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Amontons and Coulomb’s Law

*Eriction force 1s independent of apparent
contact area.

*EFriction force 1s proportional to the loading
force.

*Kinetic friction force 1s less than maximum
static friction force and independent of sliding
velocity.

Friction Force/ Loading Force
=Friction Coefficient : constant

Amontons’ Law



Why friction force 1s independent of apparent
contact area and proportional to the loading force ?

Loading force Apparent contact area

Drivi + surface roughness
Apparent contact * FVINg  Actual contact area

force ,
area Adhesion occurs at actual

~~~~~~~ contact points. — Friction
Friction Friction force = Actual contact area
force/ X
Actual contact point Adhesion force per unit area
v *~Adhesion Actual contact area is independent of
Actual contact area apparent contact area and

proportional to the loading force.

\/

Friction force is independent of apparent contact area
and proportional to the loading force.
pProp & Bowden & Tabor



Why friction force 1s independent of apparent

contact area and proportional to the loading force ?
Direct observation |

Apparent contact area

. + surface roughness
P "¢ Actual contact area

Adhesion occurs at actual
> contact points. — Friction

(qv)

0 1 .y

S qoors [ — Friction force = Actual contact area

0 Dietrich -/ X

*‘é et.al. : :

S o050 | A Adhesion force per unit area

E e L

g 7 quarts Actual contact area is independent of
0.0025 .

9 s 0 gl apparent contact area and

St -y proportional to the loading force.
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> Normalized loading force +

Friction force is independent of apparent contact area
and proportional to the loading force.
pProp & Bowden & Tabor



Max. Static Friction Force > Kinetic Friction Force

— Steady shiding motion becomes unstable.

—— Stick-slip motion appears.

Spring elongation

Heslot et al.



In this talk I discuss the following two problems.

1, Friction law at micro, meso and macro-scopic scales
Analytical, numerical and experimental methods.

We try to bridge the gaps between micro, meso and
macroscopic scales.

Friction law depends on the scale.

2, Frictional Behavior and the Stick-Slip Dynamics of

Sheared Granular Systems
Computer stmulation of 2D system and real experiment of 3D system.

Slip size distribution and friction law.

Frictional behaviors of each element and the assembly of
elements are different.



|1, Friction Law 1n Micro, Meso and
Macro-scopic Scales



Friction Law at Microscopic Scale
Simulation of shearing a Real experiment of Au

single nano-junction nano junction  yehida et al
shearing velocity : 1.54[m/s] Fr. @
fp[nN] : 6.0[nN] "z 5

bcc- bee asperities < 40
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Drops of friction force are accompanied by the slip
about one lattice constant at the sliding plane.



Actual contact area and relative angle of crystal
axes dependences of max. friction force between
hcp - hep pillars

temperature:300[K]
60 0 307 xS’ 7607 907
o | power I 1 The max. static friction
5. commensurgie Case 1 force 1s proportional to
% | g’ﬂ e (the actual contact area)!’?,
S o~ == power 1/2 1 for the incommensurate
H; "i—ncommensurate CasScC Case (general Case)'
a 06 T Similar behavior 1s observed
contact area for glass asperities.

Amontons’ law does not hold for a single nano-junction
in general.



Friction Law at Mesoscopic Scale

Multi-Junction Systems
Extension of Greenwood -Williamson Theory

P;(z1), P»(22) : height distributions
9 of two surfaces, respectively.
|

Z1 z = z1 + z9 — d : overlap distance
0

Asperities of z>0 1s 1n contact.

For contacting asperithis with z >0 Hertz contact

actual contact area of a single junction §A, = C;z2°

a =1
load of a single junction W, = Cyz”
B=3/2
contribution of a single junction to the OF. = Cs2"
max. static friction force of the whole v = aor a/2
system

comme. or incomme.



total actual contact area 4, = N / dzP(z)0A, = N / dzP(z)C 2"
0 0

total load Wy =N / dzP(z)oW, = N / dzP(z)Cy 2P
0 0
max. static friction force o0 ‘ 0o
Fr=N / dzP(z)0F, = N / dzP(z)C32"
of the whole system 0 0

N: number of asperities

We assume that Pi(z1) and P»(z2) are Gaussian distributions.
= - ] 5 -
1 27 o 1 (z+d)
P oz 0) — ' » P(z) = exp ,
1.2(21.2) \/ o2, 0 | T 202, 2T 2
. ao _ . (> =03 + 03
The main contribution to the above integrals

comes from the region around =z > 0.
So we can expand the function 1n the exponential function and get,

P(z) = Cexp|[—\Z]

1 d? d

C=\ o P | T Iz




Now we have,

A, = NCC, / dz eXD[—)\z]z” = j\"()(hl’(u + 1)//\(tr+1
0

W, = NCC» / dz exp[—Az]z” = NCCoI'(B + 1)/ A+
0

e NC@/ dz exp[—Az]z® = NCC3D(y + 1)/A7+!
0

1 d2
C =\ 2ap@ P [_272] N

| = 5
(d/¢)* = —21n [\/ 22 \PTL W, /INCLI (B + 1)] ¢
3 5. One Order Gamma function
d : :
630' .................................... 4 depends on s only logarithmically,
| About20% As a result the changes of d and )
......................................... with the change of W are small
2.5 enough.
2.0 i . :
N o N Persson 1997

Normalized Loading Force



When W: 1s changed, we can treat d and X as constants,
and the change of only C 1s important.

1 d?
€= \/zwﬁ P T

Then we get,

ﬂ Csl' (v +1) N\~ = const

W, Col'(B+1)

Amontons’ law holds for multi-junction systems
for any values of o, 8 and ~.



Further extension
Actual contact area of a single junction 0A, = a(z,n)

7. set of parameters which characterize the junction,
€.g, curvature, shape, plasticity and so on.

Load of a single junction W, = w(z,n)

Contribution of a single junction 0F, = f(z,m)
to the max. static friction force

Joint probability density of z and 7 P;(z,m)

Actual contact area A:, load W}, and the max. static friction
force F; are expressed as follows.

Ar = N/ dz/d"?PJ(ZU’?)(SAr = N/ dZ/dT]PJ(Z.?])(L(Z.?])
O 0

W, = N/ dZ/d’l]PJ(z,n)cWVr = N/ dz/anJ(z.f/})u'(z.n)
O 0

F, = N/ dz/(lnPJ(z.n)éFr = N/ (12:/anJ(z.n)f(z.n)
0 0

We can also take 1nto account the effects of non-contact force.



~ ) ’ 2-
We set Py(z,) = P(2)P(2n); P<z>=\/ L exp |- E1

and approximate,
P(z) = Cexp|—A\z|

e

SH
\V)

S

0=\ 5@ | 5m A= —

We assume z—dependences of a(z,m), w(z, 1), f(z, n)
and P(z n) are weaker than the exp. function.

We get, \
W, = N / / dnP |- smw(z m)} = NCHL(\)
(d/?) is a log. function of Wr. (d/0)* = —21n [\/27r€'2 W, /NHw()\)]

When W:1s changed, we can treat d and A\ as constants.

/ dz / dnP(z) x {P(zm)f(z )} = NCH O
We get,

_ = const.  Amontons’ law holds.



Taking into account the correlation among asperities
{z(r)} and {n(r)} ~— z(7) and n(r) in whole interface.

Total actual contact area a, load w, and the max. static
friction force f are functionals of {z(r)} and {n(r)} .

a=a({z(r)},{n(r)}),--- «— correlation etfect

Here we consider ensemble averages of @, w, and f
and the joint probability density, p;({z(r)}, {n(r)})

A, = {H/ r)/dn } r)bAn(r)HPi({z(r)} {n(r)})

={H [ aze) [ ancr } (=)} (D Py ({=(n) n(r)})
P = {1‘[ [ =) [ antr }f({:m}.{n(r)})ﬂ({s(r)}.{n(r)})

We obtain  F./W=const.

Amontons’ law holds for general multi-junction systems,
which has correlations among asperities.



Friction Law at Macroscopic Scale

Model of FEM Calculation
2D Sheared-Viscoelastic Block

< Fx=Py LW
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Amotons’ friction force
works at the bottom.

/ O;r;c — Mlocal(u) ‘ Ozz ‘

local
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displacement of the rod U
U=vuvt, vl

M. Otsuki & H. M.,
Sci. Rep. 3, 1586 (2013)
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Ws . local static friction coefficient
Lk : local kinetic friction coefficient




local slip region
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leading edge
Whole block slides.



Bulk Static Friction Coefticient 4w

L=10,H=05={F  L=05H=10 =O—
0.25

LN = const. C’Fl\?l/3

Um

T
0. 15 Ll -
0.02 0.04 FN
The bulk static friction coetfficient depends on the normal force and the

apparent contact area.
Amontons’ Law breaks and instead new friction law holds.

Be(%;Dand et'al . 2011
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Pressure and Shear Stress distribution

Normalized Pressure at the bottom
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Ratio of Shear Stress to Pressure at the bottom

7(z)/p(x)

local slip front

HS

M

Mk
MK /

R After slow slip

7(2)/p(x) = s

> U

1 After rapid slip | .
7(z)/p(x) = . finite relaxtion time



1

=
0.5

Uniform pressure

00 U ° 0.01
drivin;/y/oﬁ:e = | _3 pressure in S. same state with

Slow sl that just aft
0 (1) ’ A \{ * & ra?ngiusshdameg
T(z)/p(r) ~ 1 7(x)/p(x) >~

K foeneae \1'

velocity weakening friction force

0 Uy ‘1'

potentially unstable €= stronger for larger load

=1

Slow slip becomes unstable when freaches at certain critical length £..

The friction coefficient of the block becomes larger for larger /..

¢ 1s samller for larger load. —> The friction coefficient of the
block becomes smaller for larger load.



1D Eftective Model
vt — rigid substrate

, pressure at the bottom
Spring p(x) = 2Pox/L
| D viscoelastic sheet

fixed rigid

substrate D
local Amontons’ friciton

We obtain the adiabatic solution of this model.
From the adiabatic solution and the expression of the shear force,
fO dvo,. (), we obtain,
pm = px + (us — px)le/ L
Time evolution eq. of the fluctuation around the adiabatic solution, Ou.

ou = EO,..0u — (n/L)5u 4 aPext€3 travelln% length of the

local slip front
viscosity  velocity weakening frictional force

With adiabatic increases of U, ¢ increases adiabatically at first.
At /. the adiabatic motion becomes unstable.

— lo/L o< (7Pt L)Y —— gy = py + CFy

1/3

New friction law is derived analytically.



Bulk static friction coeff.

. M VS. pressure
pune vs. critical length s P

Model Viscoelastic

analytic results Material
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Amontons’ law breaks and instead the new friction law holds.
This results from the local precursor slip before the onset of bulk sliding.

For large or small enough pressure and/or system length,
where /./L << 1,or ¢./L <1, Amonton'slaw recovers.



Experimantal study of the load dependence of

the friction coetficient.

Y. Katano, K. Nakano, M. Otsuki& H. M., Sci. Rep. 4, 6324 (2014)
PMMA

Precursor Slip
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Load and apparent contact area dependence of max.
static fric. coef. UM

(KV =40 [N/s], h=0 [mm)])

08 I I I I . .
m-100mm | Max. static fric. coef. 4m
@ : L '=50 [mm] : : . :
0.7 |5 AL s | INCreases with increasing
apparent contact area.
= 0.6 _
=
iy

New friction law,

0.4 | | | | o —1/3
0 100 200 300 400 500 pm = px + CFy

WIN] is verified experimentally.




Summary of Friction Law at Micro, Meso and
Macro-scopic Scales

We successtully bridged the gap between microscopic and
macroscopic frictional phenomena.

At micro scale, friction force does not obey Amontons’ law.
At meso scale, friction force obeys Amontons’ law.

At macro scale, friction force can break Amontons’ law
and 1nstead new friction law holds.

Friction law depends on the scale of the system.



2, Frictional Behavior and the Stick-slip Dynamics of
Sheared Granular Systems

Largest stick-slip motion on the earth 1s earthquake.
Fault

Japan Sea The Japan Deep

~ 50km
Shallow Earthquakes

~ 100km

Earthquakes

Granular Particles

The size of the gauge shows
the power law distribution.
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Size distribution of earthquakes

obeys the power law;
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b-value decreases before the occurrence of large earthquake.
2011.03.11 Tohoku-oki M9 Earthquake

map of b-value time dependence of H-value

JMA cat., M23.0

JMA cat,, M22.5
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What determines the b-value?



Numerical Study of the Frictional Behavior of

2D sheared granular particles
System ;Load, W periodic boundary condition

R R 2D granular particles
; S .)‘,/;)v.‘ g p

P N~ i -*,:* P F .
7o .~ s Constant velocity, v

Spring Wlﬁh constant £ .
Discrete Element Method (DEM) 1s employed.

Tangential direction

&) frictional Coulomb friction works, but
K 1der the static and kinetic friction

1 i coefticients are the same.

We examined 3 types of particle size distribution,
monodispesre, uniform and power law distributions.

Frictional behaviors do not depend on the type of distribution.
Here we concentrate on the power law distribution system.



Spring constant k£ dependence

Time variation of friction force Probability den51ty of slip size, P(S)

100
1 1 .Fave_o 931 [ | k_O SOB 167:|:O 43
fric I o Fave:O-939 [ k:()25 B’=1.50+0.37
10!/ y Faye=0.941 10\ k=0.10 B’=1.45+0.38
4 A Al / | v Fave=0.948 k=0.05 B’=1.37+0.34
1 | | V’h/ f 11 .
L ,*1(‘ " rl '; ‘ { / )
0.9 W,w Ve Al W G, P(S)ocS™
| " { 0.1t
0.8} .
time
R 0.01 | D I
140000 160000 180000 200000 ecreasing \ \
Cl ol . 0.001 .
ear stick-slip motion appears. 0.01
P PP shp 51ze S

Probability density of slip size, P(S), depends on the spring constant &.

W=4.5v=2.5x10* d1=0.2~2.0

10

P(S) approaches to S-# with decreasing k, where B’ =1.5.

=2/3b

B’=1.5 coincides with the mean field theory by Dahmen et al.




Load W dependence

Probability density of slip size, P(S) — ! B'max™~B'min
Firric

100

10

0.1}

0.01

0.001

Increasing W x\.
)

m W=0.5 B'=1.47+0.26

W=1.5 B'=1.40+0.19
e W=3.5 B'=1.33+£0.41
v W=5.5 B'=1.28+0.29

¢ W=1.5 B=1.41+0.28
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1.0 10
slip size, §

1.6

1.4
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0.6

0.4

0

k=0.05 d1=0.2~2.0 v=2.5x10"

m time ave. fric. force
- m time ave. max. fric. force

Probability density of slip size, P(S), depends on the load .

P(S) approaches to S-% with increasing W, where B’ =1.5.

Time averaged friction force does not obey Amontons’ law, but
depends on W linearly.
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1 0:5



Driving velocity v dependence. #0.05 di=0.2~2.0 w=4.5

Probability density of slip size, P(S)

Ff : —. B,maXNB’min B
100 | mv=5.0x10"> B'=1.53+0.26 | 44 e I
., — -4 __ .
oS0 * v=1.0x10 B, LA45+0.27 time ave. max. fric. forceg
101 5% A v=5.0x10* B’=1.29+0.25 118
v v=1.0x103 B’=1.19+0.13 | 1.2 |46
! By ¢ v=1.0x102 B’=0.96+0.07 | <;\( - |
% | ;\s\ 114
11 | time ave.
0.1 §-0.98 | ¢ fric. force { 1.2
1.0f 11.0
0.01 B
{08
‘ , 0.9 . . - .
0-00(1) 01 0‘1 10 10‘ 1.0x105 1.0x103 v 1.0%x10"

slip size, S
B’ increases with decreasing v Ave. friction force increases with v.

and approaches to 1.5. But the system shows stick slip motion.



Experimental Study of the Frictional Behavior
of 3D Sheared Granular Particles

————

Experimental Apparatus

orsionale. T 4
Granular particles Spring

Alumina ball of 5Smm
in diameter



Load W dependence

Ave. Max.Fric.Force

Probability density of slip size, P(S)
100 F
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Amontons’ law does not holds, but the
friction force depends linearly on W.

S 1s the change of angle by
the slip (degree).
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Driving velocity v (rpm) dependence
Probability density of slip size, P(S)
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B’ increases with decreasing v

Consistent with the 2D simulation—»
and approaches to 1.5.



Summary of Frictional Behavior and the Stick-slip
Dynamics of Sheared Granular Systems

Amontons’ law does not holds but the friction force
depends on the load linearly.

Friction force increases with increasing driving velocity,
but the system shows stick-slip motion 1n 2D simulation.

The slip size distribution obeys the power law 1n the whole
range of slip 1n the limit of weak driving spring and large

load 1 2D simulation. <— The system does not show
self-organized criticality.

The power B’ increases with decreasing v and
approaches to 1.5, which 1s the value obtained by the
mean field theory.
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