,0)*g(0,9) B g(0,¢) x f(0,9)

\_ ‘ /

4 h

Fuzzy Sphere




Example: Fuzzy Disc

-

G

commutative algebra
of functions

\

(

‘Q

Two-Disc D2

—

noncommutative
deformation

a quantization of
geometry

(

~

noncommutative algebra
of functions

\ f y
. —
Fuzzy Disc

\_




Toward quantum black holes

f

commutative algebra
of functions on it

\

\_ J
4 )
(2+1)-dim. space
with or without
horizons
g J

—

noncommutative
deformation

—

a quantization of
geometry

[

noncommutative algebra
of functions on it

~

N f y
r ‘ N
2
. y




(2+1)-dim. spacetime with
conical singularity

[Deser et al., Deser-Jackiw (1984)]

V=gT" =amé®(r), T'*=T*=0 (a,b=r,0)

|

[ ds? = —dt? -+ 7“_8m(d7“2 + TQd(PQ) ]




(2+1)-dim. spacetime with
conical singularity

[Deser et al., Deser-Jackiw (1984)]

ds® = —dt* + 5" (dr? + r?dy?)

rP
nga ﬁbzp% p:1_4m

ds® = —dt? + dp? + p*d¢?

locally flat, but there is a conical singularity



(2+1)-dim. spacetime with
conical singularity

[Deser et al., Deser-Jackiw (1984)]

deficit angle Ap =21 — 2mp = 8mm

light B

light A

poinf mass  \____

~——
~~

> they will intersect

~
-
~~~~~~
"""""""""

conical singularity geometry of cone




Fuzzy Cone

f

G

ds® = —dt* + 7™ (dr? + r¥dp?)

\

J

|

(

\

(2+1)-dim. spacetime

with conical singularity

\

J

—

noncommutative
deformation

—

quantization of
geometry

]

Fuzzy Cone




Effective theory

m deformation of source distribution [Nicolini et al,...]

2

M6(7) > ae 2
m effective theory of (2+1)D NC graivity [SK (2016), Sadohara (2016Z5HH)]
m BT/-like BH with Gaussian density distribution
m (of course,) we cannot see "thickness" of horizon

= full guantum treatment is needed



Density distribution

m | aguerre-Gaussian beam

LG /o o\ 2 2 -2 o y PR
u(r, ¢, z) = —2 ( T 2) exp (— ’ ) Lp( ( ’ ) exp (ik 7 ) exp(ilo)exp [—i(2p+ [I] + 1)¢(2)],

w(z) \w(z) w?(z) 2R(z)

w?(z)

solution@e




Summary

= Noncommutative geometry
m one of the trials fo know quantum gravity/geometry

m algebraic structure of functions on a NC space
— equivalent to know the NC space, intuitively easier

m Applications to gravity
m g frial: NC gravity without Ricci scalar
m horizon with "thickness"

m There are many ways to infroduce noncommutativity
criterion?

B noncommutative/discrete
m discrete intfegrable geometry — fuzzball?
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