YUKAWA INSTITUTE FOR THEORETICAL PHYSICS

Kinetic theory for dilute cohesive granular gases with a square well potential

Satoshi Takada

Yukawa Institute for Theoretical Physics, Kyoto University

Why can we run on fluid? \Rightarrow Shear viscosity increases as the shear rate increases.

There are many papers studying shear thickening.

Shear thickening

- Dense suspension
 Discontinuous shear thickening
- For $0.3 < \phi < 0.4$, Continuous shear thickening

3

Mechanism

Many mechanisms have been proposed to explain shear thickening.

- hydroclusters
- dilatant

Molecular dynamics simulation under a plane shear

S. Takada, K. Saitoh, & H. Hayakawa,

Phys. Rev. E, 90, 062207 (2014)

Lennard-Jones potential + dissipation

uniform

5

Construction of hydrodynamics

Hydrodynamics for cohesive system based on dynamic van der Waals model

$$p = \frac{nT}{1 - v_0 n} - \varepsilon v_0 n^2$$

Qualitatively similar patterns as MD simulation.

6

Theoretical explanation of shear thickening is poor. Can we derive shear thickening theoretically?

> Nonequilibrium statistical mechanics approach to explain shear thickening

- Especially for dilute cohesive system
- Development of kinetic theory based on Boltzmann equation for cohesive granular gases
- Derivation of shear viscosity

Setup

- Monodisperse particles (mass: *m*, diameter *d*)
- Square-well potential

$$U(r) = \begin{cases} \infty & (r < d) \\ -\varepsilon & (d < r < d) \\ 0 & (r > d) \end{cases}$$

- Collision
 - inelastic (restitution coeff. e) at r = d
 - elastic (otherwise)
- Dilute limit : $nd^3 \ll 1$ (n: density)
- Weakly inelastic limit : $e \leq 1$

Assumption : We ignore the trapping process.

2016/03/09 Avalanches, plasticity, and nonlinear response in noneq. solids

Boltzmann equation

Santos et al. PRE (2004)

<u>Starting point</u>: Boltzmann equation under a plane shear $\left(\frac{\partial}{\partial t} - \dot{\gamma}V_y \frac{\partial}{\partial V_x}\right) f(\mathbf{V}, t) = I(f, f)$

Velocity distribution function = (lowest order of Grad expansion)

$$f(\mathbf{V}) = f_{\mathrm{M}}(\mathbf{V}) \left[1 + \frac{m}{2T} \left(\frac{P_{ij}}{nT} - \delta_{ij} \right) V_i V_j \right]$$

 $f_{\rm M}(V)$: Maxwell distribution I(f, f): collision integral

9

Scattering process

- Hard core system…inelastic
- Cohesive system…depending on *b* and *v*,
 (a) inelastic collision
 (b) grazing collision (no dissipation)
 Acceleration in the well (energy conservation)

Landau Lifshitz "Mechanics"

refractive index

Boltzmann equation considering two types of collisions

$$\begin{pmatrix} \frac{\partial}{\partial t} - \dot{\gamma} V_y \frac{\partial}{\partial V_x} \end{pmatrix} f(\mathbf{V}, t) = I_{\text{hard core}}(f, f)(f, f) + I_{\text{grazing}}(f, f)$$

Inelastic collisions Grazing collisions
Time evolution of stress tensor
 $\partial_t P_{ij} + \dot{\gamma} (\delta_{ix} P_{yj} + \delta_{jx} P_{iy}) = -\Lambda_{ij} \int_{\Lambda_{ij} \equiv -m} \int d\mathbf{v} V_i V_j I(f, f)$
We focus only on the steady state.
 $\dot{\gamma}_{\text{s}} = \sqrt{\frac{3}{2} \frac{\nu_1^2 \nu_2}{\nu_1 - \nu_2}}, \quad P_{xy,\text{s}} = -\frac{p}{\nu_1} \sqrt{\frac{3}{2} \nu_2 (\nu_1 - \nu_2)}$
 $\eta_{\text{s}} = -\frac{P_{xy,\text{s}}}{i} = \frac{(\nu_1 - \nu_2)p}{2}$

 $\dot{\gamma}_{
m s}$

 ν_1^2

2016/03/09 Avalanches, plasticity, and nonlinear response in noneq. solids

Shear viscosity vs. shear rate

2016/03/09 Avalanches, plasticity, and nonlinear response in noneq. solids

Linear stability analysis

To check the stability,

we perform a linear stability analysis around the steady state.

$$\partial_t P_{ij} + \dot{\gamma} (\delta_{ix} P_{yj} + \delta_{jx} P_{iy}) = -\Lambda_{ij}$$

We add a small perturbation

$$P_{ij} = P_{ij,s} + \hat{P}_{ij}, \quad T = T_s + \hat{T}$$

If $\hat{P}_{ij}, \hat{T} \to 0$ $(t \to \infty)$, this state is stable. Otherwise, unstable.

Linear stability analysis

Do we need further analysis to check the stability of this region? ⇒ Future work

μ -I rheology

15

Discussion

= The system cannot be keep uniform.

Event-driven simulation is needed. We have not implemented a code...

Summary

We have

- obtained the shear viscosity for the system under a plane shear.
- found that the shear viscosity becomes two-values function near the intermediate temperature.
- found that shear thickening region is stable from the linear stability analysis.

Future perspective

• Can we check the validity of our theory by performing an event-driven simulation?