Flow fluctuation and deformation in dense granular matter

Hiroaki Katsuragi, Nagoya University

(collaborators: D. J. Durian, K. Endo)

Avalanches, plasticity, and nonlinear response in nonequilibrium solids, Kyoto, March 7-9, 2016

Granular avalanches

Heap (or chute) flow

Discharge flow

Granular flow and fluctuation

- In general, hot (high temperature) matters cannot be solidified.
- Although the granular matter is athermal system, it has "granular temperature."
- Does this granular temperature (fluctuation) play an essential role for maintaining the flow?
 - Heap flow (depth-dependent slow down)
 - * Discharge flow (clogging)

Granular heap flow

(with Doug Durian)

Motivation for heap flow analysis

- In granular heap flow avalanches, only the shallow part flows (shear banding formation).
- * To create the heap flow and associated shear banding, does fluctuation (granular temperature) play a crucial role?
- To estimate the contribution of fluctuation, we have to measure it and compare it with the effects by other mechanisms such as shearing by gravity.

Experiments

Velocity profile

Two exponential forms

Plug flow like

Grain number density

Constant grain number density

(Velocity profile shows a crossover around z=0.4 mm)

Similar numerical results

Granular temperature

consistent with Abate, Katsuragi, & Durian, Phys. Rev. E 2007

Shear or temperature?

Summary of chute flow experiment

- Depth-dependent slow down of granular heap flow velocity is measured and analyzed using PTV and DLS methods.
- * From the obtained data of velocity profile $v_x(z)$ and velocity fluctuation $\delta v(z)$, shearing degree and fluctuation degree (granular temperature) are estimated.
- * The shearing is much more important than fluctuation in the gravity-driven heap flow (shear banding).

Katsuragi, Abate & Durian, Soft Matter 2010

Discharge flow

(with Keita Endo)

Motivation for discharge flow analysis

- Clogging of discharge flow frequently occurs when the bottleneck size is very small.
- * In general, by placing an obstacle in front of the bottleneck, the clogging probability can be reduced.
- * Why? How?
- * Contribution of fluctuation (granular temperature)?

Experiment

Parameters: Exit width WObstacle-exit distance L

Measurements: Flow rate Drag force Flow field (high speed imaging)

Obstacle shapes:

circle

triangle

Circular obstacle

W = 25 mm L = 30 mm

17 times slow movie

Triangular obstacle

W = 25 mm L = 30 mm

17 times slow movie

Summary of discharge flow experiment

Please visit POSTER 7 (by K. Endo) for more details! granular temperature).

Thank you