A simulation study on shear thickening in wide-gap Couette geometry

Ryohei Seto, Romain Mari Jeffery Morris, Morton Denn, Eliot Fried

$$\rho \left\{ \frac{\partial \boldsymbol{u}}{\partial t} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} \right\} = -\nabla \rho + \eta_0 \nabla^2 \boldsymbol{u}, \quad \nabla \cdot \boldsymbol{u} = 0$$

$$\downarrow$$

$$\mathsf{Re} \equiv \frac{L_0 U_0}{\eta_0 / \rho} \qquad \mathsf{Re} \left\{ \frac{\partial \tilde{\boldsymbol{u}}}{\partial \tilde{t}} + (\tilde{\boldsymbol{u}} \cdot \tilde{\nabla}) \tilde{\boldsymbol{u}} \right\} = -\tilde{\nabla} \tilde{\rho} + \tilde{\nabla}^2 \tilde{\boldsymbol{u}}$$

$$\downarrow \qquad \mathsf{Re} \to 0$$

$$\mathbf{0} = -\tilde{\nabla} \tilde{\rho} + \tilde{\nabla}^2 \tilde{\boldsymbol{u}}$$

$$\downarrow \qquad \mathsf{Re} \to 0$$

$$\mathbf{0} = -\tilde{\nabla} \tilde{\rho} + \tilde{\nabla}^2 \tilde{\boldsymbol{u}}$$

$$\downarrow \qquad \mathsf{F}^{(1)} \qquad \qquad \mathsf{I}^{(1)}$$

$$\vdots$$

$$F^{(1)}_{(1)} = -R_{FU} \begin{pmatrix} \boldsymbol{U}^{(1)} \\ \vdots \\ \boldsymbol{U}^{(n)} \\ \Omega^{(1)} \\ \vdots \\ \Omega^{(n)} \end{pmatrix}$$

$$\downarrow \qquad \qquad \mathsf{F}^{(2)} \qquad \qquad \mathsf{I}^{(2)}$$

$$\downarrow \qquad \qquad \mathsf{I}^{(3)} \qquad \qquad \mathsf{I}^{(3)}$$

Stokes flow: Zero-Reynolds number fluid mechanics

Repulsive Attractive

The effective shear viscosity η of a colloidal suspension of rigid spherical particles in a Newtonian fluid can vary by orders of magnitude depending on how rapidly it is sheared, as characterized by the applied shear rate $\dot{\gamma}$.

Jamming transition

Coupled SD-DEM — Seto, Mari, Morris & Denn (2013) and Mari, Seto, Morris & Denn (2014, 2015)

SD-DEM simulation

- 2-d and 3-d simulations
- *N* = 500–3000
- Bidisperse $(a_2/a_1 = 1.4, \phi_2 = \phi_1 = 0.5\phi)$
- Lees–Edwards periodic boundary conditions
- Rate-controlled and stress-controlled simulations

Friction!

Particle simulations for local rheology

Stress controlled vs rate controlled

simulation vs experiment

Where does the rate-dependence come from?

 $F_{H} + F_{C} + F_{R} = 0 \longrightarrow \tilde{F}_{H} + \tilde{F}_{C} + \frac{\gamma_{0}}{\dot{\gamma}}\hat{F}_{R} = 0$ hydrodyn. repulsive contact

If macroscopic rheology = local rheology, our simulation can reproduce rheology measurements.

However, does macroscopic rheology = local rheology?

Macroscopic Discontinuous Shear Thickening Fall 2015 (PRL)

"DST is observed only when the flow separates into a low-density flowing and a high-density jammed region"

$$egin{aligned} R_{
m in} &= 3\,
m cm \ R_{
m out} &= 5\,
m cm \ R_{
m out} &- R_{
m in} &= 2\,
m cm \end{aligned}$$

cornstarch suspension

 $\phi = 0.439$

Magnetic Resonance Imaging

Our original simulation

Lees-Edwards periodic b.c. (mainly 3D) To reproduce bulk rheology

New simulation

Wide-gap rotary Couette cell (2D) To mimic a non-uniform macroscopic b.c.

Overdamped dynamics with constrained particles

- O Velocities of mobile particles to be solved: $\boldsymbol{U}^{m} = (\boldsymbol{U}^{(1)}, \dots, \boldsymbol{U}^{(n)})$
- Velocities of fixed particles: $\boldsymbol{U}^{f} = (\boldsymbol{U}^{(n+1)}, \dots, \boldsymbol{F}^{(n+m)})$

step1 $\boldsymbol{U}^{m} = (\boldsymbol{R}_{FU}^{mm})^{-1} \left(\boldsymbol{F}_{P}^{m} - \boldsymbol{R}_{FU}^{mf} \boldsymbol{U}^{f} \right)$ dynamicsstep2 $\boldsymbol{F}_{rct}^{f} = \boldsymbol{R}_{FU}^{fm} \boldsymbol{U}^{m} + \boldsymbol{R}_{FU}^{ff} \boldsymbol{U}^{f} - \boldsymbol{F}_{P}^{f}$ used in rheology

Frame invariant model

- Density matched suspension: $\rho_{\text{particle}} = \rho_{\text{liquid}}$
- Overdamped dynamics, i.e., no inertia (no centrifugal force)
- Hydrodynamics interaction is only lubrication: $F_{\rm H} pprox R_{
 m Lub} U$
- No background flow is imposed \mathbf{H}^{∞}

cf. previous model

 $m{F}_{H}pprox -(m{R}_{Stokes}+m{R}_{Lub})(m{U}-m{U}^{\infty})+m{R}_{Lub}':m{E}^{\infty}$

$$egin{aligned} & V_{ heta}(R_{ ext{in}}) = 0 \ & V_{ heta}(R_{ ext{out}}) = -R_{ ext{out}}\Omega \end{aligned}$$

Area fraction profile

Velocity profile

The present model can reproduce DST in simple shear both by Lees-Edwards and by walls

periodic boundary O sheared by wall particles

Macroscopic apparent rheology

shear thickening + shear banding

system size

Frictional particles vs. Frictionless particles

cf. simple shear simulation

Frictional jamming achieved by migration

Conclusion

We usually assume uniform simple shear flows in our DST simulation.

Some experimentalists reported macroscopic DST. Macroscopic rheology ≠ local rheology?

We extended our DST simulation for a wide-gap Couette geometry, and we also obtained similar macroscopic behavior...

Migration + Shear banding + Jamming + Shear thickening

This work may provide some insights for macroscopic description of DST suspension flows.