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そして今回、

～モルフォ蝶の羽はなぜ青い？～
生物の色彩と光学効果

「自然と物理」シリーズ第３回
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Structural color of Morpho butterflies
G.S. Smith
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モルフォ蝶
生息地：北アメリカ南部～南アメリカ

種類：80種ほど

分類：タテハチョウ科・モルフォチョウ亜科・

モルフォチョウ族・モルフォチョウ属

特長：体にくらべて非常に大きな翅をもち、表面は金属光

　　　沢をもつ。この光沢はほとんどの種類で青色に発色

　　　する（鮮やかな翅の色を持つのは雄）。

Wikipediaより
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Morpho Rhetenor

http://www.pref.mie.jp/Haku/Hp/Osusume/morho%20rhetenor.htm

表(背中) 裏(腹)
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Rep. Prog. Phys. 71 (2008) 076401 S Kinoshita et al

Figure 8. Typical male Morpho butterflies (Courtesy of The Museum of Nature and Human Activities, Hyogo, Japan).

Figure 9. Frontal and oblique views of the Morpho didius wing (a) and (c) in air and (b) and (d) when immersed into liquid ethanol. Color
change of the Morpho cypris wing observed when the viewing angles are changed, keeping the direction (e) perpendicular and (f ) parallel
to the wing veins.

the most representative animals possessing structural color.
The Morpho butterflies, shown in figure 8, inhabit South and
Central America, and according to the recent classification
[39], they are classified into the family Nymphalidae, which
consists of several subfamilies including Morphinae closely
related to the subfamily Satyrinae. The Morphinae is classified
further into three tribes, to which the tribe Morphini belongs.
Thus the so-called Morpho butterflies are those belonging to a
genus Morpho in the tribe Morphini, and several tens of species
are now known to exist (see figure 8).

In most of the male Morpho species, the dorsal wings
display brilliantly blue, but their ventral side is usually dark
brown, which reminds us of the satyr butterfly. The female is
generally less shining or completely non-shining. Thus, there
are usually three biological explanations for the blue coloring
in the male. One is that the shining blue is for a mating purpose
against a resting female. Another is to make predator birds
feel dizzy by giving a strong blinking flash. The third is for
territorial purposes against other males, because a piece of blue
metallic paper is known to attract male Morpho butterflies.

Before proceeding in detail, we show the most remarkable
features of the Morpho butterfly through simple experiments.
(1) The first one is the viewing-angle dependence of the wing
color. When one sees a specimen of the Morpho butterfly from

above, one actually perceives strong blue coloring. But, when
the viewing angle is inclined obliquely while maintaining the
direction perpendicular to the wing veins, one notices that the
color does not change at first, but when the angle becomes large
enough, the wing color changes into violet or dark blue rather
suddenly. In contrast, if one sees the wing keeping the direction
parallel to the wing veins, the blue color abruptly vanishes and
the wing turns black (see figures 9(e) and (f )). The degree
of color changing is dependent on the species. For example,
in Morpho cypris, the wing color changes very quickly into
black, while in M. didius, its change is rather dull. Thus one
can easily understand the peculiar feature of structural color
in this butterfly; blue coloring in a wide angular range with
an abrupt change into violet at large viewing angles, and the
anisotropic reflection dependent on the viewing direction. All
these observations are quite in contrast to ordinary iridescent
animals and manufactured goods.

(2) The second experiment is carried out by immersing
the wing into a liquid. Let us use alcohol as a trial liquid.
Surprisingly, its color changes to green with slightly dull
shining and the oblique view shows blue instead of violet (see
figures 9(a)–(d)). The use of water is inappropriate, because it
does not soak into the wing. The change in color is dependent
on the refractive index of the liquid employed. Ethanol has
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様々なモルフォ蝶（雄）

S. Kinoshita, et al.  Rep. Prog. Phys. 71 (2008) 076401
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モルフォ蝶の翅の色(1)
鮮やかな青色に隠された秘密

cannot be seen with an optical microscope, the tops of the
ridges can sometimes be seen as a set of nearly parallel lines.
From this information and the results of other experiments,
in 1927, Mason,22 in an exceptional feat of deduction, pre-
dicted the structure of the ridges for Morpho butterflies: The
stack of lamellae known today.

The Morpho rhetenor butterfly has a single layer of scales
on the dorsal surface of the wing, which are called ground
scales. Other Morpho species have a second set of scales that
cover the ground scales, which are called cover scales.8,10 In
this case the ground scales are often similar to the ground
scales of the Morpho rhetenor, and the cover scales, which
are transparent, serve to diffuse the light scattered by the
ground scales.10,11

Several electromagnetic/optical approaches have been
used to analyze the scattering from butterfly scales and pre-
dict the observed color. The analytical approaches usually
assume a simplified model for the structure. There are ap-
proaches that model the whole scale as a stack of parallel
plates !infinite in extent" with the effective index of refrac-
tion alternating between high and low values.9,15,16 The plane
wave reflection coefficient for the stack is determined using a
standard analysis for layered media. Simple two-dimensional
models have been used in which the lamellae are treated as

infinitely thin plates of finite width.13 The interference of the
light scattered from these plates is determined without ac-
counting for reflection or refraction as the incident light
passes through the structure. Other approaches treat the set of
ridges as a diffraction grating.23 The most ambitious ap-
proaches use numerical methods for solving Maxwell’s
equations.20,24 These methods are very accurate and can be
applied to models containing fine details for the scale that are
not shown in Fig. 2!b".

The objective of this paper is to analyze the scattering of
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(b)

Fig. 1. !a" Photograph of the dorsal side of a male Morpho rhetenor butter-
fly. !b" Photograph of the dorsal side of a male Cymothoe sangaris butterfly.
For both photographs, the wings on the right-hand side are in their natural
state, and the wings on the left-hand side have been saturated with an index-
matching liquid.
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Fig. 2. !a" Photograph made with an optical microscope showing the indi-
vidual scales on the dorsal side of a Morpho rhetenor wing. !b" Schematic
drawing showing the structure on the surface of a Morpho scale. This styl-
ized drawing does not show the irregularities in the natural structure, such as
ridges that are bent, of different heights, and have rounded lamellae.
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ベニイロタテハ蝶

モルフォ蝶

トルエンに浸すと（翅の左部分）、

• モルフォ蝶の翅から青色が消える

• ベニイロタテハ蝶の翅の色は
同じまま

（学名は、Cymothoe sangaris。中央アフリカに生息）
92010年1月27日水曜日



モルフォ蝶の翅の色(2)

light by the Morpho butterfly scale in a way that is appropri-
ate for use in courses on electromagnetism and optics. This
analysis predicts the major features of the scattered light. In
some ways, it combines components of the earlier ap-
proaches. Only the essential elements of the ridge, the lamel-
lae, are included in the model described in Sec. II. The scat-
tering of light !a plane wave" by this structure is determined
in Sec. III. The scattered field is written as an integral !ra-
diation integral" over the total field within the lamellae. Then
an approximation for the field in the lamellae is obtained
using the theory for reflection and refraction of a plane wave
by a planar layered medium, with appropriate simplification
based on the randomness in the structure. The approximate
field is inserted into the radiation integral, and the integral is

evaluated to obtain an expression for the scattered light. Nu-
merical results obtained with this expression are presented in
Sec. IV, and they show the observed blue color and irides-
cence observed for these butterflies. In Sec. V a simplified
version of the model is used to provide insight into the
mechanisms that produce these effects.

II. MODEL FOR A RIDGE

Two main features stand out in the transmission and scan-
ning electron micrographs of Morpho scales: the nearly par-
allel, long, thin ridges, and the regularly spaced lamellae
within a ridge. Kinoshita et al.25 deduced from their mea-
surements that the ridges, although similar, are offset ran-
domly in height, and this variation is sufficient to make the
collective scattering from the ridges incoherent. This inco-
herence implies that the scattering from a scale can be char-
acterized by the scattering from a single ridge.

We will adopt the simple model for a ridge shown in Fig.
5. It contains the major features for scattering common to
many Morpho butterflies. In this model there are N identical
lamellae, each a slab of width w and height h. The lamellae
are separated by air gaps of height g. In the longitudinal
direction !y", the lamellae are inclined at the angle ! to the
plane of the scale, which makes the structure periodic in this
direction with period l= !h+g" /sin !. A unit cell of the peri-
odic structure is enclosed by the frame !dashed lines" in Fig.
5!a". We will assume that the randomness also applies in the
longitudinal direction so that the scattering from a ridge can
be characterized by the scattering from a single unit cell. The
N slabs whose cross sections are shown in dark gray in Fig.
5!a" are the structures that we will analyze in the remainder
of the paper.26

We will assume that the butterfly scale is illuminated by
natural light with a spectrum that is uniform at visible wave-
lengths. At each frequency !wavelength", we will assume
that there is a plane wave normally incident on the plane of
the scale. The electric field of this wave has two orthogonal
components, as is shown in Fig. 5!b"; the transverse electric
!TE" component is in the ẑ direction, and the transverse mag-
netic !TM" component is in the −ŷ direction.27 The electric
field and irradiance !time-averaged power per unit area" for
this wave at the angular frequency " are28

E! i!x,t" = Re#E! i!x"ej"t$ = Re%#!ETE
i ẑ − ETM

i ŷ"ejk0x$ej"t& !1"

and

Ii = ITE
i + ITM

i = − x̂ · #Re!S!c,TE
i " + Re!S!c,TM

i "$

=
1

2#0
!'E! TE

i '2 + 'E! TM
i '2" . !2"

Here, the superscript i indicates the incident wave, k0=" /c
=2$ /% and #0=(&0 /'0 are the wave number and wave im-
pedance of free space, and S!c

i is the complex Poynting vector.
Because natural light is incoherent and unpolarized, we will
take 'E! TE

i '= 'E! TM
i ', and in any calculation of power, such as

Eq. !2", we will compute results for the TE and TM compo-
nents separately and then add them.

(a)

(b)

Fig. 3. Photographs of wings after bleaching: !a" Morpho rhetenor and !b"
Cymothoe sangaris.

Fig. 4. Measured reflectance versus wavelength for a scale or a portion of a
wing of a Morpho rhetenor butterfly. Results are for normal incidence ex-
cept those of Plattner which are for 10° from normal.
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ベニイロタテハ蝶の翅

モルフォ蝶の翅

漂白すると、

• モルフォ蝶の翅は青色のまま

• ベニイロタテハ蝶の翅は脱色
して色あせる

102010年1月27日水曜日



青い翅の秘密

モルフォ蝶の翅の色は、表皮の微細構造から来る
光学特性に起因している（散乱・干渉）

• トルエン：翅の表皮とほぼ同じ屈折率（n~1.56）
index-matching liquid

• 漂白しても色あせない
化学的発色（色素沈着）によるものではない

⇨ 構造色 (structural color)
112010年1月27日水曜日



構造色研究の歴史
1665   Hooke 光学顕微鏡による孔雀や鴨の羽の観察

1917   Rayleigh 電磁気理論にもとづく構造発色の研究

電子顕微鏡の開発（1931年）により、構造発色の
物理的メカニズムが徐々に解明

1924-27 Mason 色彩と微視的構造の関係（干渉の影響）
モルフォ蝶の翅の表面構造を予言
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表面構造

Rep. Prog. Phys. 71 (2008) 076401 S Kinoshita et al
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Figure 12. SEM images of (a) and (c) ground and (e) and (f ) cover scales of M. didius, ground scales of (b) M. sulkowskyii and
(d) M. rhetenor [56, 57, 59]. (a)–(d) and (f ) are the cross section of a scale. Note that the photograph (f ) is upside down.

a crystal, but not as random as particles in a powder. Thus
moderate regularity is present as is usually the case in a living
system. Close inspection of the cross section shows that a
ridge consists of 6–7 shelves of 0.08–0.20 µm in width and
0.05–0.07 µm in thickness and a pillar of 0.05–0.12 µm in
width standing at the center. The average thicknesses of the
shelf and air layers are approximately 0.055 µm and 0.165 µm,
respectively. The directions of the pillar are slightly distributed
and only 4–5 shelves near the bottom seem to fully grow. The
left and right sides of the shelves seem to stick alternately,
but they are not so regular in periodicity and direction. In
M. sulkowskyi (figure 12(b)), the shelf structure is essentially
the same as in a ground scale of M. didius, although it seems
more regular. In a ground scale of M. rhetenor, the shelf
structure is further developed and more than 10 shelves are
discernible (figure 12(d)).

Detailed observation reveals that the shelf is not parallel
to a base plane, but is oblique to the scale plane with an
inclination angle of 7–10◦ [17, 20, 21, 50, 53]. As shown in
figure 12(a), the upper ends of the shelves are easily noticed
in the image, which are seemingly in a random distribution. If
this is true, the height of the ridge will be also distributed
when we look at a cross section. The distribution of the
ridge height will not be so large and will remain within the
separation of the shelves, say 0.2 µm. We have investigated
the ridge height distribution and found that spatial correlation
between the neighboring ridges was found to be absent [57].
This fact is extremely important to understand the cause of
the blue coloring truly, because the random height distribution
eventually cancels the interference between the neighboring
ridges, and then produces the diffusive reflection as if each
ridge scatters light independently.

Next we investigate a cover scale of M. didius [59].
As shown in figure 12(e), the ridges in the cover scale are
distributed regularly but seem to be rather sparse. The shelf
structure is similar to the ground scale (figure 12(f )), but seems

not to grow well. The shelves are also running obliquely
to the base plane. However, the characteristics of the cover
scale are such that the ridges are attached directly to a thin
base plate of thickness 190–230 nm, which is in contrast to
the case of a ground scale, where the ridges are built on
the complicated trabeculae. At a glance, the ground scale is
mainly responsible for the structural color in M. didius and the
transparent cover scale affects the structural coloration little.
However, as described later, the cover scale plays an important
role in the wing appearance and even in the reflectivity of the
iridescent wing.

4.3.2. Optical measurements. Next, we show the
optical properties of the wings of the above three species
quantitatively. First, we show the reflection and transmission
spectra of the wings. Since both the reflection and the
transmission patterns are extended in angle, we have to use a
spectrophotometer equipped with an integrating sphere. Since
the optical response of matter should be generally expressed
by the sum of transmission, reflection and absorption of light,
we have divided the optical response of the wing into the above
three parts.

The result is shown in figure 13. The transmittances of the
wings of M. didius and M. rhetenor are very low below 500 nm
and increase towards the near-infrared region, while that of M.
sulkowskyi shows extraordinarily high values especially above
500 nm. As a result, the absorption is especially small for
M. sulkowskyi, while the other two occupy a large part of
the visible region of 300–700 nm. Thus the whitish color of
M. sulkowskyi comes primarily from the lack of pigment in
the wing. However, we should not be hasty in drawing this
conclusion, because what we perceive is not the absorption
but the reflection from the wing. It is rather strange that M.
sulkowskyi shows an extraordinarily high reflectivity up to 70%
at around 460 nm, which is much larger than those of 55%
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quantitatively. First, we show the reflection and transmission
spectra of the wings. Since both the reflection and the
transmission patterns are extended in angle, we have to use a
spectrophotometer equipped with an integrating sphere. Since
the optical response of matter should be generally expressed
by the sum of transmission, reflection and absorption of light,
we have divided the optical response of the wing into the above
three parts.

The result is shown in figure 13. The transmittances of the
wings of M. didius and M. rhetenor are very low below 500 nm
and increase towards the near-infrared region, while that of M.
sulkowskyi shows extraordinarily high values especially above
500 nm. As a result, the absorption is especially small for
M. sulkowskyi, while the other two occupy a large part of
the visible region of 300–700 nm. Thus the whitish color of
M. sulkowskyi comes primarily from the lack of pigment in
the wing. However, we should not be hasty in drawing this
conclusion, because what we perceive is not the absorption
but the reflection from the wing. It is rather strange that M.
sulkowskyi shows an extraordinarily high reflectivity up to 70%
at around 460 nm, which is much larger than those of 55%
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cannot be seen with an optical microscope, the tops of the
ridges can sometimes be seen as a set of nearly parallel lines.
From this information and the results of other experiments,
in 1927, Mason,22 in an exceptional feat of deduction, pre-
dicted the structure of the ridges for Morpho butterflies: The
stack of lamellae known today.

The Morpho rhetenor butterfly has a single layer of scales
on the dorsal surface of the wing, which are called ground
scales. Other Morpho species have a second set of scales that
cover the ground scales, which are called cover scales.8,10 In
this case the ground scales are often similar to the ground
scales of the Morpho rhetenor, and the cover scales, which
are transparent, serve to diffuse the light scattered by the
ground scales.10,11

Several electromagnetic/optical approaches have been
used to analyze the scattering from butterfly scales and pre-
dict the observed color. The analytical approaches usually
assume a simplified model for the structure. There are ap-
proaches that model the whole scale as a stack of parallel
plates !infinite in extent" with the effective index of refrac-
tion alternating between high and low values.9,15,16 The plane
wave reflection coefficient for the stack is determined using a
standard analysis for layered media. Simple two-dimensional
models have been used in which the lamellae are treated as

infinitely thin plates of finite width.13 The interference of the
light scattered from these plates is determined without ac-
counting for reflection or refraction as the incident light
passes through the structure. Other approaches treat the set of
ridges as a diffraction grating.23 The most ambitious ap-
proaches use numerical methods for solving Maxwell’s
equations.20,24 These methods are very accurate and can be
applied to models containing fine details for the scale that are
not shown in Fig. 2!b".

The objective of this paper is to analyze the scattering of
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(b)

Fig. 1. !a" Photograph of the dorsal side of a male Morpho rhetenor butter-
fly. !b" Photograph of the dorsal side of a male Cymothoe sangaris butterfly.
For both photographs, the wings on the right-hand side are in their natural
state, and the wings on the left-hand side have been saturated with an index-
matching liquid.
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Fig. 2. !a" Photograph made with an optical microscope showing the indi-
vidual scales on the dorsal side of a Morpho rhetenor wing. !b" Schematic
drawing showing the structure on the surface of a Morpho scale. This styl-
ized drawing does not show the irregularities in the natural structure, such as
ridges that are bent, of different heights, and have rounded lamellae.
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模式図

多層膜干渉

ラメラ(lamellae)と呼ばれる膜が何
層にも積み重なった棚構造(ridges)

幾層ものラメラで散乱（屈折・
反射）された光が

を起こした結果、青色に見える

モルフォ蝶の翅

（注・実際はもっと不規則な構造）
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to be saturated. Furthermore, periodic dips appear at the
wavelengths where the relation 2nbd cos θb = mλ is satisfied.
Thus to make the thin-film interference work efficiently
as a coloring method, it is necessary to select appropriate
reflectivity at the surfaces.

When a thin film is attached to a metal surface, similar
coloration is attainable, if a proper choice of metal is made. A
typical example of employing Ti metal is shown in figure 2(b).
When the reflectivity of the metal is high enough as in the
case of Al2O3–Al film, the total reflectivity is almost saturated
and no particular coloration is expected. However, under
appropriate reflectivity as in the TiO2–Ti system, the specific
coloration and iridescence are apparent. A similar effect is
obtainable when a transparent material is coated by metal with
appropriate thickness. These types of coloring material are
called ‘optically variable pigment’ and are widely used in
industrial applications.

If the thickness of the film becomes larger, regular multiple
peaks appear in the reflection spectrum (figure 1(d)) as a
consequence of the higher-order interference with m > 1.
These peaks in a visible region cause a special effect called
non-spectral color to human vision in contrast to an ordinary
spectral color, i.e. a single wavelength of light is perceived
in the eye. The non-spectral color is deeply connected with
the spectral sensitivities of vision and is explained in terms
that more than two color-receptors among three are sensed
simultaneously. Violet is a spectral color, but purple and
magenta are non-spectral colors. White is also a non-spectral
color, where all three color-receptors are sensed. The multiple
peak in thin-film interference can become an origin of non-
spectral color. A typical example has been recently found in
the neck feather of the rock dove [32, 33], which specifically
shows green/purple two-color iridescence. It is expected that
the angular dependence is more pronounced for the higher-
order interference of m > 1 than that of m = 1 (figure 1(d)),
which makes the iridescent effect more vivid.

3.2. Multilayer interference

Multilayer interference is qualitatively understood in terms
of a pair of thin layers piling periodically. Consider two
layers designated as A and B with thicknesses dA and dB,
and refractive indices nA and nB, respectively, as shown in
figure 3. We assume nA > nB for the present. If we consider a
certain pair of AB layers, the phases of the reflected light both
at the upper and lower B–A interfaces change by 180◦. Thus
a relation similar to the anti-reflective coating of equation (2)
is applicable as

2(nAdA cos θA + nBdB cos θB) = mλ, (5)

for constructive interference with the angles of refraction in
the A and B layers as θA and θB. On the other hand, if we
consider only the A layer within the AB layer, the phase of the
reflected light does not change at an A–B interface. Thus if a
soap-bubble relation, 2nAdA cos θA = (m′ − 1/2)λ, is further
satisfied for the same wavelength, the reflected light from the
A–B interface adds to that from the B–A interfaces and the
multilayer gives the maximum reflectivity. Here, the condition

Figure 3. Schematic illustration of multilayer interference.

m′ ! m should be satisfied because of the restriction of the
thickness. In particular, the relations with m = 1 and m′ = 1
correspond to the lowest-order case, where the optical path
lengths, defined as the length multiplied by the refractive index,
for A and B layers are equal to each other. Land called this case
the ideal multilayer [25]. On the other hand, if the thickness of
the A layer does not satisfy the soap-bubble relation, while the
sum of the A and B layers satisfies equation (5), the reflection at
the A–B interface works destructively and the peak reflectivity
decreases. This case is the non-ideal multilayer.

The above interpretation, however, is too simple to
understand the true mechanism of multilayer interference.
It is only applicable when the difference in the refractive
indices of the two layers is small enough. Otherwise, the
multiple reflections modify the interference condition to a
large extent. The quantitative evaluation of the wavelength-
dependent reflectivity is rather complex in a general case,
but is important for understanding the principle of structural
colors, because most of them are originated from multilayer
interference or its analogue.

The derivation of the reflectivity from a multilayer has
been described frequently since Lord Rayleigh presented
the paper in 1917 [11]. Nowadays, the reflectivity and
transmittance of a multilayer with arbitrary refractive indices
and thicknesses without any periodicity are easily calculated
through a transfer matrix method [6,34,35], in addition to the
well-known iterative and Huxley’s methods [36]. Since the
details of these methods have been fully described before, here
we describe only the results calculated by the above methods.

First, we show the reflection spectrum for an ideal
multilayer with a varying number of layers under normal
incidence. In figure 4(a), we show the result which
corresponds to the case where the difference in the refractive
indices of the two layers is very small (#n = 0.05).
Since the optical path lengths of these two layers are set at
0.125 µm, the peak wavelength of the reflectivity should be
500 nm. With increasing number of layers, the peak reflectivity
increases rapidly, while the bandwidth decreases gradually.
Thus, in order to obtain a high reflectivity for the multilayer
having small refractive-index difference, it is necessary to
pile up many layers, which inevitably causes reduction of the
bandwidth.
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Figure 1. (a) Schematic diagram of thin-film interference. (b) Reflection properties of thin-film interference. The refractive index and
thickness of the film are set at 1.25 and 0.1 µm. The film is assumed to be in contact with air (n = 1.0) or a material (n = 1.5). (c) and (d)
The reflectivity from a film (n = 1.5) in air for various angles of incidence with the polarization direction perpendicular to the incident
plane. The thicknesses of the film are assumed to be (c) 0.1 µm and (d) 0.3 µm, respectively.

obtained from Fresnel’s law. Then, the power reflectivity and
transmittance are given as R = |r|2 and T = (nc/na)|t |2 with
R + T = 1 as long as the refractive indices are real. It is easily
shown that κ = 1 with tabtba = 1 and |rab| = |rbc| corresponds
to one-time reflection at each surface.

The typical examples calculated for the cases of a soap-
bubble and an anti-reflective coating are shown in figure 1(b),
where we set the parameters such that constructive interference
occurs at λ = 500 nm with m = 1. It is clear that the
reflectivity is rather low in each case and smoothly changes
with the wavelength. Thus simple thin-film interference gives
only weak dependence on the wavelength with low reflectance.
The incidence-angle dependence is shown in figure 1(c).
Since the reflectivity at an interface is rapidly increased as
the incident angle is increased, the reflection due to thin-
film interference is more clearly perceptible at large angles.
However, since the reflection spectrum is broad and is only
weakly dependent on the incidence angle, the impression to
the eye is obscure.

To enhance the reflectivity, it is necessary to increase the
reflectivity at each interface. To realize this, a material having
a higher refractive index such as TiO2 is often employed.
‘interference pearl luster pigment’ is one such example. This
coloring material involves a thin silica flake with both surfaces
coated with TiO2. The thickness of the coating is adjusted
so that thin-film interference occurs efficiently. Since the
reflectance is small even in this case, multiple reflection from
flakes in different depths of the painting gives the pearl-like
impression. When the reflectivity at the surfaces increases
much more, the thin-film interference can be regarded as a kind
of Fabry–Perot interferometer, because multiple reflections at
both surfaces occur efficiently. Using the relation given above
(equation (3)), we calculate the reflectivity with changing
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Figure 2. (a) Reflection properties of thin-film interference in air
for materials with various refractive indices. The thickness of the
material is so chosen that the optical path length becomes 0.6 µm.
(b) Reflectivity from a metal coated by an oxide thin film,
corresponding to Ti, calculated for various angles of incidence with
the polarization direction perpendicular to the incident plane. The
thickness and refractive index of the oxide film are set to be 0.15 µm
and 2.76, respectively, while the refractive index of the metal is
assumed to be 2.16+2.93i.

refractive indices of the material as shown in figure 2(a).
At relatively low indices, low reflectivity with only weak
dependence on the wavelength is observed. With increasing
refractive index, the overall reflectivity is increased and tends

4

薄膜の表裏から反射された光が干渉すること
で、波長により強め合ったり弱め合ったりする

例:  CD、シャボン玉

多層膜からの散乱光がお互い干渉する
ことで、特徴的な光学特性（角度依存
性・波長依存性）が現れる
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III. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31

E! sr!r!" =
− j!#0

4$r
e−jk0r!1 − r̂r̂ ·"$ $

V
J!b!r!!"ejk0r̂·r!!dV!

=
k0

2!"rc − 1"
4$r

e−jk0r!1 − r̂r̂ ·"$ $
V

E! !r!!"ejk0r̂·r!!dV!,

!4"

in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes

E! sr!r!" =
k0

2!"rc − 1"
4$r

e−jk0r

%%
n=1

N $
z!=−w/2

w/2 $
y!=−l

0 $
x!=x1

x2

!1 − r̂r̂ ·"E! !r!!"

% ejk0!x! sin & cos '+y! sin & sin '+z! cos &"dx!dy!dz!,

!5"

with x1=−&!n−1"!h+g"+h+y sin (' /cos ( and
x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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Fig. 5. !a" Model for the ridge showing the dimensions: Left side, transverse
cross section; right side, longitudinal cross section. Note that the lamellae of
the ridge are tilted at the angle ( with respect to the plane of the scale. !b"
Orientation of the ridge with respect to the coordinate system !x ,y ,z". The
scattered field is to be computed at point P.
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Fig. 6. Model used for estimating the electric field within the nth lamella of
the ridge.
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• 各ラメラは鱗粉表面に対して傾斜角 γ で等間隔に整列

• 鱗粉表面に対して鉛直に光が入射、ridge中の各ラメラで散乱

(幅 w,  長さ l,   厚さ h,  間隔 g )

（比誘電率　　）
!rm = 1 +

!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is
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E! TM,n!r!" = −
1

#!rc

ETM
i T

am
TMT

mc
TMe−jkmdn cos $
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The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
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+ ŷ cos!" − %"%

& ejkc$dn cos %+x cos!"−%"+y sin!"−%"% − $x̂ sin!" + %"
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
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各ラメラからの散乱光の総和を計算

モルフォ蝶の構造発色を理解するモデル
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Radiation formulaIII. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31
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in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes
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x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,

(a)

(b)

!

Top Lamella

z

y

x

O

P

"

#

r

Incident
Plane Wave

E
i

TE

E
i

TM

h g

lw

Lamellae

!

2

3

N

1

Unit Cell

Plane of Scale

s
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III. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31
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in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes
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with x1=−&!n−1"!h+g"+h+y sin (' /cos ( and
x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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入射光がラメラ部に当たると分極を起こす

この分極電場をもとに散乱光が作られる:

III. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31

E! sr!r!" =
− j!#0

4$r
e−jk0r!1 − r̂r̂ ·"$ $

V
J!b!r!!"ejk0r̂·r!!dV!

=
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E! !r!!"ejk0r̂·r!!dV!,

!4"

in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes
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with x1=−&!n−1"!h+g"+h+y sin (' /cos ( and
x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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;

十分遠方で
成り立つ表式

電流
(分極電場の変動)

III. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31

E! sr!r!" =
− j!#0
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in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes
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with x1=−&!n−1"!h+g"+h+y sin (' /cos ( and
x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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III. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31
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in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes
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with x1=−&!n−1"!h+g"+h+y sin (' /cos ( and
x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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III. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31
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in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes
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with x1=−&!n−1"!h+g"+h+y sin (' /cos ( and
x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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Fig. 6. Model used for estimating the electric field within the nth lamella of
the ridge.
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III. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31

E! sr!r!" =
− j!#0

4$r
e−jk0r!1 − r̂r̂ ·"$ $

V
J!b!r!!"ejk0r̂·r!!dV!

=
k0

2!"rc − 1"
4$r

e−jk0r!1 − r̂r̂ ·"$ $
V

E! !r!!"ejk0r̂·r!!dV!,

!4"

in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes

E! sr!r!" =
k0

2!"rc − 1"
4$r

e−jk0r

%%
n=1

N $
z!=−w/2

w/2 $
y!=−l

0 $
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!1 − r̂r̂ ·"E! !r!!"

% ejk0!x! sin & cos '+y! sin & sin '+z! cos &"dx!dy!dz!,

!5"

with x1=−&!n−1"!h+g"+h+y sin (' /cos ( and
x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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the ridge are tilted at the angle ( with respect to the plane of the scale. !b"
Orientation of the ridge with respect to the coordinate system !x ,y ,z". The
scattered field is to be computed at point P.
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Fig. 6. Model used for estimating the electric field within the nth lamella of
the ridge.
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script r" permittivity of cuticle, and E! is the total electric
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To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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Fig. 6. Model used for estimating the electric field within the nth lamella of
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in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a
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in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
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To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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Fig. 6. Model used for estimating the electric field within the nth lamella of
the ridge.
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!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
12
TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
TM =

#!r2cos #1 − #!r1cos #2

#!r2cos #1 + #!r1cos #2

,

!7"

T
12
TE =

2#!r1cos #1

#!r1cos #1 + #!r2cos #2

,

T
12
TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is

E! TE,n!r!" = ETE
i T

am
TET

mc
TEe−jkmdn cos $$ejkc!u+dn"cos %

+ R
cm
TEe−jkc!u+dn+2h"cos %%e−jkcv sin %ŵ , !8"

E! TM,n!r!" = −
1

#!rc

ETM
i T

am
TMT

mc
TMe−jkmdn cos $

&$!sin %û + cos %v̂"ejkc!u+dn"cos %

+ !sin %û − cos %v̂"R
cm
TM

&e−jkc!u+dn+2h"cos %%e−jkcv sin %, !9"

with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",

E! TE,n!r!" = ETE
i T

am
TET

mc
TEe−jkmdn cos $

&&ejkc$dn cos %+x cos!"−%"+y sin!"−%"%

+ R
cm
TEe−jkc$!dn+2h"cos %+x cos!"+%"+y sin!"+%"%'ẑ ,

!11"

E! TM,n!r!" =
1
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& ejkc$dn cos %+x cos!"−%"+y sin!"−%"% − $x̂ sin!" + %"

− ŷ cos!" + %"%

& R
cm
TMe−jkc$!dn+2h"cos %+x cos!"+%"+y sin!"+%"%' .

!12"

To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives

E! TE
sr !r!" = − '̂k0

2!!rc − 1"wl!h/cos ""

&T
am
TET

mc
TEETE

i e−jk0r

4(r
sin 'CA!',)"

& (
n=1

N
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TECC!',)"% , !13"
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1
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TMETM

i e−jk0r

4(r
CA!',)"
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n=1

N
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− )" − )̂ cos!" − % − )"%CB!',)"

− $'̂ cos ' sin!" + % − )" − )̂ cos!" + %

− )"%R
cm
TMCC!',)"' , !14"

with the coefficients

CA!',)" = sinc$!k0w/2"cos '%sinc&$kc sin %

+ k0 sin ' sin!" − )"%l/!2 cos ""'

& exp!j&$kc sin % + k0 sin ' sin!"

− )"%l/!2 cos ""'" , !15a"

CB!',)" = sinc&$kc cos!" − %"

+ k0 sin ' cos )%h/!2 cos ""' & exp!

− j&$kc cos!" − %" + k0 sin ' cos )%$dn

+ h/2%/cos "'" , !15b"
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比誘電率
（体積平均）

ラメラ

• 計算の単純化のために、
• １つのridgeのみに着目（他のridgesの影響は無視）

入射光が第n層のラメラに到達するまでを、
比誘電率　 を持った有効媒質での屈折とし
て表現（左図）
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with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".
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ラメラ内での多重反射は無視
!rm = 1 +

!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".
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the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
12
TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
TM =

#!r2cos #1 − #!r1cos #2

#!r2cos #1 + #!r1cos #2

,

!7"

T
12
TE =

2#!r1cos #1

#!r1cos #1 + #!r2cos #2

,

T
12
TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is

E! TE,n!r!" = ETE
i T

am
TET

mc
TEe−jkmdn cos $$ejkc!u+dn"cos %

+ R
cm
TEe−jkc!u+dn+2h"cos %%e−jkcv sin %ŵ , !8"
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!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
12
TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
TM =

#!r2cos #1 − #!r1cos #2

#!r2cos #1 + #!r1cos #2

,

!7"

T
12
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2#!r1cos #1

#!r1cos #1 + #!r2cos #2

,

T
12
TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is

E! TE,n!r!" = ETE
i T
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TET
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TEe−jkmdn cos $$ejkc!u+dn"cos %

+ R
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+ !sin %û − cos %v̂"R
cm
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&e−jkc!u+dn+2h"cos %%e−jkcv sin %, !9"

with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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with the coefficients

CA!',)" = sinc$!k0w/2"cos '%sinc&$kc sin %

+ k0 sin ' sin!" − )"%l/!2 cos ""'

& exp!j&$kc sin % + k0 sin ' sin!"
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+ k0 sin ' cos )%h/!2 cos ""' & exp!
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i.

ii.
ラメラ中の電場

＝入射波＋第１反射波

仮定

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
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TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
TM =
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,

!7"
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,

T
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TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is

E! TE,n!r!" = ETE
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&e−jkc!u+dn+2h"cos %%e−jkcv sin %, !9"

with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",

E! TE,n!r!" = ETE
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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with the coefficients

CA!',)" = sinc$!k0w/2"cos '%sinc&$kc sin %
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Fresnel’s formulae

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
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TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
TM =

#!r2cos #1 − #!r1cos #2

#!r2cos #1 + #!r1cos #2

,

!7"

T
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TE =

2#!r1cos #1

#!r1cos #1 + #!r2cos #2

,

T
12
TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is

E! TE,n!r!" = ETE
i T
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TEe−jkmdn cos $$ejkc!u+dn"cos %

+ R
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TEe−jkc!u+dn+2h"cos %%e−jkcv sin %ŵ , !8"
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1
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&$!sin %û + cos %v̂"ejkc!u+dn"cos %

+ !sin %û − cos %v̂"R
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&e−jkc!u+dn+2h"cos %%e−jkcv sin %, !9"

with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",

E! TE,n!r!" = ETE
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TEe−jkmdn cos $
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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with the coefficients

CA!',)" = sinc$!k0w/2"cos '%sinc&$kc sin %

+ k0 sin ' sin!" − )"%l/!2 cos ""'

& exp!j&$kc sin % + k0 sin ' sin!"
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結果の表式

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
12
TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
TM =

#!r2cos #1 − #!r1cos #2

#!r2cos #1 + #!r1cos #2

,

!7"

T
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TE =

2#!r1cos #1

#!r1cos #1 + #!r2cos #2

,

T
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TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is
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&e−jkc!u+dn+2h"cos %%e−jkcv sin %, !9"

with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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with the coefficients
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!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
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,
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TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is
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i T

am
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&e−jkc!u+dn+2h"cos %%e−jkcv sin %, !9"

with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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integrations are of exponential functions". This process is
straightforward but tedious and gives

E! TE
sr !r!" = − '̂k0

2!!rc − 1"wl!h/cos ""

&T
am
TET

mc
TEETE

i e−jk0r

4(r
sin 'CA!',)"

& (
n=1

N

e−j!km cos $−kc cos %"dn$CB!',)"

+ R
cm
TECC!',)"% , !13"

E! TM
sr !r!" =

1
#!rc

k0
2!!rc − 1"wl!h/cos ""

&T
am
TMT

mc
TMETM

i e−jk0r

4(r
CA!',)"

& (
n=1

N

e−j!km cos $−kc cos %"dn&$'̂ cos ' sin!" − %

− )" − )̂ cos!" − % − )"%CB!',)"

− $'̂ cos ' sin!" + % − )" − )̂ cos!" + %

− )"%R
cm
TMCC!',)"' , !14"

with the coefficients

CA!',)" = sinc$!k0w/2"cos '%sinc&$kc sin %

+ k0 sin ' sin!" − )"%l/!2 cos ""'

& exp!j&$kc sin % + k0 sin ' sin!"

− )"%l/!2 cos ""'" , !15a"

CB!',)" = sinc&$kc cos!" − %"

+ k0 sin ' cos )%h/!2 cos ""' & exp!

− j&$kc cos!" − %" + k0 sin ' cos )%$dn

+ h/2%/cos "'" , !15b"

1014 1014Am. J. Phys., Vol. 77, No. 11, November 2009 Glenn S. Smith

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
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lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
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E! TM,n!r!" = −
1

#!rc

ETM
i T

am
TMT

mc
TMe−jkmdn cos $
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To complete the analysis, we substitute Eqs. !11" and !12"
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
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To complete the analysis, we substitute Eqs. !11" and !12"
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tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
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with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
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lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
12
TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
TM =

#!r2cos #1 − #!r1cos #2

#!r2cos #1 + #!r1cos #2

,

!7"

T
12
TE =

2#!r1cos #1

#!r1cos #1 + #!r2cos #2

,

T
12
TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
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with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:
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The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",
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!11"

E! TM,n!r!" =
1

#!rc

ETM
i T

am
TMT

mc
TMe−jkmdn cos $&$x̂ sin!" − %"
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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in which #1 is the angle of incidence in region 1, and #2 is the
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The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",
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+ ŷ cos!" − %"%

& ejkc$dn cos %+x cos!"−%"+y sin!"−%"% − $x̂ sin!" + %"
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives

E! TE
sr !r!" = − '̂k0

2!!rc − 1"wl!h/cos ""

&T
am
TET

mc
TEETE

i e−jk0r

4(r
sin 'CA!',)"

& (
n=1

N

e−j!km cos $−kc cos %"dn$CB!',)"

+ R
cm
TECC!',)"% , !13"

E! TM
sr !r!" =

1
#!rc

k0
2!!rc − 1"wl!h/cos ""

&T
am
TMT

mc
TMETM

i e−jk0r

4(r
CA!',)"

& (
n=1

N

e−j!km cos $−kc cos %"dn&$'̂ cos ' sin!" − %

− )" − )̂ cos!" − % − )"%CB!',)"

− $'̂ cos ' sin!" + % − )" − )̂ cos!" + %

− )"%R
cm
TMCC!',)"' , !14"

with the coefficients

CA!',)" = sinc$!k0w/2"cos '%sinc&$kc sin %

+ k0 sin ' sin!" − )"%l/!2 cos ""'

& exp!j&$kc sin % + k0 sin ' sin!"

− )"%l/!2 cos ""'" , !15a"

CB!',)" = sinc&$kc cos!" − %"

+ k0 sin ' cos )%h/!2 cos ""' & exp!

− j&$kc cos!" − %" + k0 sin ' cos )%$dn

+ h/2%/cos "'" , !15b"

1014 1014Am. J. Phys., Vol. 77, No. 11, November 2009 Glenn S. Smith

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
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The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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III. ANALYSIS OF THE SCATTERED LIGHT

The incident light produces a polarization !dipole moment
per unit volume" P! for the bound charge of the lamellae that
can be expressed as an equivalent volume current density,

J!b = j!P! = j!"0!"rc − 1"E! , !3"

in which "rc=#n=2.43− j0.19 is the complex relative !sub-
script r" permittivity of cuticle, and E! is the total electric
field within the lamellae.29 This current produces the scat-
tered electromagnetic field that is the light we observe. At a

large distance from the ridge, in the Fraunhofer or far-zone
region, this field is given by the following integral:30,31

E! sr!r!" =
− j!#0

4$r
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e−jk0r!1 − r̂r̂ ·"$ $
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E! !r!!"ejk0r̂·r!!dV!,

!4"

in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
of the lamellae. After introducing the dimensions of the
lamellae and the appropriate coordinates, Eq. !4" becomes
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!5"

with x1=−&!n−1"!h+g"+h+y sin (' /cos ( and
x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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Fig. 5. !a" Model for the ridge showing the dimensions: Left side, transverse
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scattered field is to be computed at point P.
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script r" permittivity of cuticle, and E! is the total electric
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in which r!! locates the source point within the lamellae, r!
=rr̂ locates the field point P in Fig. 5!b", and V is the volume
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x2=−&!n−1"!h+g"+y sin (' /cos (.

To proceed with the calculation, we must know the electric
field within the lamellae for substitution into Eq. !5". We will
use an estimate for this field that is based on the geometry
shown in Fig. 6. Here we have replaced the scale by a model
containing three parallel layers. The middle layer of thick-
ness h represents the nth lamella. The layer of thickness
dn= !n−1"!h+g" above this lamella is modeled as an effec-
tive medium with a relative permittivity that is the volumet-
ric average of the materials !cuticle and free space" within a
unit cell,
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かなり煩雑な式になる：
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結果の表式（続き）

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
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tion and transmission coefficients for an interface between
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E! TM,n!r!" = −
1

#!rc

ETM
i T

am
TMT

mc
TMe−jkmdn cos $
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The subscripts am, mc, and cm refer to the air-effective me-
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!8" and !9" in terms of the coordinates !x ,y ,z",

E! TE,n!r!" = ETE
i T

am
TET

mc
TEe−jkmdn cos $

&&ejkc$dn cos %+x cos!"−%"+y sin!"−%"%

+ R
cm
TEe−jkc$!dn+2h"cos %+x cos!"+%"+y sin!"+%"%'ẑ ,
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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&$!sin %û + cos %v̂"ejkc!u+dn"cos %
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The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
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To complete the analysis, we substitute Eqs. !11" and !12"
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integrations are of exponential functions". This process is
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
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For our calculations, we will be interested in the irradiance
of the scattered field, which is readily obtained from Eqs.
!13" and !14",
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IV. COLOR AND IRIDESCENCE

Before we can calculate the light scattered by a scale of a
typical Morpho butterfly, we need to specify the dimensions
for the various features of the ridge shown in Fig. 5. The
estimates of these dimensions vary significantly even for but-
terflies of the same species. For example, the values for the
thickness of the lamellae h of the Morpho rhetenor range
from 62 to 90 nm.20,23 For our calculations, we will use the
representative dimensions for a Morpho ground scale given
in Table I.

The distribution of the scattered radiation in space is con-
veniently displayed using graphs akin to the polar patterns
customarily used to described the radiation from antennas.
For the plots in Fig. 7, the radial distance from the origin at
a particular angle is proportional to the irradiance Isr at that
angle. Notice that the radial scale is logarithmic and that two
decades are displayed. There are six curves, each for a dif-
ferent wavelength within the range of 370 nm'(
'520 nm. The curves are normalized so that the maximum
value for the group is one.33 The inset in the left-hand side of
each figure shows the relative orientation for the incident
wave and the lamellae of the ridge.

In the plane !=) /2, shown in Fig. 7!a", the beam of the
scattered light is tilted at about 20° to the normal. Recall that
the lamellae are tilted at the angle #=10° to the base of the
scale, so this orientation of the beam is what we would ex-
pect for a specular reflection from the lamellae. The patterns

in Fig. 7!b" are “cuts” through this beam, "=2#=20°. The
scattering is most intense at the wavelengths normally asso-
ciated with blue and violet light !(=400, 430, 460, and 490
nm" and small outside of this range !(=370 and 520 nm".

The plots in Fig. 7!b" clearly show iridescence; the domi-
nant wavelength !color" shifts with the angle of observation
!. These results are consistent with observations; the color
changes from blue to blue-violet as the angle of observation

Table I. Representative dimensions for a Morpho ground scale.

Quantity Description Value

N Number of lamellae 8
h Thickness of lamellae 65 nm
w Width of lamellae 400 nm
g Spacing between lamellae 155 nm
# Tilt angle of lamellae 10°
s Spacing between ridges 700 nm
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Fig. 7. Patterns for the scattered irradiance from a ridge. Each curve is for a
different wavelength. !a" Plane !=) /2. !b" Plane "=2#=20°. Note that the
scale for Isr is logarithmic.
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Fig. 8. The scattered irradiance as a function of the wavelength and the
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included to give a rough indication of the color of the light. Iridescence, a
change in the spectrum !color" with viewing angle, is clearly shown.
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For our calculations, we will be interested in the irradiance
of the scattered field, which is readily obtained from Eqs.
!13" and !14",
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IV. COLOR AND IRIDESCENCE

Before we can calculate the light scattered by a scale of a
typical Morpho butterfly, we need to specify the dimensions
for the various features of the ridge shown in Fig. 5. The
estimates of these dimensions vary significantly even for but-
terflies of the same species. For example, the values for the
thickness of the lamellae h of the Morpho rhetenor range
from 62 to 90 nm.20,23 For our calculations, we will use the
representative dimensions for a Morpho ground scale given
in Table I.

The distribution of the scattered radiation in space is con-
veniently displayed using graphs akin to the polar patterns
customarily used to described the radiation from antennas.
For the plots in Fig. 7, the radial distance from the origin at
a particular angle is proportional to the irradiance Isr at that
angle. Notice that the radial scale is logarithmic and that two
decades are displayed. There are six curves, each for a dif-
ferent wavelength within the range of 370 nm'(
'520 nm. The curves are normalized so that the maximum
value for the group is one.33 The inset in the left-hand side of
each figure shows the relative orientation for the incident
wave and the lamellae of the ridge.

In the plane !=) /2, shown in Fig. 7!a", the beam of the
scattered light is tilted at about 20° to the normal. Recall that
the lamellae are tilted at the angle #=10° to the base of the
scale, so this orientation of the beam is what we would ex-
pect for a specular reflection from the lamellae. The patterns

in Fig. 7!b" are “cuts” through this beam, "=2#=20°. The
scattering is most intense at the wavelengths normally asso-
ciated with blue and violet light !(=400, 430, 460, and 490
nm" and small outside of this range !(=370 and 520 nm".

The plots in Fig. 7!b" clearly show iridescence; the domi-
nant wavelength !color" shifts with the angle of observation
!. These results are consistent with observations; the color
changes from blue to blue-violet as the angle of observation

Table I. Representative dimensions for a Morpho ground scale.

Quantity Description Value

N Number of lamellae 8
h Thickness of lamellae 65 nm
w Width of lamellae 400 nm
g Spacing between lamellae 155 nm
# Tilt angle of lamellae 10°
s Spacing between ridges 700 nm
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各係数の表式：

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
12
TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
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#!r2cos #1 − #!r1cos #2

#!r2cos #1 + #!r1cos #2

,

!7"

T
12
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2#!r1cos #1

#!r1cos #1 + #!r2cos #2

,

T
12
TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is

E! TE,n!r!" = ETE
i T

am
TET

mc
TEe−jkmdn cos $$ejkc!u+dn"cos %

+ R
cm
TEe−jkc!u+dn+2h"cos %%e−jkcv sin %ŵ , !8"
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+ !sin %û − cos %v̂"R
cm
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&e−jkc!u+dn+2h"cos %%e−jkcv sin %, !9"

with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",

E! TE,n!r!" = ETE
i T
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!12"

To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives

E! TE
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with the coefficients
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N, h, w, g, γ, s

ただし、

パラメーター
が決まれば、散乱光は λ, θ, Φ の関数として与えられる。

212010年1月27日水曜日



具体的計算
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For our calculations, we will be interested in the irradiance
of the scattered field, which is readily obtained from Eqs.
!13" and !14",
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IV. COLOR AND IRIDESCENCE

Before we can calculate the light scattered by a scale of a
typical Morpho butterfly, we need to specify the dimensions
for the various features of the ridge shown in Fig. 5. The
estimates of these dimensions vary significantly even for but-
terflies of the same species. For example, the values for the
thickness of the lamellae h of the Morpho rhetenor range
from 62 to 90 nm.20,23 For our calculations, we will use the
representative dimensions for a Morpho ground scale given
in Table I.

The distribution of the scattered radiation in space is con-
veniently displayed using graphs akin to the polar patterns
customarily used to described the radiation from antennas.
For the plots in Fig. 7, the radial distance from the origin at
a particular angle is proportional to the irradiance Isr at that
angle. Notice that the radial scale is logarithmic and that two
decades are displayed. There are six curves, each for a dif-
ferent wavelength within the range of 370 nm'(
'520 nm. The curves are normalized so that the maximum
value for the group is one.33 The inset in the left-hand side of
each figure shows the relative orientation for the incident
wave and the lamellae of the ridge.

In the plane !=) /2, shown in Fig. 7!a", the beam of the
scattered light is tilted at about 20° to the normal. Recall that
the lamellae are tilted at the angle #=10° to the base of the
scale, so this orientation of the beam is what we would ex-
pect for a specular reflection from the lamellae. The patterns

in Fig. 7!b" are “cuts” through this beam, "=2#=20°. The
scattering is most intense at the wavelengths normally asso-
ciated with blue and violet light !(=400, 430, 460, and 490
nm" and small outside of this range !(=370 and 520 nm".

The plots in Fig. 7!b" clearly show iridescence; the domi-
nant wavelength !color" shifts with the angle of observation
!. These results are consistent with observations; the color
changes from blue to blue-violet as the angle of observation

Table I. Representative dimensions for a Morpho ground scale.

Quantity Description Value

N Number of lamellae 8
h Thickness of lamellae 65 nm
w Width of lamellae 400 nm
g Spacing between lamellae 155 nm
# Tilt angle of lamellae 10°
s Spacing between ridges 700 nm
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Fig. 7. Patterns for the scattered irradiance from a ridge. Each curve is for a
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scale for Isr is logarithmic.
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For our calculations, we will be interested in the irradiance
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IV. COLOR AND IRIDESCENCE

Before we can calculate the light scattered by a scale of a
typical Morpho butterfly, we need to specify the dimensions
for the various features of the ridge shown in Fig. 5. The
estimates of these dimensions vary significantly even for but-
terflies of the same species. For example, the values for the
thickness of the lamellae h of the Morpho rhetenor range
from 62 to 90 nm.20,23 For our calculations, we will use the
representative dimensions for a Morpho ground scale given
in Table I.

The distribution of the scattered radiation in space is con-
veniently displayed using graphs akin to the polar patterns
customarily used to described the radiation from antennas.
For the plots in Fig. 7, the radial distance from the origin at
a particular angle is proportional to the irradiance Isr at that
angle. Notice that the radial scale is logarithmic and that two
decades are displayed. There are six curves, each for a dif-
ferent wavelength within the range of 370 nm'(
'520 nm. The curves are normalized so that the maximum
value for the group is one.33 The inset in the left-hand side of
each figure shows the relative orientation for the incident
wave and the lamellae of the ridge.

In the plane !=) /2, shown in Fig. 7!a", the beam of the
scattered light is tilted at about 20° to the normal. Recall that
the lamellae are tilted at the angle #=10° to the base of the
scale, so this orientation of the beam is what we would ex-
pect for a specular reflection from the lamellae. The patterns

in Fig. 7!b" are “cuts” through this beam, "=2#=20°. The
scattering is most intense at the wavelengths normally asso-
ciated with blue and violet light !(=400, 430, 460, and 490
nm" and small outside of this range !(=370 and 520 nm".

The plots in Fig. 7!b" clearly show iridescence; the domi-
nant wavelength !color" shifts with the angle of observation
!. These results are consistent with observations; the color
changes from blue to blue-violet as the angle of observation

Table I. Representative dimensions for a Morpho ground scale.

Quantity Description Value

N Number of lamellae 8
h Thickness of lamellae 65 nm
w Width of lamellae 400 nm
g Spacing between lamellae 155 nm
# Tilt angle of lamellae 10°
s Spacing between ridges 700 nm
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scale for Isr is logarithmic.
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'520 nm. The curves are normalized so that the maximum
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each figure shows the relative orientation for the incident
wave and the lamellae of the ridge.
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ciated with blue and violet light !(=400, 430, 460, and 490
nm" and small outside of this range !(=370 and 520 nm".

The plots in Fig. 7!b" clearly show iridescence; the domi-
nant wavelength !color" shifts with the angle of observation
!. These results are consistent with observations; the color
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モデル
パラメーター

Irradiance of scattered field:

Total power:

moves away from !=90°. Note the absence of scattered light
at angles near grazing, !=0° ,180°. Observations show that
the scale appears brown at such angles; the color is due to
pigmentation not structural scattering.

Figure 8 is a different plot for showing the iridescence:
The scattered irradiance is plotted in relief as a function of "
and ! for the plane #=20°. The spectrum for the scattered
light clearly shifts to shorter wavelengths !from blue to vio-
let" as the angle of observation approaches grazing.

A measure of the total time-averaged power scattered at a
given wavelength can be obtained by numerically integrating
Eq. !17" for the irradiance over the upper hemisphere,
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Figure 9 is a plot of #Psr$ versus wavelength, normalized to a
maximum of one. As expected from the patterns for the scat-
tered radiation in Fig. 7, it is mainly light at wavelengths in
the blue-violet range that is scattered from the ridge, with the
peak near "=450 nm. It is interesting to compare these cal-
culated results with the measurements shown in Fig. 4. For
an actual scale the dimensions of the ridges are distributed
over a range of values. Thus, it is not difficult to imagine that
a set of curves like the one in Fig. 9, each for slightly differ-
ent dimensions, could be superimposed to produce results
like those shown in Fig. 4.

V. WHY IS THE COLOR BLUE?

The results in Sec. IV show that the simple model for the
ridge predicts scattered light with color and iridescence simi-
lar to that observed for some Morpho butterflies. However,
the expressions for the scattered light, namely, Eqs. !13",
!14", and !15a"–!15c", are sufficiently complicated that the
physical mechanisms responsible for these characteristics are
not evident. In particular, the reason the scattered light is
blue, not yellow or red, is not obvious. To gain some insight
into these matters, we will examine a simplified model.

We consider only the TE field in the plane !=$ /2, ignore
the reflected wave within the cuticle !R

cm
TE=0" and assume

that the materials are lossless !%rc=2.43". The irradiance of
the scattered field is then34
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There are four factors in Eq. !19" that depend on the wave-
length: k0

4, the arguments of the two sinc functions, and the
sum. The factor k0

4= !2$ /""4 is what gives rise to Rayleigh

Fig. 9. The total time-averaged power scattered into the upper half space
versus wavelength.
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角度と波長依存性
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IV. COLOR AND IRIDESCENCE

Before we can calculate the light scattered by a scale of a
typical Morpho butterfly, we need to specify the dimensions
for the various features of the ridge shown in Fig. 5. The
estimates of these dimensions vary significantly even for but-
terflies of the same species. For example, the values for the
thickness of the lamellae h of the Morpho rhetenor range
from 62 to 90 nm.20,23 For our calculations, we will use the
representative dimensions for a Morpho ground scale given
in Table I.

The distribution of the scattered radiation in space is con-
veniently displayed using graphs akin to the polar patterns
customarily used to described the radiation from antennas.
For the plots in Fig. 7, the radial distance from the origin at
a particular angle is proportional to the irradiance Isr at that
angle. Notice that the radial scale is logarithmic and that two
decades are displayed. There are six curves, each for a dif-
ferent wavelength within the range of 370 nm'(
'520 nm. The curves are normalized so that the maximum
value for the group is one.33 The inset in the left-hand side of
each figure shows the relative orientation for the incident
wave and the lamellae of the ridge.

In the plane !=) /2, shown in Fig. 7!a", the beam of the
scattered light is tilted at about 20° to the normal. Recall that
the lamellae are tilted at the angle #=10° to the base of the
scale, so this orientation of the beam is what we would ex-
pect for a specular reflection from the lamellae. The patterns

in Fig. 7!b" are “cuts” through this beam, "=2#=20°. The
scattering is most intense at the wavelengths normally asso-
ciated with blue and violet light !(=400, 430, 460, and 490
nm" and small outside of this range !(=370 and 520 nm".

The plots in Fig. 7!b" clearly show iridescence; the domi-
nant wavelength !color" shifts with the angle of observation
!. These results are consistent with observations; the color
changes from blue to blue-violet as the angle of observation

Table I. Representative dimensions for a Morpho ground scale.

Quantity Description Value

N Number of lamellae 8
h Thickness of lamellae 65 nm
w Width of lamellae 400 nm
g Spacing between lamellae 155 nm
# Tilt angle of lamellae 10°
s Spacing between ridges 700 nm
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Before we can calculate the light scattered by a scale of a
typical Morpho butterfly, we need to specify the dimensions
for the various features of the ridge shown in Fig. 5. The
estimates of these dimensions vary significantly even for but-
terflies of the same species. For example, the values for the
thickness of the lamellae h of the Morpho rhetenor range
from 62 to 90 nm.20,23 For our calculations, we will use the
representative dimensions for a Morpho ground scale given
in Table I.

The distribution of the scattered radiation in space is con-
veniently displayed using graphs akin to the polar patterns
customarily used to described the radiation from antennas.
For the plots in Fig. 7, the radial distance from the origin at
a particular angle is proportional to the irradiance Isr at that
angle. Notice that the radial scale is logarithmic and that two
decades are displayed. There are six curves, each for a dif-
ferent wavelength within the range of 370 nm'(
'520 nm. The curves are normalized so that the maximum
value for the group is one.33 The inset in the left-hand side of
each figure shows the relative orientation for the incident
wave and the lamellae of the ridge.

In the plane !=) /2, shown in Fig. 7!a", the beam of the
scattered light is tilted at about 20° to the normal. Recall that
the lamellae are tilted at the angle #=10° to the base of the
scale, so this orientation of the beam is what we would ex-
pect for a specular reflection from the lamellae. The patterns

in Fig. 7!b" are “cuts” through this beam, "=2#=20°. The
scattering is most intense at the wavelengths normally asso-
ciated with blue and violet light !(=400, 430, 460, and 490
nm" and small outside of this range !(=370 and 520 nm".

The plots in Fig. 7!b" clearly show iridescence; the domi-
nant wavelength !color" shifts with the angle of observation
!. These results are consistent with observations; the color
changes from blue to blue-violet as the angle of observation

Table I. Representative dimensions for a Morpho ground scale.

Quantity Description Value

N Number of lamellae 8
h Thickness of lamellae 65 nm
w Width of lamellae 400 nm
g Spacing between lamellae 155 nm
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each figure shows the relative orientation for the incident
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pect for a specular reflection from the lamellae. The patterns

in Fig. 7!b" are “cuts” through this beam, "=2#=20°. The
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ciated with blue and violet light !(=400, 430, 460, and 490
nm" and small outside of this range !(=370 and 520 nm".

The plots in Fig. 7!b" clearly show iridescence; the domi-
nant wavelength !color" shifts with the angle of observation
!. These results are consistent with observations; the color
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実験との比較

moves away from !=90°. Note the absence of scattered light
at angles near grazing, !=0° ,180°. Observations show that
the scale appears brown at such angles; the color is due to
pigmentation not structural scattering.

Figure 8 is a different plot for showing the iridescence:
The scattered irradiance is plotted in relief as a function of "
and ! for the plane #=20°. The spectrum for the scattered
light clearly shifts to shorter wavelengths !from blue to vio-
let" as the angle of observation approaches grazing.

A measure of the total time-averaged power scattered at a
given wavelength can be obtained by numerically integrating
Eq. !17" for the irradiance over the upper hemisphere,
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Figure 9 is a plot of #Psr$ versus wavelength, normalized to a
maximum of one. As expected from the patterns for the scat-
tered radiation in Fig. 7, it is mainly light at wavelengths in
the blue-violet range that is scattered from the ridge, with the
peak near "=450 nm. It is interesting to compare these cal-
culated results with the measurements shown in Fig. 4. For
an actual scale the dimensions of the ridges are distributed
over a range of values. Thus, it is not difficult to imagine that
a set of curves like the one in Fig. 9, each for slightly differ-
ent dimensions, could be superimposed to produce results
like those shown in Fig. 4.

V. WHY IS THE COLOR BLUE?

The results in Sec. IV show that the simple model for the
ridge predicts scattered light with color and iridescence simi-
lar to that observed for some Morpho butterflies. However,
the expressions for the scattered light, namely, Eqs. !13",
!14", and !15a"–!15c", are sufficiently complicated that the
physical mechanisms responsible for these characteristics are
not evident. In particular, the reason the scattered light is
blue, not yellow or red, is not obvious. To gain some insight
into these matters, we will examine a simplified model.

We consider only the TE field in the plane !=$ /2, ignore
the reflected wave within the cuticle !R

cm
TE=0" and assume

that the materials are lossless !%rc=2.43". The irradiance of
the scattered field is then34
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There are four factors in Eq. !19" that depend on the wave-
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4= !2$ /""4 is what gives rise to Rayleigh

Fig. 9. The total time-averaged power scattered into the upper half space
versus wavelength.
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lamella. !b" Scattering from an array of N equally spaced points. !c" Detail
for the scattering from the nth point.
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light by the Morpho butterfly scale in a way that is appropri-
ate for use in courses on electromagnetism and optics. This
analysis predicts the major features of the scattered light. In
some ways, it combines components of the earlier ap-
proaches. Only the essential elements of the ridge, the lamel-
lae, are included in the model described in Sec. II. The scat-
tering of light !a plane wave" by this structure is determined
in Sec. III. The scattered field is written as an integral !ra-
diation integral" over the total field within the lamellae. Then
an approximation for the field in the lamellae is obtained
using the theory for reflection and refraction of a plane wave
by a planar layered medium, with appropriate simplification
based on the randomness in the structure. The approximate
field is inserted into the radiation integral, and the integral is

evaluated to obtain an expression for the scattered light. Nu-
merical results obtained with this expression are presented in
Sec. IV, and they show the observed blue color and irides-
cence observed for these butterflies. In Sec. V a simplified
version of the model is used to provide insight into the
mechanisms that produce these effects.

II. MODEL FOR A RIDGE

Two main features stand out in the transmission and scan-
ning electron micrographs of Morpho scales: the nearly par-
allel, long, thin ridges, and the regularly spaced lamellae
within a ridge. Kinoshita et al.25 deduced from their mea-
surements that the ridges, although similar, are offset ran-
domly in height, and this variation is sufficient to make the
collective scattering from the ridges incoherent. This inco-
herence implies that the scattering from a scale can be char-
acterized by the scattering from a single ridge.

We will adopt the simple model for a ridge shown in Fig.
5. It contains the major features for scattering common to
many Morpho butterflies. In this model there are N identical
lamellae, each a slab of width w and height h. The lamellae
are separated by air gaps of height g. In the longitudinal
direction !y", the lamellae are inclined at the angle ! to the
plane of the scale, which makes the structure periodic in this
direction with period l= !h+g" /sin !. A unit cell of the peri-
odic structure is enclosed by the frame !dashed lines" in Fig.
5!a". We will assume that the randomness also applies in the
longitudinal direction so that the scattering from a ridge can
be characterized by the scattering from a single unit cell. The
N slabs whose cross sections are shown in dark gray in Fig.
5!a" are the structures that we will analyze in the remainder
of the paper.26

We will assume that the butterfly scale is illuminated by
natural light with a spectrum that is uniform at visible wave-
lengths. At each frequency !wavelength", we will assume
that there is a plane wave normally incident on the plane of
the scale. The electric field of this wave has two orthogonal
components, as is shown in Fig. 5!b"; the transverse electric
!TE" component is in the ẑ direction, and the transverse mag-
netic !TM" component is in the −ŷ direction.27 The electric
field and irradiance !time-averaged power per unit area" for
this wave at the angular frequency " are28

E! i!x,t" = Re#E! i!x"ej"t$ = Re%#!ETE
i ẑ − ETM

i ŷ"ejk0x$ej"t& !1"

and

Ii = ITE
i + ITM

i = − x̂ · #Re!S!c,TE
i " + Re!S!c,TM

i "$

=
1

2#0
!'E! TE

i '2 + 'E! TM
i '2" . !2"

Here, the superscript i indicates the incident wave, k0=" /c
=2$ /% and #0=(&0 /'0 are the wave number and wave im-
pedance of free space, and S!c

i is the complex Poynting vector.
Because natural light is incoherent and unpolarized, we will
take 'E! TE

i '= 'E! TM
i ', and in any calculation of power, such as

Eq. !2", we will compute results for the TE and TM compo-
nents separately and then add them.

(a)

(b)

Fig. 3. Photographs of wings after bleaching: !a" Morpho rhetenor and !b"
Cymothoe sangaris.

Fig. 4. Measured reflectance versus wavelength for a scale or a portion of a
wing of a Morpho rhetenor butterfly. Results are for normal incidence ex-
cept those of Plattner which are for 10° from normal.
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実験データと同じように青色にピーク...でもなぜ？

total power
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moves away from !=90°. Note the absence of scattered light
at angles near grazing, !=0° ,180°. Observations show that
the scale appears brown at such angles; the color is due to
pigmentation not structural scattering.

Figure 8 is a different plot for showing the iridescence:
The scattered irradiance is plotted in relief as a function of "
and ! for the plane #=20°. The spectrum for the scattered
light clearly shifts to shorter wavelengths !from blue to vio-
let" as the angle of observation approaches grazing.

A measure of the total time-averaged power scattered at a
given wavelength can be obtained by numerically integrating
Eq. !17" for the irradiance over the upper hemisphere,

#Psr$ = %&
#=0

$/2
+ &

#=3$/2

2$ '&
!=0

$

Isr!r,!,#"r2 sin !d!d# .

!18"

Figure 9 is a plot of #Psr$ versus wavelength, normalized to a
maximum of one. As expected from the patterns for the scat-
tered radiation in Fig. 7, it is mainly light at wavelengths in
the blue-violet range that is scattered from the ridge, with the
peak near "=450 nm. It is interesting to compare these cal-
culated results with the measurements shown in Fig. 4. For
an actual scale the dimensions of the ridges are distributed
over a range of values. Thus, it is not difficult to imagine that
a set of curves like the one in Fig. 9, each for slightly differ-
ent dimensions, could be superimposed to produce results
like those shown in Fig. 4.

V. WHY IS THE COLOR BLUE?

The results in Sec. IV show that the simple model for the
ridge predicts scattered light with color and iridescence simi-
lar to that observed for some Morpho butterflies. However,
the expressions for the scattered light, namely, Eqs. !13",
!14", and !15a"–!15c", are sufficiently complicated that the
physical mechanisms responsible for these characteristics are
not evident. In particular, the reason the scattered light is
blue, not yellow or red, is not obvious. To gain some insight
into these matters, we will examine a simplified model.

We consider only the TE field in the plane !=$ /2, ignore
the reflected wave within the cuticle !R

cm
TE=0" and assume

that the materials are lossless !%rc=2.43". The irradiance of
the scattered field is then34

ITE
sr & k0

4 sinc2()kc cos!' − (" + k0 cos #*h/!2 cos '"+

) sinc2(k0l)sin ' + sin!' − #"*/!2 cos '"+

) , 1
N-

n=1

N

e−j)km cos!'−*"+k0 cos #*dn/cos ',2

. !19"

There are four factors in Eq. !19" that depend on the wave-
length: k0

4, the arguments of the two sinc functions, and the
sum. The factor k0

4= !2$ /""4 is what gives rise to Rayleigh

Fig. 9. The total time-averaged power scattered into the upper half space
versus wavelength.
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モデルをさらに単純化：

TE成分のみに着目、θ = 90◦の場合を考える
Im[�rm] = 0RTE

cm = 0,

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
12
TE =

#!r1cos #1 − #!r2cos #2

#!r1cos #1 + #!r2cos #2

,

R
12
TM =

#!r2cos #1 − #!r1cos #2

#!r2cos #1 + #!r1cos #2

,

!7"

T
12
TE =

2#!r1cos #1

#!r1cos #1 + #!r2cos #2

,

T
12
TM =

2#!r2cos #1

#!r2cos #1 + #!r1cos #2

,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is

E! TE,n!r!" = ETE
i T

am
TET

mc
TEe−jkmdn cos $$ejkc!u+dn"cos %

+ R
cm
TEe−jkc!u+dn+2h"cos %%e−jkcv sin %ŵ , !8"

E! TM,n!r!" = −
1

#!rc

ETM
i T

am
TMT

mc
TMe−jkmdn cos $

&$!sin %û + cos %v̂"ejkc!u+dn"cos %

+ !sin %û − cos %v̂"R
cm
TM

&e−jkc!u+dn+2h"cos %%e−jkcv sin %, !9"

with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",

E! TE,n!r!" = ETE
i T

am
TET

mc
TEe−jkmdn cos $

&&ejkc$dn cos %+x cos!"−%"+y sin!"−%"%

+ R
cm
TEe−jkc$!dn+2h"cos %+x cos!"+%"+y sin!"+%"%'ẑ ,

!11"

E! TM,n!r!" =
1

#!rc

ETM
i T

am
TMT

mc
TMe−jkmdn cos $&$x̂ sin!" − %"

+ ŷ cos!" − %"%

& ejkc$dn cos %+x cos!"−%"+y sin!"−%"% − $x̂ sin!" + %"

− ŷ cos!" + %"%

& R
cm
TMe−jkc$!dn+2h"cos %+x cos!"+%"+y sin!"+%"%' .

!12"

To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives

E! TE
sr !r!" = − '̂k0

2!!rc − 1"wl!h/cos ""

&T
am
TET

mc
TEETE

i e−jk0r

4(r
sin 'CA!',)"

& (
n=1

N

e−j!km cos $−kc cos %"dn$CB!',)"

+ R
cm
TECC!',)"% , !13"

E! TM
sr !r!" =

1
#!rc

k0
2!!rc − 1"wl!h/cos ""

&T
am
TMT

mc
TMETM

i e−jk0r

4(r
CA!',)"

& (
n=1

N

e−j!km cos $−kc cos %"dn&$'̂ cos ' sin!" − %

− )" − )̂ cos!" − % − )"%CB!',)"

− $'̂ cos ' sin!" + % − )" − )̂ cos!" + %

− )"%R
cm
TMCC!',)"' , !14"

with the coefficients

CA!',)" = sinc$!k0w/2"cos '%sinc&$kc sin %

+ k0 sin ' sin!" − )"%l/!2 cos ""'

& exp!j&$kc sin % + k0 sin ' sin!"

− )"%l/!2 cos ""'" , !15a"

CB!',)" = sinc&$kc cos!" − %"

+ k0 sin ' cos )%h/!2 cos ""' & exp!

− j&$kc cos!" − %" + k0 sin ' cos )%$dn

+ h/2%/cos "'" , !15b"
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scattering for electrically small objects and is essential to the
blue color of the sky.1–3 It would be the dominant factor in
Eq. !19" if all the dimensions of the ridge were electrically
small, that is, w /!"1, N!h+g" /!"1, l /!"1, etc. As we
shall see, it is not the primary factor determining the blue
color of the butterfly scale. The first sinc function is associ-
ated with the electrical thickness of the ridges, h /!, which is
small at visible wavelengths, so this factor is approximately
one, and we will ignore it in the following calculations.35

The second sinc function is associated with the scattering
from a single, tilted lamella, which is shown schematically in
Fig. 10!a".

The sum in Eq. !19" accounts for the fact that there are
multiple lamellae and represents the scattering from the array
of N equally spaced point scatterers shown in Fig. 10!b".
This term includes the relative phase shift acquired by the

incident wave traveling through the effective medium to
reach the nth lamella, kmdn cos!#−$" /cos #, as well as the
relative phase shift for the scattered wave traveling in free
space from this lamella, k0dn cos % /cos #. The rays associ-
ated with these contributions are shown in Fig. 10!c".36 Any
constructive or destructive interference that occurs for the
scattering from the lamellae is included in this term.

In antenna analysis the term that describes the scattering
from the single lamella is called the “element factor” F, and
the term that describes the scattering from the array of points
is called the “array factor” A.37 After introducing this nota-
tion and evaluating the geometric series, Eq. !19" becomes38

ITE
sr & k0

4 sinc2#k0l$sin # + sin!# − %"%/!2 cos #"&

'' sin#N$km cos!# − $" + k0 cos %%!h+g"/!2 cos #"&
N sin#$km cos!# − $" + k0 cos %%!h+g"/!2 cos #"&(2

= k0
4)F!%")2)A!%")2. !20"

In Fig. 11 the element and array factors from Eq. !20" are
graphed as polar plots for !=425, 460, and 495 nm. The
regions in which the two patterns, )F)2 and )A)2, overlap are
shaded gray. Note that the overlap increases on going from
!=425 nm $Fig. 11!a"% to !=460 nm $Fig. 11!b"% and then
decreases for !=495 nm $Fig. 11!c"%. This sequence shows
that the product of these functions is significant only over a
band of the shorter wavelengths in the visible spectrum.

To examine this point further, we consider the angles at
which the maxima %m and first zeros %0 of these functions
occur,

%m,F = 2#, %0,F = # + sin−1$sin # ( !!/l"cos #% !21"

and

%m,A = cos−1#$!/!h + g"%cos # − *)rmcos!$ − #"& , !22a"

%0,A = cos−1#$!/!h + g"%!1 * 1/N"cos # − *)rmcos!$ − #"& .

!22b"

These angles are displayed on the ! ,% plane in Fig. 12.39

The black dot shows the point at which the maxima of the
two functions coincide !!+460 nm, %+20°", and the gray
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scattering for electrically small objects and is essential to the
blue color of the sky.1–3 It would be the dominant factor in
Eq. !19" if all the dimensions of the ridge were electrically
small, that is, w /!"1, N!h+g" /!"1, l /!"1, etc. As we
shall see, it is not the primary factor determining the blue
color of the butterfly scale. The first sinc function is associ-
ated with the electrical thickness of the ridges, h /!, which is
small at visible wavelengths, so this factor is approximately
one, and we will ignore it in the following calculations.35

The second sinc function is associated with the scattering
from a single, tilted lamella, which is shown schematically in
Fig. 10!a".

The sum in Eq. !19" accounts for the fact that there are
multiple lamellae and represents the scattering from the array
of N equally spaced point scatterers shown in Fig. 10!b".
This term includes the relative phase shift acquired by the

incident wave traveling through the effective medium to
reach the nth lamella, kmdn cos!#−$" /cos #, as well as the
relative phase shift for the scattered wave traveling in free
space from this lamella, k0dn cos % /cos #. The rays associ-
ated with these contributions are shown in Fig. 10!c".36 Any
constructive or destructive interference that occurs for the
scattering from the lamellae is included in this term.

In antenna analysis the term that describes the scattering
from the single lamella is called the “element factor” F, and
the term that describes the scattering from the array of points
is called the “array factor” A.37 After introducing this nota-
tion and evaluating the geometric series, Eq. !19" becomes38
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In Fig. 11 the element and array factors from Eq. !20" are
graphed as polar plots for !=425, 460, and 495 nm. The
regions in which the two patterns, )F)2 and )A)2, overlap are
shaded gray. Note that the overlap increases on going from
!=425 nm $Fig. 11!a"% to !=460 nm $Fig. 11!b"% and then
decreases for !=495 nm $Fig. 11!c"%. This sequence shows
that the product of these functions is significant only over a
band of the shorter wavelengths in the visible spectrum.

To examine this point further, we consider the angles at
which the maxima %m and first zeros %0 of these functions
occur,

%m,F = 2#, %0,F = # + sin−1$sin # ( !!/l"cos #% !21"

and

%m,A = cos−1#$!/!h + g"%cos # − *)rmcos!$ − #"& , !22a"

%0,A = cos−1#$!/!h + g"%!1 * 1/N"cos # − *)rmcos!$ − #"& .

!22b"

These angles are displayed on the ! ,% plane in Fig. 12.39

The black dot shows the point at which the maxima of the
two functions coincide !!+460 nm, %+20°", and the gray
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scattering for electrically small objects and is essential to the
blue color of the sky.1–3 It would be the dominant factor in
Eq. !19" if all the dimensions of the ridge were electrically
small, that is, w /!"1, N!h+g" /!"1, l /!"1, etc. As we
shall see, it is not the primary factor determining the blue
color of the butterfly scale. The first sinc function is associ-
ated with the electrical thickness of the ridges, h /!, which is
small at visible wavelengths, so this factor is approximately
one, and we will ignore it in the following calculations.35

The second sinc function is associated with the scattering
from a single, tilted lamella, which is shown schematically in
Fig. 10!a".

The sum in Eq. !19" accounts for the fact that there are
multiple lamellae and represents the scattering from the array
of N equally spaced point scatterers shown in Fig. 10!b".
This term includes the relative phase shift acquired by the

incident wave traveling through the effective medium to
reach the nth lamella, kmdn cos!#−$" /cos #, as well as the
relative phase shift for the scattered wave traveling in free
space from this lamella, k0dn cos % /cos #. The rays associ-
ated with these contributions are shown in Fig. 10!c".36 Any
constructive or destructive interference that occurs for the
scattering from the lamellae is included in this term.

In antenna analysis the term that describes the scattering
from the single lamella is called the “element factor” F, and
the term that describes the scattering from the array of points
is called the “array factor” A.37 After introducing this nota-
tion and evaluating the geometric series, Eq. !19" becomes38
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In Fig. 11 the element and array factors from Eq. !20" are
graphed as polar plots for !=425, 460, and 495 nm. The
regions in which the two patterns, )F)2 and )A)2, overlap are
shaded gray. Note that the overlap increases on going from
!=425 nm $Fig. 11!a"% to !=460 nm $Fig. 11!b"% and then
decreases for !=495 nm $Fig. 11!c"%. This sequence shows
that the product of these functions is significant only over a
band of the shorter wavelengths in the visible spectrum.

To examine this point further, we consider the angles at
which the maxima %m and first zeros %0 of these functions
occur,

%m,F = 2#, %0,F = # + sin−1$sin # ( !!/l"cos #% !21"

and
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λ = 425nm

λ = 460nm

λ = 495nm
λ~460nm で重なりが最大

それぞれの寄与を波長毎
にわけてプロット

θ = 90◦（　　　 の時）
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scattering for electrically small objects and is essential to the
blue color of the sky.1–3 It would be the dominant factor in
Eq. !19" if all the dimensions of the ridge were electrically
small, that is, w /!"1, N!h+g" /!"1, l /!"1, etc. As we
shall see, it is not the primary factor determining the blue
color of the butterfly scale. The first sinc function is associ-
ated with the electrical thickness of the ridges, h /!, which is
small at visible wavelengths, so this factor is approximately
one, and we will ignore it in the following calculations.35

The second sinc function is associated with the scattering
from a single, tilted lamella, which is shown schematically in
Fig. 10!a".

The sum in Eq. !19" accounts for the fact that there are
multiple lamellae and represents the scattering from the array
of N equally spaced point scatterers shown in Fig. 10!b".
This term includes the relative phase shift acquired by the

incident wave traveling through the effective medium to
reach the nth lamella, kmdn cos!#−$" /cos #, as well as the
relative phase shift for the scattered wave traveling in free
space from this lamella, k0dn cos % /cos #. The rays associ-
ated with these contributions are shown in Fig. 10!c".36 Any
constructive or destructive interference that occurs for the
scattering from the lamellae is included in this term.

In antenna analysis the term that describes the scattering
from the single lamella is called the “element factor” F, and
the term that describes the scattering from the array of points
is called the “array factor” A.37 After introducing this nota-
tion and evaluating the geometric series, Eq. !19" becomes38

ITE
sr & k0

4 sinc2#k0l$sin # + sin!# − %"%/!2 cos #"&

'' sin#N$km cos!# − $" + k0 cos %%!h+g"/!2 cos #"&
N sin#$km cos!# − $" + k0 cos %%!h+g"/!2 cos #"&(2

= k0
4)F!%")2)A!%")2. !20"

In Fig. 11 the element and array factors from Eq. !20" are
graphed as polar plots for !=425, 460, and 495 nm. The
regions in which the two patterns, )F)2 and )A)2, overlap are
shaded gray. Note that the overlap increases on going from
!=425 nm $Fig. 11!a"% to !=460 nm $Fig. 11!b"% and then
decreases for !=495 nm $Fig. 11!c"%. This sequence shows
that the product of these functions is significant only over a
band of the shorter wavelengths in the visible spectrum.

To examine this point further, we consider the angles at
which the maxima %m and first zeros %0 of these functions
occur,

%m,F = 2#, %0,F = # + sin−1$sin # ( !!/l"cos #% !21"

and

%m,A = cos−1#$!/!h + g"%cos # − *)rmcos!$ − #"& , !22a"

%0,A = cos−1#$!/!h + g"%!1 * 1/N"cos # − *)rmcos!$ − #"& .

!22b"

These angles are displayed on the ! ,% plane in Fig. 12.39

The black dot shows the point at which the maxima of the
two functions coincide !!+460 nm, %+20°", and the gray
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具体的な条件式：

ラメラの性質に依存するが、
枚数には依らない

!rm = 1 +
!!rc − 1"wh

!h + g"s
. !6"

The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are

R
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#!r1cos #1 + #!r2cos #2

,
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,

in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is
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with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:

sin " = #!rcsin % = #!rmsin $ . !10"

The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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scattering for electrically small objects and is essential to the
blue color of the sky.1–3 It would be the dominant factor in
Eq. !19" if all the dimensions of the ridge were electrically
small, that is, w /!"1, N!h+g" /!"1, l /!"1, etc. As we
shall see, it is not the primary factor determining the blue
color of the butterfly scale. The first sinc function is associ-
ated with the electrical thickness of the ridges, h /!, which is
small at visible wavelengths, so this factor is approximately
one, and we will ignore it in the following calculations.35

The second sinc function is associated with the scattering
from a single, tilted lamella, which is shown schematically in
Fig. 10!a".

The sum in Eq. !19" accounts for the fact that there are
multiple lamellae and represents the scattering from the array
of N equally spaced point scatterers shown in Fig. 10!b".
This term includes the relative phase shift acquired by the

incident wave traveling through the effective medium to
reach the nth lamella, kmdn cos!#−$" /cos #, as well as the
relative phase shift for the scattered wave traveling in free
space from this lamella, k0dn cos % /cos #. The rays associ-
ated with these contributions are shown in Fig. 10!c".36 Any
constructive or destructive interference that occurs for the
scattering from the lamellae is included in this term.

In antenna analysis the term that describes the scattering
from the single lamella is called the “element factor” F, and
the term that describes the scattering from the array of points
is called the “array factor” A.37 After introducing this nota-
tion and evaluating the geometric series, Eq. !19" becomes38
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4 sinc2#k0l$sin # + sin!# − %"%/!2 cos #"&

'' sin#N$km cos!# − $" + k0 cos %%!h+g"/!2 cos #"&
N sin#$km cos!# − $" + k0 cos %%!h+g"/!2 cos #"&(2

= k0
4)F!%")2)A!%")2. !20"

In Fig. 11 the element and array factors from Eq. !20" are
graphed as polar plots for !=425, 460, and 495 nm. The
regions in which the two patterns, )F)2 and )A)2, overlap are
shaded gray. Note that the overlap increases on going from
!=425 nm $Fig. 11!a"% to !=460 nm $Fig. 11!b"% and then
decreases for !=495 nm $Fig. 11!c"%. This sequence shows
that the product of these functions is significant only over a
band of the shorter wavelengths in the visible spectrum.

To examine this point further, we consider the angles at
which the maxima %m and first zeros %0 of these functions
occur,

%m,F = 2#, %0,F = # + sin−1$sin # ( !!/l"cos #% !21"

and

%m,A = cos−1#$!/!h + g"%cos # − *)rmcos!$ − #"& , !22a"

%0,A = cos−1#$!/!h + g"%!1 * 1/N"cos # − *)rmcos!$ − #"& .

!22b"

These angles are displayed on the ! ,% plane in Fig. 12.39

The black dot shows the point at which the maxima of the
two functions coincide !!+460 nm, %+20°", and the gray
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The semi-infinite layer below the lamella also has this effec-
tive permittivity. We model these two regions as single layer
with effective parameters because of the random irregulari-
ties that exist in the natural scale. The ridges are often irregu-
lar with unequal and offset heights, bent tops, rounded lamel-
lae, etc. These irregularities also make it unlikely that there
are correlated multiple reflections within these layers. We
therefore ignore multiple reflections and consider the total
field within the cuticle layer to be the sum of the incident
wave and the first reflection, which are represented by the
two rays in Fig. 6. Notice that there are two rectangular
coordinate systems shown in Fig. 6, the one !x ,y ,z" that is
associated with the overall structure in Fig. 5, and a second
one !u ,v ,w" that is aligned with the lamella. The latter is the
former rotated clockwise in the x ,y plane by the angle ".

The electric field within the lamella is easily determined in
the !u ,v ,w" coordinate system using standard results for the
reflection and refraction of a plane wave at a planar interface
between two materials !the Fresnel equations".32 The reflec-
tion and transmission coefficients for an interface between
regions 1 and 2 are
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in which #1 is the angle of incidence in region 1, and #2 is the
angle of refraction in region 2. Then the electric field within
the nth lamella is
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&$!sin %û + cos %v̂"ejkc!u+dn"cos %
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with kc=#!rck0, km=#!rmk0, and the following relations be-
tween the angles:
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The subscripts am, mc, and cm refer to the air-effective me-
dium, effective medium-cuticle, and cuticle-effective me-
dium interfaces in Fig. 6. For use in Eq. !5" we express Eqs.
!8" and !9" in terms of the coordinates !x ,y ,z",
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To complete the analysis, we substitute Eqs. !11" and !12"
into Eq. !5" and perform the indicated integrations !all of the
integrations are of exponential functions". This process is
straightforward but tedious and gives
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ラメラの枚数と波長特性
Total power (normalized)

黒：8枚
マゼンタ：16枚

赤：32枚

緑：4枚
シアン：2枚

スペクトル幅は変わるがピーク波長はほぼ同じ
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まとめ
モルフォ蝶の翅はなぜ青い？その物理的メカニズム

多層膜からの散乱光の干渉に強め合う
単一ラメラによる散乱パターンの強弱

さらにレイリー散乱が短波長側の波長特性を強調

これらの条件が一致する波長域が青色だった
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人工的に構造色を作る

Watanabe et al. (2005)
using 3-D CAD data. This result demonstrates that FIB-CVD
can be used to freely fabricate the quasi-structure.

We measured the reflection intensity from Morpho-
butterfly scales and the Morpho-butterfly-scale quasi-struc-
ture through optical measurement. In this measurement
system, white light from a halogen lamp was directed onto a
sample with incident angles ranging from 5 to 45!. The
reflection was concentrated by an optical microscope and
analyzed by a commercially available photonic multi-
channel spectral analyzer system (PMA-11: Hamamatsu
Photonics K.K.). The intensity of incident light from the
halogen lamp had a wavelength with peak intensity close to
630 nm.

The Morpho-butterfly-scale quasi-structure was made of
DLC. The reflectivity and transmittance of a 200-nm-thick
DLC film deposited by FIB-CVD, measured by the optical
measurement system at a wavelength close to 440 nm (the
reflection peak wavelength of the Morpho-butterfly), were
30% and 60%, respectively. The measured data thus
indicated that the DLC film had high reflectivity near
440 nm, which is important for fabrication of an accurate
Morpho-butterfly-scale quasi-structure.

Figure 3(a) shows an SIM image of the Morpho-butterfly-
scale quasi-structure observed from an inclined angle. The
fabrication time was 55 minutes. The quasi-structure was
2.60 mm in height, 0.26 mm in width, 20 mm in length, and
had a 0.23-mm grating pitch. The shape and size were nearly
the same as Morpho-butterfly scales. Optical microscope
images of the quasi-structure were obtained with an incident
light angle of 5 to 45!. We observed brilliant blue reflection
from the quasi-structure for a wide range of incident light
angles as shown in Fig. 3(b). These results demonstrate that
we successfully fabricated a Morpho-butterfly-scale quasi-
structure by FIB-CVD.

Before measuring the reflection spectra from Morpho-
butterfly scales and the quasi-structure, we calculated the
reflection intensity of the Morpho-butterfly scale structure.

Figure 4(a) shows a schematic of Morpho-butterfly-scales,
where a is the layer width, d is the pitch of the layers, M is
the number of layers, I! is the incident light intensity from
the ! direction, and I" is the reflection light intensity toward
the " direction. Simulation of the reflection intensity from
the Morpho-butterfly scale structure has been reported.7)

However, we simulated the intensity of reflection from a
single Morpho-butterfly scale using the newly developed
eq. (1), in which a form factor of an alternative layer
structure is added to the previously reported equation.7)

I" ¼ I! # 2a2 #
sin2

kd#M

2

! "

sin2
kd#

2

! " #
sin2

ka$

2

! "

ka$

2

! "2

# cos2
k

2
ða$þ d#Þ

# $
# sin2 !

ð1Þ

The factors $ and # are expressed as $ ¼ cos ! þ cos"
and # ¼ sin ! þ sin". Also, K ¼ %=2& is the wavenumber of
incident light with a wavelength of % .

Figure 4(b) shows reflection intensity curves calculated
using eq. (1) for a single Morpho-butterfly scale. The
wavelength of the peak intensity was about 440 nm, which
is the same as that observed for a real Morpho-butterfly.

We measured the reflection intensities of Morpho-butter-
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using 3-D CAD data. This result demonstrates that FIB-CVD
can be used to freely fabricate the quasi-structure.
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FIB-CVD（集束イオンビームによる化学的気相成長法）を用い
てモルフォ蝶の構造色を再現する３次元立体ナノ構造を作成 fly scales and the quasi-structure with an optical measure-

ment system, and compared their characteristics. Figures
5(a) and 5(b) respectively show the reflection intensity from
Morpho-butterfly-scales and the quasi-structure. Both had a
wavelength whose peak intensity was near 440 nm and
showed very similar reflection intensity spectra for the
various incidence angles.

We have fabricated a Morpho-butterfly-scale quasi-struc-
ture by FIB-CVD. The fabricated quasi-structure has nearly
the same shape and size as Morpho-butterfly scales. Both
have a wavelength with peak intensity near 440 nm and
intensity curves of very similar shape for various incidence
angles of light. We have thus successfully demonstrated that
a Morpho-butterfly-scale quasi-structure fabricated by FIB-
CVD can show nearly the same optical characteristics as real
Morpho-butterfly scales.

This work was supported by a CREST JST Grant-in-Aid
for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

1) P. Vukusic and J. Roy. Sambles: Nature 424 (2003) 852.
2) S. Matsui, T. Kaito, J. Fujita, M. Komuro and K. Kanda, et al.: J. Vac.

Sci. & Technol. B18 (2000) 3181.
3) R. Kometani, T. Morita, K. Watanabe, T. Kaito and S. Matsui, et al.:

J. Vac. Sci. & Technol. B22 (2004) 257.
4) K. Watanabe, T. Morita, R. Kometani, T. Kaito and S. Matsui, et al.:

J. Vac. Sci. & Technol. B22 (2004) 22.
5) J. Fujita, M. Ishida, Y. Ochiai, T. Kaito and S. Matsui, et al.: J. Vac. Sci.

& Technol. B19 (2001) 2834.
6) T. Hoshino, K. Watanabe, R. Kometani, T. Morita and S. Matsui, et al.:

J. Vac. Sci. & Technol. B21 (2003) 2732.
7) S. Kinoshita, S. Yoshioka, Y. Fujii and N. Okamoto: Forma 17 (2002)

103.

In
te

ns
it

y(
a.

u.
)

wavelength(nm)
(a)

wavelength(nm)

In
te

ns
it

y(
a.

u.
)

(b)

= 30°°
Incident angle

= 20°

=  5°

= 30°
Incident angle

= 20°
=  5°

Fig. 5. Intensity curves of reflection spectra. (a) Morpho-butterfly scales.
(b) Morpho-butterfly-scale quasi-structure.

L 50 Jpn. J. Appl. Phys., Vol. 44, No. 1 (2005) K. WATANABE et al.

fly scales and the quasi-structure with an optical measure-
ment system, and compared their characteristics. Figures
5(a) and 5(b) respectively show the reflection intensity from
Morpho-butterfly-scales and the quasi-structure. Both had a
wavelength whose peak intensity was near 440 nm and
showed very similar reflection intensity spectra for the
various incidence angles.

We have fabricated a Morpho-butterfly-scale quasi-struc-
ture by FIB-CVD. The fabricated quasi-structure has nearly
the same shape and size as Morpho-butterfly scales. Both
have a wavelength with peak intensity near 440 nm and
intensity curves of very similar shape for various incidence
angles of light. We have thus successfully demonstrated that
a Morpho-butterfly-scale quasi-structure fabricated by FIB-
CVD can show nearly the same optical characteristics as real
Morpho-butterfly scales.

This work was supported by a CREST JST Grant-in-Aid
for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

1) P. Vukusic and J. Roy. Sambles: Nature 424 (2003) 852.
2) S. Matsui, T. Kaito, J. Fujita, M. Komuro and K. Kanda, et al.: J. Vac.

Sci. & Technol. B18 (2000) 3181.
3) R. Kometani, T. Morita, K. Watanabe, T. Kaito and S. Matsui, et al.:

J. Vac. Sci. & Technol. B22 (2004) 257.
4) K. Watanabe, T. Morita, R. Kometani, T. Kaito and S. Matsui, et al.:

J. Vac. Sci. & Technol. B22 (2004) 22.
5) J. Fujita, M. Ishida, Y. Ochiai, T. Kaito and S. Matsui, et al.: J. Vac. Sci.

& Technol. B19 (2001) 2834.
6) T. Hoshino, K. Watanabe, R. Kometani, T. Morita and S. Matsui, et al.:

J. Vac. Sci. & Technol. B21 (2003) 2732.
7) S. Kinoshita, S. Yoshioka, Y. Fujii and N. Okamoto: Forma 17 (2002)

103.

In
te

ns
it

y(
a.

u.
)

wavelength(nm)
(a)

wavelength(nm)

In
te

ns
it

y(
a.

u.
)

(b)

= 30°°
Incident angle

= 20°

=  5°

= 30°
Incident angle

= 20°
=  5°

Fig. 5. Intensity curves of reflection spectra. (a) Morpho-butterfly scales.
(b) Morpho-butterfly-scale quasi-structure.

L 50 Jpn. J. Appl. Phys., Vol. 44, No. 1 (2005) K. WATANABE et al.

モルフォ蝶

擬似構造

DLCフィルムによる多層膜構造
(Diamond-Like Carbon)

フィルムの厚さ
~200nm
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工学的応用
モルフォテックス
•  帝人ファイバーが、日産と田中貴金属との共同研究の末、開発
した構造発色繊維（つまり、色落ちしない）

•  屈折率の異なるポリマーを交互に積層させて構造発色を実現
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多方面から色の品質管理を検討

　このモルフォテックス の最大の特色であ
る「色」はある意味、最大の課題でもあった。
スケールアップし、生産ラインに載せた場合
も、安定した色の再現性を実現するためには
ナノレベルでのコントロールが必要になる。
世界初の構造発色繊維であるモルフォテック
ス のような繊維の生産は、当然のことなが
ら業界でも初の試みであった。
　まずはじめの課題は、口金の設計。普通の
ポリエステルの場合、多少断面が変化しても
色合いに大きな影響はないが、モルフォテッ
クス は糸の形そのものが色に直結している
ため数ナノメートルの違いが致命的になる。
通常、糸が出てくる口金の穴はミクロンサイ
ズでしか開けられないため、糸をナノメート
ルにするためには穴から出てきた繊維をどこ
かで絞る必要が生じる。最終的にポリマーの
粘度の違いを精密に計算し、口金に特殊な技
術を盛り込むことで色の問題をクリアした。
　次の課題は、糸の収縮率による断面の変化
を抑えることだった。繊維は熱をかけると縮
むという特性をもっている。巻きとりの際、
繊維が平行になっている状態で引っ張るとす
ぐに切れてしまうため、繊維に交路をかけて
繊維どうしの結合力を高めていくという工程
を踏まなければならない。普通の糸で 10％
程度の収縮率がある。当然、モルフォテック
ス に熱をかけたら断面が変化し、それはそ
のまま色の変化へ結びつく。したがって色や
形に影響が出ないよう、収縮しない糸を選択
するための検討がされた。そして、より高い
温度で熱セットして結晶化させることで、そ
れ以上分子運動をさせないという方法を試み
ることになる。加熱ローラーを使い、温度を
普通よりも高く設定することによって、ロー
ラー上を走っている糸を急激に縮ませるのだ。
ところが、これによって変形・変色を抑える
ことには成功したが、断糸やローラーへの巻

きつきが起こってしまい断念。これを克服す
るため、モルフォテックス に合わせたロー
ラーの表面形態など設備的なエンジニアリン
グを徹底的に行い、最終的には繊維を切らず
に巻くことに成功した。
　

生産効率をアップし、量産実現へ

　最終的にコストに見合った生産効率も実現
させなければならない。製造プロセスも検討
された。開発当初は1回糸を巻きとり、延伸
機でもう一度糸を3倍ほどに引っ張って巻き
とる別延伸方式をとってみたが、糸を延ばし
た後で色の違いに気づくことも多かった。量
産体制に入る場合、この方法では問題があ
りすぎるため、色の調整がしやすい直接延伸
方式に切り替える検討がされた。直接延伸方
式では、口金から出てきた糸をすぐに3倍に
引っぱって巻きとり、すぐに測色計で測るこ
とが可能であるから、多少色がずれていても
調整をかけやすい。実際、直接延伸方式に
することで時速 50㎞だった速度も時速 200 
㎞になり、生産の効率も上がった。03年７
月、量産体制がスタート。
　モルフォテックス の用途は、大手自動車
メーカーのシートやアパレル業界などの婦
人服などに拡がっている。また繊維を細か
くカットしてパウダー状でも販売するなど、
新たなマーケットへも進出している。塗料
や化粧品、伝統工芸品などからの引きあい
も多く、用途の拡大が見込まれているという。
　2種類のポリマーを組み合わせて 1本の糸
を作る「コンジュゲート技術」が欧米で誕生
し、直径 20ミクロンの繊維から 2ミクロン
の繊維へと飛躍的な進歩を遂げた。そして
03年、帝人が研究開発したモルフォテックス
は、ナノメートルの世界へと繊維の可能性を
広げ、業界にとっての新しいブレイクスルー
になり、2001年の繊維学会賞を受賞した。

プロセス 課題 要素技術

素材開発
ポリマーの選択

高分子技術
積層構造の実現

スケールアップ生産 断面制御
口金設計
製造プロセスの運転条件管理
製糸技術

量産 製造プロセスの改善

図1 モルフォテックス®の発色原理 
図1 モルフォテックス®の発色原理 

モルフォテックス単糸断面

モルフォテックスの発色原理図1

新素材開発・生産の課題と要素技術図2
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衣料繊維

モルフォ蝶の積層構造を再現
自然界に存在する色彩を表現することは繊
維開発の研究テーマの一つである。このよ
うに生物の持つすぐれた機能に学ぼうとす

るバイオミメティクス（生物模倣機
能工学）と呼ばれる新しい工学領域が
80年代に始まり、注目を集めている。
帝人が開発した構造発色繊維「モルフォ
テックス 」は、モルフォ蝶の羽からヒント

を得た繊維である。
　アマゾン河流域を生息地とするモルフォ蝶
はメタリックブルーに輝く羽を持つ「世界で
もっとも美しい蝶」と呼ばれている。羽根の
鱗粉そのものには色素はない。モルフォ蝶の
羽根には「鱗片」と呼ばれる粉のようなもの
が付いており、その鱗片の複雑な構造が、あ
る波長の光だけを反射させて鮮やかな青色を
見せている。鱗粉の断面を電子顕微鏡で拡大
すると、タンパク質と空気が幾層にも重なっ
た積層構造になっているのを確認できる。こ
れは生物に見られる構造発色という現象で
あり、「この構造発色を繊維で再現できれば、
画期的な素材になる」と考え、95年、日産自
動車株式会社と田中貴金属工業株式会社との
共同研究がスタートした。
　帝人に与えられた課題は、モルフォ蝶と
同じ輝きを繊維の上で再現すること。最も
大きな課題はポリマーの選択と微細な積層
構造を実現するための装置設計であった。
いくつかの方法を検討した結果、タンパク
質と空気の代わりに、屈折率の異なるポリ
マーを交互に積層させることになった。高
い干渉発色を可能にするためには、2種の
ポリマーの屈折率差が大きいこと、また積
層構造を安定させるためポリマーの親和性、
適性粘度、繊維構造発現の類似性の条件を
満たすことが必要である。最終的にはポリ
エステルとナイロンを交互に 61層積み重ね
た構造をもつ新素材「モルフォテックス 」が
誕生。一層の厚みが 69ナノメートル。世界初
の構造発色繊維である。

新素材開発　

モルフォテックス を使用したテキスタイル

最先端のナノテクノロジー技術
が生んだ
構造発色繊維
「モルフォテックス 」

モルフォテックス のパウダーが使われた化粧品

モルフォテックス のパウダーが使われた楽器

モルフォテックス

１層69nm
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構造を実現するための装置設計であった。
いくつかの方法を検討した結果、タンパク
質と空気の代わりに、屈折率の異なるポリ
マーを交互に積層させることになった。高
い干渉発色を可能にするためには、2種の
ポリマーの屈折率差が大きいこと、また積
層構造を安定させるためポリマーの親和性、
適性粘度、繊維構造発現の類似性の条件を
満たすことが必要である。最終的にはポリ
エステルとナイロンを交互に 61層積み重ね
た構造をもつ新素材「モルフォテックス 」が
誕生。一層の厚みが 69ナノメートル。世界初
の構造発色繊維である。

新素材開発　

モルフォテックス を使用したテキスタイル

最先端のナノテクノロジー技術
が生んだ
構造発色繊維
「モルフォテックス 」

モルフォテックス のパウダーが使われた化粧品

モルフォテックス のパウダーが使われた楽器

モルフォテックス

化粧品
楽器

テキスタイル

衣類以外に幅広い方面で利用
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moves away from !=90°. Note the absence of scattered light
at angles near grazing, !=0° ,180°. Observations show that
the scale appears brown at such angles; the color is due to
pigmentation not structural scattering.

Figure 8 is a different plot for showing the iridescence:
The scattered irradiance is plotted in relief as a function of "
and ! for the plane #=20°. The spectrum for the scattered
light clearly shifts to shorter wavelengths !from blue to vio-
let" as the angle of observation approaches grazing.

A measure of the total time-averaged power scattered at a
given wavelength can be obtained by numerically integrating
Eq. !17" for the irradiance over the upper hemisphere,

#Psr$ = %&
#=0

$/2
+ &

#=3$/2

2$ '&
!=0

$

Isr!r,!,#"r2 sin !d!d# .

!18"

Figure 9 is a plot of #Psr$ versus wavelength, normalized to a
maximum of one. As expected from the patterns for the scat-
tered radiation in Fig. 7, it is mainly light at wavelengths in
the blue-violet range that is scattered from the ridge, with the
peak near "=450 nm. It is interesting to compare these cal-
culated results with the measurements shown in Fig. 4. For
an actual scale the dimensions of the ridges are distributed
over a range of values. Thus, it is not difficult to imagine that
a set of curves like the one in Fig. 9, each for slightly differ-
ent dimensions, could be superimposed to produce results
like those shown in Fig. 4.

V. WHY IS THE COLOR BLUE?

The results in Sec. IV show that the simple model for the
ridge predicts scattered light with color and iridescence simi-
lar to that observed for some Morpho butterflies. However,
the expressions for the scattered light, namely, Eqs. !13",
!14", and !15a"–!15c", are sufficiently complicated that the
physical mechanisms responsible for these characteristics are
not evident. In particular, the reason the scattered light is
blue, not yellow or red, is not obvious. To gain some insight
into these matters, we will examine a simplified model.

We consider only the TE field in the plane !=$ /2, ignore
the reflected wave within the cuticle !R

cm
TE=0" and assume

that the materials are lossless !%rc=2.43". The irradiance of
the scattered field is then34

ITE
sr & k0

4 sinc2()kc cos!' − (" + k0 cos #*h/!2 cos '"+

) sinc2(k0l)sin ' + sin!' − #"*/!2 cos '"+

) , 1
N-

n=1

N

e−j)km cos!'−*"+k0 cos #*dn/cos ',2

. !19"

There are four factors in Eq. !19" that depend on the wave-
length: k0

4, the arguments of the two sinc functions, and the
sum. The factor k0

4= !2$ /""4 is what gives rise to Rayleigh

Fig. 9. The total time-averaged power scattered into the upper half space
versus wavelength.
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Fig. 10. Schematic drawings showing the elements involved in the scatter-
ing from the ridge !simplified model". !a" Scattering from a single, tilted
lamella. !b" Scattering from an array of N equally spaced points. !c" Detail
for the scattering from the nth point.
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生物学的理由
そもそも、青い色素を持つ生物はほとんどいない

青い色素胞を持つ魚
スポットマンダリン
（別名：サイケデリックフィッシュ）

（色素物質の化学特性はよくわ
かっていないらしい）

(cyanophores)

（青く見える魚のほとんどは構造発色）

青色自体、自然界にはそう多く存在しない 警戒色？
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