Avalanche contribution to shear modulus of granular materials under oscillatory shear

Effect of friction between particles

Michio Otsuki (Shimane Univ.), Hisao Hayakawa (Kyoto Univ.)

Jamming transition

$\phi < \phi_{\mathsf{J}}$ Granular materials flow like fluids.

 $\phi > \phi_{\mathsf{J}}$ Granular materials have rigidity like solids.

Critical behaviors : frictionless grains

Jamming under steady shear

Frictionless grains

Hatano, Otsuki, Sasa, JPSJ (2007)

Frictional grains

Otsuki, Hayakawa, PRE (2011)

Shear modulus : frictionless grains

Shear modulus under finite strain

Shear modulus under finite strain

Purpose : shear modulus of frictional grains

Shear modulus of frictionless grains

Recent studies : including nonlinear elasticity

Otsuki and Hayakawa, PRE (2014) Coulais, Seguin, and Dauchot, PRL (2014), Goodrich, Liu, Sethna, arXiv : 1510.03469 Nakayama, Yoshino, Zhamponi, arXiv:1512.06544 Boschan, Vagberg, Somfai, Tighe, arXiv : 1601.00068

Shear modulus of frictional grains

Linear elasticity :

Somfai, van Hecke, Ellenbroek, Shundyak, van Saarloos, PRE (2007) Magnanimo, La Ragione, Jenkins, Wang, Makse, EPL 81, 34006 (2000)

There is no studies on non-linear elasticity.

We numerically study the effect of friction on G.

2D model of frictional grains

Normal force

Oscillatory shear

• Oscillatory shear strain :

$$\gamma(t) = \gamma_0 (1 - \cos \omega t)$$

· Frequency : ω

Quasi-static limit : $\omega \rightarrow 0$

• Strain amplitude : γ_0

• Shear stress : σ (t)

Shear modulus (storage modulus)

$$G(\gamma_0, \phi) = \frac{\omega}{\pi} \int_0^{2\pi/\omega} dt \frac{\sigma(t) \cos(\omega t)}{\gamma_0}$$

Effect of friction

Shear modulus : Strong dependence on μ Discontinuous change at ϕ J

μ -dependence of minimum shear modulus

γ_0 -dependence of shear modulus

γ_0 -dependence of shear modulus

γ_0 -dependence of σ - γ relation

μ -dependence of σ - γ relation

μ -dependence of σ - γ relation

Scaling of G

Discussion : Dependence on dimension

Continuous transition in 3D?

Summary

- Purpose : shear modulus of frictional granular materials.
- Infinitesimal friction changes the shear modulus in linear response regime.

•

•

The shear modulus for $\mu \rightarrow +0$ in nonlinear response regime is consistent with that of frictionless grains.

