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The e↵ective shear viscosity ⌘ of a colloidal suspension of rigid spherical

particles in a Newtonian fluid can vary by orders of magnitude depending

on how rapidly it is sheared, as characterized by the applied shear rate �̇.
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SD-DEM simulation

Friction!
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Where does the rate-dependence come from?
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If macroscopic rheology = local rheology, 
our simulation can reproduce rheology measurements.

~1mm

Rheometer is macroscopic



follows a relation _cc ¼ Aðumax # uÞ, with A ¼ 65:0 s#1 and umax¼ 0.604. It is shown in
the Appendix that this linearly varying shear rate implies that the shear stress diverges
near the maximum volume fraction following a ðumax # uÞ#1 law in the Newtonian
regime, and a ðumax # uÞ#2 law in the shear thickening regime, and the data then super-
pose onto a single master curve when the shear stress is plotted versus _c= _cc, as shown in
Fig. 4 (right). As shown in the Appendix, the shear stress is proportional to _c2 in the shear
thickening regime. It is notable that the shear thickening in these data is continuous,
whereas recent simulations of shear thickening in non-Brownian suspensions predict
discontinuous shear thickening in this concentration range [Mari et al. (2014); Seto et al.
(2013)].

This suspension is a perfect candidate for analysis with the fluidity model because the
particle migration causes a position-dependent viscosity. Thus, if the fits work, we could
link the fluidity length n to a physical mechanism, and so test the predictive power of the
model on a sample that is well understood. In Eq. (1), fbulk is the fluidity of the sample

FIG. 3. Local volume fraction obtained by MRI in a 1 cm gap Couette cell in an initially homogeneous neutrally
buoyant u¼ 0.59 volume fraction suspension for an increasing shear rate ramp, followed (inset) by a decreasing
shear rate ramp. The behavior is the same for the larger Couette cell (data not shown).

FIG. 4. Left: True shear stress versus shear rate in a dense non-Brownian suspension for different local volume
fractions, constructed from local measurements. Right: True shear stress versus rescaled shear rate in dense non
Brownian suspensions. All the data collapse onto a master curve.
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et al. (2001)]. They display two distinct phenomena: Particle migration across curved
streamlines and shear thickening. The shear thickening happens only for relatively high
shear rates. On the other hand, particle migration is always present when the stress is het-
erogeneous: An initially homogeneous suspension subjected to a shear rate gradient will
see the particles move from high to low shear rate regions, leading to inhomogeneity of
the suspensions. Since the viscosity depends strongly on the volume fraction, this migra-
tion directly leads to a spatially varying viscosity. For low shear rates, Huang and Bonn
(2007) and Ovarlez et al. (2006) showed that the local rheology can be mapped onto the
global flow curve simply by taking the variation of the volume fraction into account.
Here, we probe higher shear rates, for which shear thickening occurs, and compare the
local rheology to the predictions of the fluidity model.

We analyze experiments on a u¼ 0.59 volume fraction suspension of 40 lm polysty-
rene beads in a neutrally buoyant waterþNaI solution by Fall et al. (2010) in two differ-
ent Couette cells: A large (inner radius ri¼ 4.1 cm, gap size D¼ 1.9 cm) and a small one
(gap size D¼ 1 cm). We obtain the local volume fractions and speed in the same way as
for the mustard grains, except that in this case the MRI signal gives the volume fraction
of water, or one minus the volume fraction of beads. The velocity profiles for the 1.9 cm
gap are shown in Fig. 2.

Figure 3 displays the evolution of the local solid volume fraction in the Couette cell
upon shearing. These data are of higher quality than those for the seeds because the MRI
averages over a region that is five times the particle diameter. As the rotational velocity
is increased above 4 rpm, which constitutes the bulk of the data, particle migration is
observed on the experimental time scale; the particles migrate radially away from the
moving inner cylinder and toward the stationary outer cylinder. This migration state is
found to be irreversible when the rotational speed is subsequently decreased below 4 rpm
[Fall et al. (2010)], as shown in the inset of Fig. 3. Because of this migration, macro-
scopic rheology is not able to provide reliable results on the flow behavior of the suspen-
sions, since all rheometry analyses assume that the sample is homogeneous.

The flow curves extracted from the local viscosity data for a range of cylinder speeds
are shown in Fig. 4 (left). One clearly observes two regimes: Newtonian behavior at low
shear rates and a shear thickening regime for higher rates. These flow curves appear to be
parallel, with a transition between regimes at a shear stress of about 0.3 Pa. The
shear rate _cc at which the transition occurs, which is obtained from the intersection of
straight-line fits to the data on log-log coordinates, is linear in volume fraction and

FIG. 2. Local velocity profiles in an initially homogeneous u¼ 0.59 volume fraction suspension in a 1.9 cm
gap. The lines are the fits obtained from the fluidity model.
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However, does macroscopic rheology = local rheology?
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Macroscopic Discontinuous Shear Thickening

“DST is observed only when the flow separates into a 
low-density flowing and a high-density jammed region”

_γðr;ΩÞ. These values are compared in Fig. 3(a) with the
local rheology data obtained from macroscopic rheometry
using Eqs. (1) and (3) to evaluate the local stress and strain
rate near the inner cylinder. Clearly, in the shear-thinning
regime, the stationary local response within the gap
matches our macroscopic measurements.
This local homogeneous response is observed so long as

the maximal local strain rate, which is reached at the inner
cylinder, lies below the _γDSTðϕ0Þ value identified in macro-
scopic rheometry [Fig. 1(c)]. Homogeneity and locality
then enable us to estimate the critical rotation rate at which
DST is expected as ΩDSTðϕ0Þ≃ 8 rpm.
A sudden transition occurs as soon as Ω crosses

ΩDSTðϕ0Þ. As shown in Fig. 2(a), the flow then abruptly
stops in a large region. Namely, the velocity profile jumps
from one of the rightmost curves, corresponding to homo-
geneous flows, to the leftmost one, i.e., the most strongly
localized flow. Note that measuring a single velocity profile
requires accumulating MRI data over ∼30 s, which corre-
sponds here to a strain of order 50. Upon crossing

ΩDSTðϕ0Þ, the first measurable velocity profile is already
localized. The flow subsequently remains steady over
thousands units of strains. DST is thus clearly concomitant
with shear localization.
AsΩ increases further, the velocity profiles progressively

extend to the right (i.e., towards the outer cylinder). In all
cases, the system remains separated into a flowing layer near
the inner cylinder and a jammed region near the outer one.
The fractionof thegap that is jammed is reported onFig. 3(b):
it jumps at ΩDSTðϕ0Þ and then slowly decreases.
Comparing these velocity profiles [Fig. 2(a)] with local

density data [Fig. 2(b)], we find that, quite strikingly, the
flow localization at Ω ¼ 10 rpm≳ ΩDSTðϕ0Þ is associated
with the sudden emergence of density inhomogeneities.
Namely, the volume fraction decreases in the flowing layer,
while it increases in the jammed region, as required by the
conservation of particle number. As Ω increases beyond
ΩDSTðϕ0Þ, the progressive extension of the flowing layer is
accompanied by a broadening of the low-density region. At
high strain rates, the density saturates, in the flowing layer,
at a packing fraction ϕmin ≃ 33%≲ 35%≃ ϕRLP and, in
the jammed region, at ϕ ∼ ϕRCP. It is noteworthy that the
density profile can achieve multiple forms depending on
shear history [24].
Let us emphasize that the change of density created by

the DST transition is irreversible. Indeed, once a stationary
profile ϕðr;Ω1Þ had been produced by ramping Ω up to
some arbitrary Ω1 > ΩDST, we found that the density
profile remained the same under any subsequent lowering
of Ω. This irreversibility shows up in our macroscopic
rheometry setup (the small Couette cell) as illustrated in
Fig. 1(d) where we plot the torque T vs Ω during (i) an
initial up ramp that drives the system through the DST
transition followed by (ii) a down ramp. The torques
measured during the up and down ramps clearly lie on
different branches. However, if we subsequently (iii) rein-
crease Ω, torque TðΩÞ tracks the data previously obtained
on the down ramp. Hence, we reason that on the down (ii)

(a)

(b)

FIG. 2. Steady MRI data for a ϕ0 ¼ 43.9% cornstarch suspen-
sion and different rotational velocities Ω. (a) Velocity profiles.
(b) Density profiles; solid lines indicate ϕRLP and ϕRCP.

(a) (b)

FIG. 3 (color online). (a) Comparison of local rheometry data
obtained from MRI measurements (open symbols) and near the
inner cylinder in macroscopic rheometry (filled symbols) in
homogeneous conditions. Upper data: ϕ ¼ 43.9%; lower data:
ϕ ≈ 33.5%. (b) From the velocity profiles [Fig. 2(a)]: fraction of
the gap which is jammed vs Ω.
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heterogeneous due to particle migration, and that consequently the macroscopic stress–
strain rate relationship cannot be directly related to the local constitutive behavior and
thus in particular to the shear thickening.

Here, we compare local and global measurements for what is perhaps the best-known
example of a shear-thickening suspension: cornstarch particles suspended in water. We
show that the shear thickening can in fact be viewed as a re-entrant solid transition in this
system: (i) at rest the material is solid because it has a (small) yield stress; (ii) for low
shear rates, shear banding (localization) occurs, and the flowing shear band grows with
increasing shear rate, the shear thus liquefies the material; (iii) shear thickening happens
at the end of the localization regime, where all the material flows, subsequently it sud-
denly becomes ‘‘solid’’ again. In addition, and (iv) we find a pronounced dependence of
the critical shear rate for the onset of shear thickening on the gap of the measurement
geometry, which can be explained by the tendency of the sheared system to dilate. This is
confirmed by an independent measurement of the dilation of the suspension as a function
of the shear rate. It also explains the MRI observations: when flow is localized, the non-
flowing region plays the role of a “dilatancy reservoir” which allows the material to be
sheared without jamming.

This paper follows up on our earlier work on shear thickening of cornstarch [Fall et al.
(2008)] but is much more detailed in that here we present also the MRI measurements of
the concentration, more detailed measurements of the velocity profiles, plate–plate meas-
urements, oscillation measurements and more detailed measurements of the variation of
the gap of the plate–plate cell under an imposed normal stress. In order for these new
data to be comprehensible, we do have to repeat some of the earlier data and discussion.
In this way, we obtain a more complete picture of the shear-thickening behavior.

II. MATERIALS AND METHODS

The cornstarch particles (from Sigma Aldrich) are relatively monodisperse particles
with, however, irregular shapes (Fig. 1). Suspensions are prepared by mixing the corn-
starch with a 55 wt. % solution of CsCl in demineralized water. The CsCl allows one to
perfectly match the solvent and particle densities [Merkt et al. (2004)]. We study suspen-
sions of volume fraction ranging between 38% and 46%, and focus here mainly on the

FIG. 1. Micrograph of the cornstarch particles.

577SHEAR THICKENING OF CORNSTARCH SUSPENSIONS

Downloaded 09 May 2013 to 134.74.76.68. Redistribution subject to SOR license or copyright; see http://www.journalofrheology.org/masthead

cornstarch
suspension

� = 0.439

measured on the inner cylinder during a 3 min logarithmic
ramp of Ω (the inner cylinder rotation rate) from 5 × 10−2

to 2 × 103 rpm. Near the inner cylinder, the local stress is

τðRi;ΩÞ ¼ TðΩÞ=ð2πR2
i hÞ; ð1Þ

and the local strain rate is a priori unknown, but is
classically estimated as

_γðRi;ΩÞ≃ 2ΩR2
o=ðR2

o − R2
i Þ: ð2Þ

Combining Eq. (1) and (2) yields the apparent viscosity
η≡ τ=_γ vs _γ relation reported on Fig. 1(b). Note that at low
η macroscopic inertial effects may arise (Taylor-Couette
instabilities), which limit the accessible _γ range at low ϕ
values.
At low _γ, the response is clearly shear thinning. It crosses

over to CST around a characteristic strain rate _γCST defined
at that where η reaches a minimum. Viscosity jumps at
some higher strain rate _γDST, which characterizes the onset
of DST.
The classical estimate of _γðRiÞ as Eq. (2), which is based

on the Newtonian solution, remains unsatisfactory. An
exact expression exists so long as the material is homo-
geneous in the studied torque range

_γðRi;T0Þ ¼ 2
X∞

n¼0

!
T
dΩ
dT

"####
T¼T0½ðRi=RoÞ%2n

: ð3Þ

It cannot be used around the DST transition, however,
because the apparent singularity of dT=dΩ cannot be
resolved experimentally. Nevertheless, we have checked
that using the first two terms of Eq. (3) gives the same
qualitative behavior as in Fig. 1(b) up to DST. Wewill show
below that the flow does remain homogeneous below DST,
which allows us to use Eq. (3) to accurately compute the
_γCST and _γDST values that are reported on Fig. 1(c).
Interestingly, (i) at any volume fraction CST is always
observed before DST, and (ii) both _γCST and _γDST seem to
vanish around the same volume fraction ϕc which we
estimate to be ≈45% ≪ ϕRCP by linear extrapolation.
Now we turn to velocity-controlled MRI rheometry.

Our Couette cell has inner and outer radii Ri ¼ 3 cm and
Ro ¼ 5 cm (respectively) and inner cylinder height
h ¼ 11 cm. Both cylinders are roughened to avoid
slip, which we checked from velocity profiles. All experi-
ments discussed below are performed by preparing a
homogeneous material with mean volume fraction ϕ0 ¼
43.9% (experiments at 40%, 41%, and 42.5% show similar
features). Note that our MRI cell dimensions differ from
those of the cell used to obtain the macroscopic data of
Fig 1. Hence, to capture DSTwith this new cell, the range of
rotation velocities must be adapted: at ϕ0 ¼ 43.9%, we use
Ω values between 5 and 100 rpm. In each MRI experiment,
Ω is held fixed until steady state is reached.
Our MRI [13,23] provides the stationary packing frac-

tion ϕðr;ΩÞ and azimuthal velocity vðr;ΩÞ at any radial
position r. From the latter, we extract the local strain rate
_γðr;ΩÞ ¼ v=r − ∂v=∂r. We do not have access to torque
measurement. But, since the local stress is τðr;ΩÞ ¼
τðRi;ΩÞR2

i =r
2 in the Couette geometry, we can estimate

the local viscosity profile as

ηðr;ΩÞ ¼ τðRi;ΩÞ
_γðr;ΩÞ

R2
i

r2
ð4Þ

up to the unknown prefactor τðRi;ΩÞ.
In Fig 2, we plot the steady velocity and concentration

profiles thus measured for a few Ω values. Velocity is
normalized by its value at the inner cylinder.
For smallΩ values (5 and 7 rpm), we find that the density

profile is homogeneous while the flow extends throughout
the gap. It is known that non-Brownian suspensions may
slowly become inhomogeneous due to shear-induced
migration and sedimentation [13,14]. We checked that this
does not occur before strains larger than a few thousands,
which is much larger than the strain range over which we
collect data. Since density is uniform, we can access the
local rheology ηð_γ;ϕ0Þ as follows. For each Ω, matching
the single parameter τðRi;ΩÞ in Eq. (4) provides the
complete ηðr;ΩÞ profile, which can thus be plotted vs

FIG. 1 (color online). Macroscopic rheometry data. (a) Torque
T vs rotation rate Ω during a logarithmic ramp at various packing
fractions ϕ. (b) Apparent viscosity vs apparent shear rate
extracted from (a). (c) Critical shear rates _γCST and _γDST vs ϕ.
(d) Reversibility test at ϕ ¼ 43.9%: succession of up, down, and
up ramps.
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Frame invariant model
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- Density matched suspension: 
- Overdamped dynamics, i.e., no inertia (no centrifugal force)
- Hydrodynamics interaction is only lubrication:
- No background flow is imposed

⇢particle = ⇢liquid

FH ⇡ RLubU
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Macroscopic apparent rheology 
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Frictional particles vs. Frictionless particles
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Frictionless µ = 0 Frictional µ = 1
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Conclusion

We usually assume uniform simple shear flows
in our DST simulation.

Some experimentalists reported macroscopic DST.
Macroscopic rheology ≠ local rheology?

We extended our DST simulation 
for a wide-gap Couette geometry,

and we also obtained similar macroscopic behavior…

Migration + Shear banding + Jamming + Shear thickening

This work may provide some insights
for macroscopic description of DST suspension flows.


