Elastic Moduli and Vibrational Modes in Jammed Sphere Packings

Hideyuki Mizuno, Kyoto University
Kuniyasu Saitoh, Tohoku University
Leonardo E. Silbert, SIU Carbondale

Particles

Forces

Normal modes

Avalanches, plasticity, and nonlinear response in nonequilibrium solids

March 7th – 9th, 2016
Elastic response of amorphous solid

- Apply affine deformation on system
- In (one component) perfect crystal, particles follow the affine strain field
- In amorphous solid, force unbalance causes an additional relaxation

Affine deformation

Perfect lattice structure
⇒ Particles follow the affine strain field with no additional relaxation

Amorphous structure
⇒ Affine deformation causes force unbalance, driving an additional non-affine relaxation
Elastic response of amorphous solid

1. Deform the system affinely ⇒ rescale all coordinates $X \rightarrow X(1 + \gamma)$
2. **Force unbalances** are induced between particles
3. Undergo an additional non-affine relaxation $X(1 + \gamma) \rightarrow X'$

Elastic modulus = **Affine** + **Non-affine**

$$G = G_A - G_N$$

⇒ Non-affine relaxation decreases modulus (non-affine contribution)
Elastic response of amorphous solid

1. Deform the system affinely ⇒ rescale all coordinates $X \to X(1 + \gamma)$
2. **Force unbalances** are induced between particles
3. Undergo an additional **non-affine relaxation** $X(1 + \gamma) \to X'$

- **Forces** acting on particles induced by affine deformation
- **Particle displacements** driven by forces, during non-affine relaxation

During non-affine relaxation, **vibrational normal modes** are excited!
Vibrational normal modes – Density of states

- Harmonic potential
- Frictionless particles
- Crossover at ω^* from Debye-like regime to plateau regime
- On approach to jamming transition point φ_c, plateau regime extends towards zero frequency: $\omega^* \sim \Delta \varphi^{1/2} \to 0$

\[\phi(r_{ij}) = \begin{cases} \frac{\varepsilon}{2} \left(1 - \frac{r_{ij}}{\sigma} \right)^2 & (r_{ij} < \sigma) \\ 0 & (r_{ij} \geq \sigma) \end{cases} \]

Crossover frequency

\[\Delta \varphi = \varphi - \varphi_c \]

L.E. Silbert et al., PRL (2005)
Vibrational normal modes – Polarization vector e^k

- **A, Debye-like regime**: Some plane-wave-like character
- **B, Plateau regime**: Filamentary nature of extended mode
- **C, High frequency regime**: Truely, highly localized mode

L.E. Silbert et al., PRE (2009)
A question in the present work

➢ Which vibrational normal modes play a role in energy relaxation process, during non-affine deformation?
Present particulate system

- 3 dimensional system
- Harmonic interaction
- Frictionless particles

\[\phi(r_{ij}) = \begin{cases} \frac{\varepsilon}{2} \left(1 - \frac{r_{ij}}{\sigma}\right)^2 & (r_{ij} < \sigma) \\ 0 & (r_{ij} \geq \sigma) \end{cases} \]

- Close to jamming: Packing fraction \(\Delta \varphi = \varphi - \varphi_c = 10^{-1} \) to \(10^{-6} \)

A, Debye-like regime:
\[\omega < \omega^* \]

B, Plateau regime:
\[\omega^* < \omega < \omega^h \]

C, High frequency regime:
\[\omega > \omega^h \]

with characteristic frequencies
\[\omega^* \sim \Delta \varphi^{1/2}, \quad \omega^h \sim 1 \]

L.E. Silbert et al., PRL(2005), PRE (2009)
Vibrational energy of normal mode

- Vibrational energy is separated into two components: (1) compressing/stretching energy and (2) sliding energy
- Sliding motion de-stabilizes the system: $-\delta E^k_\perp < 0$

$$\delta E^k = \frac{\omega^k}{2} = \delta E^k_\parallel - \delta E^k_\perp = \sum_{(i,j)} \left[\frac{\phi''(r_{ij})}{2} e^k_{ij} \right]^2 + \frac{\phi'(r_{ij})}{2 r_{ij}} e^k_{ij} \bigg| e^k_{ij} \bigg|^2 \sim \Delta \varphi \times e^k_{ij} \bigg| e^k_{ij} \bigg|^2$$

(1) Compressing/Stretching

Compressing
$$e^k_\parallel \cdot n_{ij} < 0$$

Stretching
$$e^k_\parallel \cdot n_{ij} > 0$$

(2) Sliding

M. Wyart et al., PRE (2005)
Sliding motion and energy

- Sliding displacement and energy are independent of frequency

\[e_{ij}^k \sim A^\perp \text{ (constant)} \]

\[\delta E^k \sim \Delta \varphi e_{ij}^k \sim \Delta \varphi A^\perp \]

Graphs showing the behavior of \(e_{ij}^k \) and \(\delta E^k \) with respect to frequency. The graphs illustrate the independence of energy and displacement from frequency.
Compressing/stretching motions and energy

- At high frequencies, $\omega > \omega^*$
 \[e^k_{ij} \sim \delta E^k_\parallel^{1/2} \sim \omega \]
 \[\delta E^k_\parallel \sim \omega^2 / 2 \gg \delta E^k_\perp \]

- At low frequencies, $\omega < \omega^*$
 \[e^k_{ij} \sim \Delta \varphi^{1/2} \omega^0 \]
 \[\delta E^k_\parallel \sim \delta E^k_\perp \sim \Delta \varphi \omega^0 \]
Characterization of frequency ω^*

At $\omega = \omega^*$, $\delta E^k \parallel \sim \frac{\omega^*}{2} \sim \delta E^k \perp \sim \Delta \phi$

ω^* is a point where the sliding energy starts to play a role!

$\delta E^k \parallel \approx \omega^2/2 \gg \delta E^k \perp \approx \omega^0$

$\sim \omega^{3/2}$
Normal-mode decomposition of non-affine modulus

Force field is induced by affine deformation

\[\Sigma = \frac{\partial F}{\partial \gamma} \]

Non-affine displacements are driven by the force field

\[\delta R_{na} = H^{-1} \cdot \Sigma \]

Energy relaxation (force times displacement) during the non-affine deformation

C.E. Maloney, PRL (2006)
Normal-mode decomposition of non-affine modulus

- Decompose non-affine modulus into each mode \(k \) contribution
- We can understand which modes play an important role in energy relaxation during non-affine deformation

Force field induced by affine deformation

\[
\Sigma = \sum_{k=1}^{3N-3} \Sigma^k e^k
\]

Non-affine displacement driven by force field

\[
\delta R_{na} = \sum_{k=1}^{3N-3} \delta R^k_{na} e^k = \sum_{k=1}^{3N-3} \frac{\sum^k}{\omega^k} e^k
\]

Non-affine modulus: Energy relaxation during non-affine deformation

\[
M_N = \frac{1}{V} \sum_{k=1}^{3N-3} M^k_N = \frac{1}{V} \sum_{k=1}^{3N-3} \Sigma^k \delta R^k_{na}
\]

Force field induced by affine deformation

Under (affine) shear deformation

- Force field is induced mainly along normal modes in the high frequency regime C: \(\omega > \omega^h \)
- Forces are related to compressing/stretching vibrational amplitude
- Crossover between A and B at \(\omega^* \) is caused by the sliding energy

\[\sum_k \left(\approx \phi''(r_{ij}) e_{ij}^k \right) \]

\[\sim \left\{ \begin{array}{ll}
\omega^0 & (\omega > \omega^h) \\
\omega & (\omega^* < \omega < \omega^h) \\
\omega^0 & (\omega < \omega^*)
\end{array} \right. \]
Non-affine displacement field (driven by force field) occurs mainly along normal modes in the Debye-like regime $A: \omega < \omega^*$

At $\omega < \omega^*$, the sliding energy drives the displacement field.

High frequency, energetic modes at $\omega > \omega^h$ are little excited.

\[
\delta R_{na}^k = \frac{\sum_k}{\omega^{k/2}}
\]

\[
\begin{cases}
\omega^{-2} & (\omega > \omega^h) \\
\omega^{-1} & (\omega^* < \omega < \omega^h) \\
\omega^{-2} & (\omega < \omega^*)
\end{cases}
\]
Force and displacement fields

Force field: Random distribution with short-range correlation

Displacement field: Vortex-like structure with long-range correlation

Affine vs *Non-affine* Stress-strain curve

A Plane-wave-like modes

B Filamentary extended modes

C Highly localized modes
Non-affine modulus – Energy relaxation

Non-affine modulus: Energy relaxation during non-affine deformation

\[M_N^k = \sum_k \delta R_{\text{na}}^k \sim \begin{cases}
\omega^{-2} & (\omega > \omega^h) \\
\omega^0 & (\omega^* < \omega < \omega^h) \\
\omega^{-2} & (\omega < \omega^*)
\end{cases} \]

A, Debye-like regime:
Energy relaxation is enhanced, due to the sliding motions

B, Plateau regime:
Mode contributions are independent of frequency

C, High frequency regime:
Few contributions
Our main conclusion

- Affine deformation induces the **force field** mainly along normal modes in the **high frequency regime C**.

- The force field drives the **non-affine displacement field** mainly along modes in the low frequency, **Debye-like regime A**.

- Energy relaxations (non-affine modulus) occur mainly in **Debye-like regime A and plateau regime B**, whereas those do not in regime C.

- In **Debye regime A**, the **sliding energy** destabilizes the system, inducing further energy relaxations.
Thank you for your attention

In collaboration with

Kuni Saitoh
Leo Silbert