2017／09／20－22
研究会「生物から宇宙までの非線形現象」
＠京大人環

宇宙の大規模構造の記述：観測から理論まで

樽家篤史
（基礎物理学研究所）

阪上さんとの関わり

1995年（DI）天体核中間発表会で阪上さんと初めて会う カオスと量子デコヒーレンスの話に興味
1996年（D2）基研アトム型研究員で京都滞在
インフレーション後の宇宙の再加熱期に
起こるパラメーター共鳴について議婨
1998年4月～1999年3月 研修員として人環の研究室に所属
日頃接する機会が増えたが，研究まで にはつながらなかった
2001年 東大宇宙理論研（佐藤•須藤研）助教 ついに共同研究の機会が訪れる（ \rightarrow 次）

非加法エントロピー

$$
\begin{aligned}
& S_{\mathrm{q}}=-\frac{1}{q-1} \int d^{6} \tau\left[\{p(\mathrm{x}, \mathrm{v})\}^{q}-p(\mathrm{x}, \mathrm{v})\right] \\
& \quad\left(\mathrm{q} \rightarrow 1: \text { Boltzmann-Gibbs }-\int d^{6} \tau p(\mathrm{x}, \mathrm{v}) \ln p(\mathrm{x}, \mathrm{v})\right]
\end{aligned}
$$

Tsallis（I988）；Tsallis，Mendes \＆Plastino（I998）
－probability $p(\mathrm{x}, \mathrm{v}) \quad$ s．t． $\int d^{6} \tau p(\mathrm{x}, \mathrm{v})=1$
－escort distribution $\quad P_{q}(\mathrm{x}, \mathrm{v}) \equiv \frac{\{p(\mathrm{x}, \mathrm{v})\}^{q}}{\int d^{6} \tau\{p(\mathrm{x}, \mathrm{v})\}^{g}}$
－normalized q－value $\left\langle O_{i}\right\rangle_{q}=\int d^{6} \tau O_{i} P_{q}(\mathrm{x}, \mathrm{v})$

$$
S_{\mathrm{q}}(A, B)=S_{\mathrm{q}}(A)+S_{\mathrm{q}}(B)+(1-q) S_{\mathrm{q}}(A) S_{\mathrm{q}}(B)
$$

Antonov problem

恒星系力学の古典的問題

自己重力系の熱平衡状態は安定か？

エネルギー・質量一定の下で系のサイズが臨界半径を超える と不安定

$$
r_{\text {citi }}=0.335 \frac{G M^{2}}{(-E)}
$$

Antonov（＇62），Lynden－Bell \＆Wood（＇68）
（壁がない現実的な）
自己重力多体系には安定な熱平衡系は存在しない

自己重力多体系の運命

e．g．，Binney \＆Tremaine（＇87，＇08）

宇宙の大規模構造

宇宙論的スケールにわたって存在する質量分布の非一様性
メガパーセク (Mpc) ~ギガパーセク(Gpc)
※ $1 \mathrm{Mpc}=10^{\wedge} 6 \mathrm{pc} \sim 300$ 万光年
標準的シナリオでは

- 質量分布の大半は冷たい暗黒物質（Cold Dark Matter，CDM）
- 原始密度ゆらぎを種に，宇宙膨張の影響下で

重力不安定性により構造が発達•進化
初期条件を忘れていないので宇宙論の情報を豊富に含む銀河赤方偏移サーベイによる銀河の3次元地図をもとに研究 が進められている（最近は重カレンズ観測なども）

A section of galaxy 3D map

http://www.sdss.org/press-releases/astronomers-map-a-record-
breaking-I-2-million-galaxies-to-study-the-properties-of-dark-energy/

バリオン音響振動（BAO）
 （Baryon Acoustic Oscillations）

－宇宙晴れ上がり前のバリオン－光子流体の痕跡
（ \Leftrightarrow 宇宙マイクロ波背景放射の音響振動）
－振動スケール は「標準ものさし」になる
\rightarrow 遠方宇宙の宇宙膨張診断（加速膨張の起源に迫る手がかり）
ゆらぎのパワー $P(k)=\frac{1}{N_{k}} \sum_{|\vec{k}|=k}|\delta(\vec{k})|^{2}$
スペクトル $\underset{\text { BOSS DR9 }}{\substack{\text { SOM }}}$

赤方偏移空間ゆがみ（RSD）
 （Redshift－Space Distortions）

銀河の特異速度場がドップラー効果を通じて赤方偏移測定 に影響，銀河クラスタリングの統計的等方性が破れる

Alam et al．（＇16）$s_{\perp}\left[h^{-1} \mathrm{Mpc}\right]$

大スケールでは，
ゆがみの強さは重力由来の密度ゆらぎの成長率に比例

\rightarrow 宇宙論的スケールでの
重力のテスト
e．g．，Linder（＇08）；Guzzo et al．（＇08）；
Yamamoto et al．（＇08）；Percival \＆White（＇09）

赤方偏移空間ゆがみ（RSD）
 （Redshift－Space Distortions）

銀河の特異速度場がドップラー効果を通じて赤方偏移測定 に影響，銀河クラスタリングの統計的等方性が破れる

Alam et al．（＇16）

大スケールでは，
ゆがみの強さは重力由来の密度ゆらぎの成長率に比例

\rightarrow 宇宙論的スケールでの
重力のテスト
e．g．，Linder（＇08）；Guzzo et al．（＇08）；
Yamamoto et al．（＇08）；Percival \＆White（＇09）

Cosmological constraints

Cosmological constraints

Alam et al. ('16)

Large-scale structure as selfgravitating collisionless system

Main

 ingredients
Cold dark matter (CDM)

(Newtonian)
(invisible matter component)

Gravity \& Cosmic expansion

Cosmological many-body system

$$
t_{\mathrm{ff}} \lesssim t_{\mathrm{age}}(=13.8 \mathrm{G} \mathrm{yr})
$$

$$
\frac{\vec{p}_{i}}{d t}=-\frac{G m^{2}}{a} \sum_{j \neq i}^{N} \frac{\vec{x}_{i}-\vec{x}_{j}}{\left|\vec{x}_{i}-\vec{x}_{j}\right|^{3}} \quad \vec{p}_{i}=m a^{2} \frac{d \vec{x}_{i}}{d t}
$$

$$
N \rightarrow \infty
$$

$$
(i=1,2, \cdots, N)
$$

$a(t)$: cosmic scale factor (expansion of the Universe)

Large-scale structure as selfgravitating collisionless system

Main ingredients

Cold dark matter (CDM)
(Newtonian)
(invisible matter component)
Gravity \& Cosmic expansion

Cosmological Vlasov-Poisson system
Vlasov equation

$$
\left[\frac{\partial}{\partial t}+\frac{\boldsymbol{p}}{m a^{2}} \frac{\partial}{\partial \boldsymbol{x}}-m \frac{\partial \Psi}{\partial \boldsymbol{x}} \frac{\partial}{\partial \boldsymbol{p}}\right] f(\boldsymbol{x}, \boldsymbol{p})=0
$$

Poisson equation

$$
\nabla^{2} \Psi(\boldsymbol{x})=4 \pi G a^{2}\left[\frac{m}{a^{3}} \int d^{3} \boldsymbol{p} f(\boldsymbol{x}, \boldsymbol{p})-\rho_{\mathrm{m}}\right]
$$

Single-stream flow (initial condition)

$$
f(\boldsymbol{x}, \boldsymbol{p})=\bar{n} a^{3}\left\{1+\delta_{\mathrm{m}}(\boldsymbol{x})\right\} \delta_{\mathrm{D}}[\boldsymbol{p}-m a \boldsymbol{v}(\boldsymbol{x})]
$$

Theoretical tools of LSS

cold dark matter (CDM) (Newtonian)
gravity \& cosmic expansion
statistical properties of LSS

Cosmological
N -body simulation
$\overrightarrow{p_{i}}=m a^{\frac{d}{2}} \frac{d \vec{x}_{i}}{d t}$
$\frac{\vec{p}_{i}}{d t}=-\frac{G m^{2}}{a} \sum_{j \neq i}^{N} \frac{\vec{x}_{i}-\vec{x}_{j}}{\left|\vec{x}_{i}-\vec{x}_{j}\right|^{3}}$

$$
(i=1,2, \cdots, N)
$$

http://www.projet-horizon.fr/

Perturbation theory (PT) (based on fluid approx.)

On top of the gravitational evolution, observational effects (redshiftspace distortions, galaxy bias, ...) also need to be considered

Regime of our interest

Most of interesting cosmological information (BAO, RSD, signature of massive neutrinos, ...) lies at $\mathrm{k}<0.2-0.3 \mathrm{~h} / \mathrm{Mpc}$
............. Weakly nonlinear regime

Perturbation theory (PT): reloaded

Single-stream approx. of Vlasov-Poisson system
CDM + baryon \rightarrow pressureless \& irrotational fluid

Basic eqs.

Juszkiewicz ('8I),Vishniac ('83), Goroff et al. ('86), Suto \& Sasaki ('9l), Makino, Sasaki \& Suto ('92), Jain \& Bertschinger ('94), ...

$$
\begin{aligned}
& \text { Standard PT }\left(\delta_{1} \ll 1\right) \\
& \qquad \delta=\delta_{1}+\delta_{2}+\delta_{3}+\cdots
\end{aligned}
$$

Recent progress

- Improving accuracy by resummation or renormalized PT treatment
- Higher-order calculation \& fast PT code (RegPT) 2-loop (next-to-nextto leading order)
- Incorporating other systematics (massive v , modified gravity, halo bias,...)

Performance of resummed PT

RegPT fast resummed PT code (http://ascl.net/l404.012) $L_{\text {box }}=2,048 h^{-1} \mathrm{Mpc}$ including 2-loop (next-to-next-to-leading) order \# of particles : $1,024^{3}$ \# of runs : 60 cosmology : wmap5

AT, Bernardeau, Nishimichi \& Codis ('I2)

Cosmic propagators

Propagator should carry information on non-linear evolution \& statistical properties

Evolved (non-linear) density field
Crocce \& Scoccimarro ('06)

$$
\left\langle\frac{\delta \delta_{\mathrm{m}}(\boldsymbol{k} ; t)}{\delta \delta_{0}\left(\boldsymbol{k}^{\prime}\right)}\right\rangle \equiv \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \underbrace{\Gamma^{(1)}(k ; t)}_{\text {Ensemble w.r.t randomness of initial condition }} \text { Propagator }
$$

Contain statistical information on full-nonlinear evolution (Non-linear extension of Green's function)

Multi-point propagators

Bernardeau, Crocce \& Scoccimarro ('08) Matsubara ('II) \longrightarrow integrated PT
As a natural generalization,

$$
\left\langle\frac{\delta^{n} \delta_{\mathrm{m}}(\boldsymbol{k} ; t)}{\delta \delta_{0}\left(\boldsymbol{k}_{1}\right) \cdots \delta \delta_{0}\left(\boldsymbol{k}_{n}\right)}\right\rangle=(2 \pi)^{3(1-n)} \delta_{\mathrm{D}}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right) \Gamma^{(n)}\left(\boldsymbol{k}_{1}, \cdots, \boldsymbol{k}_{n} ; t\right)
$$

With this multi-point prop.

- Building blocks of a new perturbative theory (PT) expansion ---....-. Г-expansion or Wiener-Hermite expansion
- A good convergence of PT expansion is expected (c.f. standard PT)

$$
\begin{aligned}
& P(k ; t)=\left[\Gamma^{(1)}(k ; t)\right]^{2} P_{0}(k)+2 \int \frac{d^{3} \boldsymbol{q}}{(2 \pi)^{3}}\left[\Gamma^{(2)}(\boldsymbol{q}, \boldsymbol{k}-\boldsymbol{q} ; t)\right]^{2} P_{0}(q) \cdot P_{0}(|\boldsymbol{k}-\boldsymbol{q}|) \\
&+6 \int \frac{d^{6} \boldsymbol{p} d^{3} \boldsymbol{q}}{(2 \pi)^{6}}\left[\Gamma^{(3)}(\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q} ; t)\right]^{2} P_{0}(p) P_{0}(q) P_{0}(|\boldsymbol{k}-\boldsymbol{p}-\boldsymbol{q}|)+\cdots
\end{aligned}
$$

Bispectrum

$$
\begin{aligned}
B\left(k_{1}, k_{2}, k_{3}\right) & =2 \Gamma^{(2)}\left(\mathbf{k}_{1}, \mathbf{k}_{2}\right) \Gamma^{(1)}\left(k_{1}\right) \Gamma^{(1)}\left(k_{2}\right) P_{0}\left(k_{1}\right) P_{0}\left(k_{2}\right)+\text { cyc. } \\
+ & {\left[8 \int d^{3} q \Gamma^{(2)}\left(\mathbf{k}_{1}-\mathbf{q}, \mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{k}_{2}+\mathbf{q},-\mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{q}-\mathbf{k}_{1},-\mathbf{k}_{2}-\mathbf{q}\right) P_{0}\left(\left|\mathbf{k}_{1}-\mathbf{q}\right|\right) P_{0}\left(\left|\mathbf{k}_{2}+\mathbf{q}\right|\right) P_{0}(q)\right.} \\
+ & \left.6 \int d^{3} q \Gamma^{(3)}\left(-\mathbf{k}_{3},-\mathbf{k}_{2}+\mathbf{q},-\mathbf{q}\right) \Gamma^{(2)}\left(\mathbf{k}_{2}-\mathbf{q}, \mathbf{q}\right) \Gamma^{(1)}\left(\mathbf{k}_{3}\right) P_{0}\left(\left|\mathbf{k}_{2}-\mathbf{q}\right|\right) P_{0}(q) P_{0}\left(k_{3}\right)+\mathrm{cyc} .\right] .
\end{aligned}
$$

k_{3}
k_{1}

$$
+6
$$

$$
+ \text { сус. }
$$

Generic property of propagators

Crocce \& Scoccimarro '06, Bernardeau et al. '08

$$
\Gamma^{(n)} \xrightarrow{k \rightarrow+\infty} s F_{n}\left(\boldsymbol{k}_{1}, \cdots \boldsymbol{k}_{n}\right) e^{-k^{2} \sigma_{\mathrm{v}}^{2} / 2} ; \quad \sigma_{\mathrm{v}}^{2}=\int \frac{d q}{6 \pi^{2}} P_{\theta \theta}(q)
$$

Origin of Exp. damping

For Gaussian initial condition,

$$
\left\langle\delta_{\mathrm{m}}(\boldsymbol{k} ; t) \delta_{0}\left(\boldsymbol{k}^{\prime}\right)\right\rangle=\Gamma^{(1)}(k ; t)\left\langle\delta_{0}(\boldsymbol{k}) \delta_{0}\left(\boldsymbol{k}^{\prime}\right)\right\rangle
$$

Cross correlation between initial \& evolved density fields

Padmanabhan et al. ('I2)

Initial structure becomes blurred by the local cosmic flow
----- origin of Gaussian damping in propagator

Why improved PT works well?
 AT, Bernardeau, Nishimichi, Codis ('I2)

 AT et al. ('09)- All corrections become comparable at low-z.
- Positivity is not guaranteed.

Corrections are positive \& localized, shifted to higher-k for higher-loop

3-loop : source of trouble

Further including 3-loop (i.e., next-to-next-to-next-to-leading order),

3-loop : source of trouble

Further including 3-loop (i.e., next-to-next-to-next-to-leading order),
 PT calculations start to get worse !! $P_{\mathrm{n} \text {-loop }}(k) \propto \int d \ln q K_{\text {n-loop }}(k, q) P_{0}(q)$

Nature of nonlinear mode-coupling

How the small-scale fluctuations affect the evolution of large-scale modes ? (or vice versa)

How the small disturbance added in initial power spectrum can contribute to each Fourier mode in final power spectrum?

Nature of nonlinear mode-coupling

How the small-scale fluctuations affect the evolution of large-scale modes ? (or vice versa)

How the small disturbance added in initial power spectrum can contribute to each Fourier mode in fina Response rum ? function

Final (nonlinear)

A measurement result

Nishimichi, Bernardeau \& AT ('I6)
Response of power spectrum at k to a small initial variation at q

$$
K(k, q ; z)=q \frac{\delta P^{\mathrm{nl}}(k ; z)}{\delta P^{\operatorname{lin}}(q ; z)}
$$

Even for low-k modes,
Standard PT gets a large UV contribution (q-modes): 2-loop > I-loop > N-body

In other words, low-k mode in simulation is UV-insensitive protected against small-scale uncertainty

Refined measurement

Nishimichi, Bernardeau \& AT ('I6 \&'I7 in prep.)
Response of power spectrum at k

$$
K(k, q ; z)=q \frac{\delta P_{\mathrm{nl}}(k ; z)}{\delta P_{0}(q ; z)}
$$

UV suppression is seen at various k

Refined measurement

Nishimichi, Bernardeau \& AT ('I6 \&'I7 in prep.)
Response of power spectrum at k

$$
K(k, q ; z)=q \frac{\delta P_{\mathrm{nl}}(k ; z)}{\delta P_{0}(q ; z)}
$$

UV suppression is seen at various k

Short summary

What's wrong ?

- Higher-order mode-coupling gets a larger UV contribution However! Blas, Garny \& Konstandin ('I4), Bernardeau, AT \& Nishimichi ('I4) - In simulation, actual UV contribution is suppressed Nishimichi, Bernardeau \& AT ('I6, '17 in prep.)

Most likely
Breakdown of single-stream PT treatment (even at large scales)

What is a role of small-scale dynamics?
Is there a way to go beyond single-stream PT ?

Multi-stream flows

Suto et al. (2016) (formation/merger of halos)

ID cosmology

Simplification may help us to understand what's going on
$\nabla_{x}^{2} \phi(x)=4 \pi G \bar{\rho} a^{2} \delta(x)$

Force \propto (\# of sheets at RHS) - (\# of sheets at LHS)

- Generic features of nonlinear mode-coupling :

Response function

- Perturbative description beyond shell-crossing: Post-collapse PT

Learn something in simple ID cosmology

Sakagami \& Gouda ('9I)

On the collective relaxation in self-gravitating stellar systems

Masa-aki Sakagami
Faculty of Education, Fukui University, Bunkyo 3-9-1, Fukui 910, Japan
Naoteru Gouda
Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606, Japan

Accepted 1990 October 16. Received 1990 September 12; in original form 1988 July:

SUMMARY

We study the applicability of the meth processes in stellar systems. Using \mathfrak{t} model, we investigate the relationship o the geodesic deviations to two relc simulations. The expected naive corre follows that the rapid time-scale of the r \& Savvidy, has nothing to do with the ev

Progress
Yamashiro, Gouda \& Sakagami ('92)
Origin of Core-Halo Structure in One-Dimensional Self-Gravitating System

Toshinobu Yamashiro, Naoteru Gouda and Masa-aki Sakagami*
Department of Physics, Kyoto University, Kyoto 606-01
*Department of Education, Fukui University, Fukui 910
(Received March 23, 1992)
The relaxation process of self-gravitating systems is examined by using one-dimensional numerical simulation. We get the asymptotic distribution function which disagrees with that proposed by Lynden-Bell. Our distribution function has two peaks in low and high energy regions and a valley in the medium energy region. This characteristic core-halo structure in phase space has been observed in many simulations. We clarify the dynamical mechanism which generates this 'core-halo' structure. The essence of this mechanism is that the elements of the system are accelerated (or decelerated) very effectively by the evolving gravitational potential in a specific energy region, reflecting the initial conditions.

Progress of Theoretical Physics, Vol. 81, No. 3, March 1989
Non-Linear Growth of One-Dimensional Cosmological Density Fluctuation and Catastrophe Theory

Naoteru Gouda and Takashi Nakamura*
Department of Physics, Kyoto University, Kyoto 606

* National Laboratory for High Energy Physics, Tsukuba 305

ID Zel'dovich solution

(Zel'dovich '70)

Exact single-stream solution

$$
\begin{array}{lc}
x(q ; \tau)=q+\psi(q) D_{+}(\tau) & D_{+}(\tau) \text { : linear growth factor } \\
\mathrm{v}(q ; \tau)=\psi(q) \frac{d D_{+}(\tau)}{d \tau} & \psi(q): \text { displacement field }
\end{array}
$$

Post-collapse PT:beyond shell-crossing

AT \& Colombi ('I7)
Cold collapse in I-D simulation
Breakdown of Zel'dovich solution
 position

Computing back-reaction to the Zel'dovich flow: Lagrangian
I. Expand the displacement field around shell-crossing point, (q)

$$
x(q ; \tau) \simeq A\left(q_{0} ; \tau\right)-B\left(q_{0} ; \tau\right)\left(q-q_{0}\right)+C\left(q_{0} ; \tau\right)\left(q-q_{0}\right)^{3}
$$

2. Compute force $F(x(q ; \tau))=-\nabla_{x} \Phi(x(q ; \tau))$ at multi-stream region

$$
\Delta \mathrm{v}\left(Q ; \tau, \tau_{\mathrm{q}}\right)=\int_{\tau_{\mathrm{q}}}^{\tau} d \tau^{\prime} F\left(x\left(Q, \tau^{\prime}\right)\right), \quad \Delta x\left(Q ; \tau, \tau_{\mathrm{q}}\right)=\int_{\tau_{\mathrm{q}}}^{\tau} d \tau^{\prime} \Delta \mathrm{v}\left(Q ; \tau^{\prime}, \tau_{\mathrm{q}}\right)
$$

...... polynomial function of $Q=q-q o$ up to 7th order

Post-collapse PT: single cluster AT \& Colombi ('I7)

Post-collapse PT basically fails after next shell-crossing, but it still gives reasonable prediction for density profiles

Simulation

 Zel'dovichPhase-space Shell crossing

Next crossing

Post-collapse PT

Of course, this does not guarantee the accuracy of power spectrum prediction at small scales (\rightarrow next slide)

Post-collapse PT: ^CDM

$\mathrm{k} P(\mathrm{k}) / \pi$

$$
P_{1 \mathrm{D}}(k)=\frac{k^{2}}{2 \pi} P_{3 \mathrm{D}}(k)^{\text {Planck } \Lambda C}
$$

Post-collapse PT: ^CDM

$\mathrm{k} \mathrm{P}(\mathrm{k}) / \pi$

Adaptive smoothing

 applied to initial density peaks (with filter scales determined by first-barrier crossing)

Implication to 3D

Combination of the two methods are rather crucial:

> PT scheme beyond shell crossing \& Coarse-graining (post-collapse PT) (adaptive smoothing)

But, idea \& technique are promising and can be extended to 3D

Issues to be addressed

- Accurate pre-collapse description \checkmark Zel'dovich approx. is inaccurate
\checkmark Various topologies of shell crossing
- Tractable analytical calculation of statistical quantities

Implication to 3D

Combination of the two methods are rather crucial:

> PT scheme beyond shell crossing \& Coarse-graining (post-collapse PT) (adaptive smoothing)

But, idea \& technique are promising and can be extended to 3D

Issues to be addressed

- Accurate pre-collapse description \checkmark Zel'dovich approx. is inaccurate \checkmark Various topologies of shell crossing
- Tractable analytical calculation of statistical quantities

State-of-the-art cosmological Vlasov code

DIRECT INTEGRATION OF THE COLLISIONLESS BOLTZMANN EQUATION IN SIX-DIMENSIONAL PHASE SPACE: SELF-GRAVITATING SYSTEMS
 2013

Kohis Yoshikawa ${ }^{1}$, Naoki Yoshida ${ }^{2,3}$, and Masayuki Umemura ${ }^{1}$
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan;
${ }^{2}$ Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
${ }^{3}$ Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan Received 2012 June 18; accepted 2012 November 23; published 2012 December 20
An adaptively refined phase-space element method for cosmological simulations and collisionless dynamics

Oliver Hahn ${ }^{\star 1}$ and Raul E. Angulo \dagger^{2}
${ }^{1}$ Department of Physics, ETH Zurich, CH-8093 Zürich, Switzerland
${ }^{2}$ Centro de Estudios de Física del Cosmos de Aragón, Plaza San Juan 1, Planta-2, 44001, Teruel, Spain.
Cold initial condition
2016

ColDICE: a parallel Vlasov-Poisson solver using moving adaptive simplicial tessellation

Approaching shell-crossing in 3D

W/ S. Saga \& S. Colombi (in progress)
In 3D, even the description of pre-collapse phase is non-trivial
Lagrangian PT treatment is the only way to analytically capture the shell-crossing

Summary

宇宙論的（無衝突）自己重力多体系としての宇宙の大規模構造

その理論的記述をめぐる進展と混迷，あるいは
（観測の理論テンプレート）
摂動論的計算手法の再生と受難

- くりこみ・再和法の発展•観測的応用
- UV問題とその起源，応答関数による定量化
- 単一流近似を超える取り扱いと課題 \rightarrow 今後に期待 （ポストコラプス摂動論）

大規模構造は，今後も理論•観測ともに目が離せない

