Dynamical Approach to Synthesis of Superheavy Elements

Y. Aritomo

Department of Electric and Electronic Engineering, Faculty of Science and Engineering, Kindai University, Kowakae, Osaka, Japan

Long-term workshop on “Computational Advances in Nuclear and Hadron Physics” (CANHP2015)
YITP, Kyoto, Japan, 1st October 2015
<table>
<thead>
<tr>
<th>Structure</th>
<th>Light Nuclei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaction</td>
<td>Superheavy Nuclei</td>
</tr>
</tbody>
</table>
Key Words

1. Shell Correction Energy
 Two-Center Shell Model

2. Dynamical Approach
1. Introduction
 - Super Heavy Elements
 - Stability of Nuclei, Shell effects
 - Synthesis of SHE

2. Experimental methods

3. Theoretical calculation
 - Dynamical model (Fluctuation Dissipation model)
 - Langevin equation

4. Calculation results
 - fusion-fission process

5. Further study
Periodic Table

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen</td>
<td>H</td>
<td>1</td>
</tr>
<tr>
<td>Lithium</td>
<td>Li</td>
<td>3</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Be</td>
<td>4</td>
</tr>
<tr>
<td>Boron</td>
<td>B</td>
<td>5</td>
</tr>
<tr>
<td>Carbon</td>
<td>C</td>
<td>6</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N</td>
<td>7</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O</td>
<td>8</td>
</tr>
<tr>
<td>Fluorine</td>
<td>F</td>
<td>9</td>
</tr>
<tr>
<td>Neon</td>
<td>Ne</td>
<td>10</td>
</tr>
<tr>
<td>Sodium</td>
<td>Na</td>
<td>11</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Mg</td>
<td>12</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Al</td>
<td>13</td>
</tr>
<tr>
<td>Silicon</td>
<td>Si</td>
<td>14</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>P</td>
<td>15</td>
</tr>
<tr>
<td>Sulfur</td>
<td>S</td>
<td>16</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl</td>
<td>17</td>
</tr>
<tr>
<td>Arsenic</td>
<td>As</td>
<td>18</td>
</tr>
<tr>
<td>Selenium</td>
<td>Se</td>
<td>34</td>
</tr>
<tr>
<td>Selenium</td>
<td>Te</td>
<td>52</td>
</tr>
<tr>
<td>Iodine</td>
<td>I</td>
<td>53</td>
</tr>
<tr>
<td>Xenon</td>
<td>Xe</td>
<td>54</td>
</tr>
</tbody>
</table>

Hyper Heavy Elements

- **Flerovium (Fl)**: atomic number 113
- **Livermorium (Lv)**: atomic number 116

Super Heavy Elements

- **Super Heavy Elements**: less stable

Mendeleev (1834-1907)

- **1869**: periodic table proposed

May 2012 IUPAC

- **Fl**: Flerovium
- **Lv**: Livermorium

La, **Ac**

- **Lanthanides**
- **Actinides**

Taka, **Fuji**

- Photograph of two children, likely representing Mendeleev's children.
1. Introduction

Our Interest
- Next magic number $\leftrightarrow Z=82$, $N=126$
- Verification of ‘Island of Stability’ (predicted by macroscopic-microscopic model in 1960’s)
- Synthesis of new elements

Nuclear Chart
Stability of nuclei
Experimental setup for synthesis of SHE

<table>
<thead>
<tr>
<th>Lab</th>
<th>Country</th>
<th>City</th>
<th>Accelerator</th>
<th>Separator</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLNR</td>
<td>Russia</td>
<td>Dubna</td>
<td>U400</td>
<td>DGFRS VASSILISSA</td>
</tr>
<tr>
<td>GSI</td>
<td>Germany</td>
<td>Darmstadt</td>
<td>UNILAC</td>
<td>SHIP TASCA</td>
</tr>
<tr>
<td>RIKEN</td>
<td>Japan</td>
<td>Wako</td>
<td>RILAC</td>
<td>GALIS</td>
</tr>
<tr>
<td>LBNL</td>
<td>USA</td>
<td>Berkeley</td>
<td>88-inch Cyclotron</td>
<td>BGS</td>
</tr>
<tr>
<td>GANIL</td>
<td>France</td>
<td>Caen</td>
<td>SPIRAL2's LINAC</td>
<td>S3 (Super Separator Spectrometer)</td>
</tr>
</tbody>
</table>
Fusion process in Superheavy mass region

FUSION

TRANSFER, QUASI-FISSION

Nuclear Molecule

Compound Nucleus (CN)

FUSION-FISSION

Evaporation Residue (ER)

Fission Fragments

90~99%
Experimental data

Evaporation residue cross sections

Pb target
Actinide target

Graph showing evaporation residue cross sections for cold fusion reaction (1n) and hot fusion reaction (3n-5n) with respect to element number.
\[\sigma_{ER} = \frac{\pi \hbar^2}{2\mu_0 E_{cm}} \sum_{\ell=0}^{\infty} \left(2\ell + 1\right) T_\ell \left(E_{cm}, \ell\right) P_{CN} \left(E^*, \ell\right) W \left(E^*, \ell\right) \]
\[\sigma_{ER} = \frac{\pi \hbar^2}{2 \mu_0 E_{cm}} \sum_{\ell=0}^{\infty} (2\ell + 1) T_\ell (E_{cm}, \ell) P_{CN} (E^*, \ell) W (E^*, \ell) \]

Formation probability

Survival probability

Reaction time

- \(t < 10^{-22} \text{ s} \)
- \(10^{-22} < t < 10^{-18} \text{ s} \)
- \(\sim 10^{-18} < t \text{ s} \)

Touching probability

Quasi-fission 90~99 %

Fusion-fission
Synthesis of New Elements

Heavy ion reaction

Cold fusion reaction Hot fusion reaction

1994
- 110 Ds 62Ni + 208Pb \rightarrow 269110 + n (GSI)
- 111 Rg 64Ni + 209Bi \rightarrow 272111 + n (GSI)

1996
- 112 Cn 70Zn + 208Pb \rightarrow 277112 + n (GSI) \leftarrow named in Feb. 2010

1999
- 114 Fl 48Ca + 244Pu \rightarrow 292114 + 3n (FLNR) \leftarrow named in May. 2012

2000
- 116 Lv 48Ca + 248Cm \rightarrow 292116 + 4n (FLNR) \leftarrow named in May. 2012

2002
- 118 48Ca + 249Cf \rightarrow 294118 + 3n (FLNR)

2003
- 115 48Ca + 243Am \rightarrow 288115 + 3n \rightarrow 284113 + α (FLNR)

2004
- 113 70Zn + 208Bi \rightarrow 278113 + n (RIKEN)

2010
- 117 48Ca + 249Bk \rightarrow 294,293117 + 3-4n (FLNR)
2. Model

2-1. Estimation of cross sections
2-2. Dynamical Equation
Overview of Dynamical Process in reaction $^{36}S + ^{238}U$

Time-evolution of nuclear shape in fusion-fission process

1. Potential energy surface
2. Trajectory \rightarrow described by equations
Nuclear shape

two-center parametrization \((z, \delta, \alpha)\)

(Maruhn and Greiner, Z. Phys. 251(1972) 431)

\[q(z, \delta, \alpha) \]

\[z = \frac{z_0}{BR} \]

\[B = \frac{3 + \delta}{3 - 2\delta} \]

\(R \) : Radius of the spherical compound nucleus

\[\delta = \frac{3(a - b)}{2a + b} \] \((\delta_1 = \delta_2) \)

\[\alpha = \frac{A_1 - A_2}{A_{CN}} \]
Two Center Shell Model

\[\hat{H} = -\frac{\hbar^2}{2m_0} \nabla^2 + V(r) + V_{LS}(r,p,s) + V_L^2(r,p). \]

Neck parameter is the ratio of smoothed potential height to the original one where two harmonic oscillator potential cross each other:

\[\varepsilon = \frac{E}{E_0} \]

J. Maruhn and W. Greiner, Z. Phys, 1972
Potential Energy

\[V(q, \ell, T) = V_{DM}(q) + \frac{\hbar^2 \ell(\ell + 1)}{2I(q)} + V_{SH}(q, T) \]

\[V_{DM}(q) = E_S(q) + E_C(q) \]

\[V_{SH}(q, T) = E_{shell}^0(q) \Phi(T) \]

\(T \): nuclear temperature

\(E^* = aT^2 \quad a \) : level density parameter

Toke and Swiatecki

\(E_S \): Generalized surface energy (finite range effect)

\(E_C \): Coulomb repulsion for diffused surface

\(E_{shell}^0 \): Shell correction energy at \(T=0 \)

\(I \): Moment of inertia for rigid body

\(\Phi(T) \): Temperature dependent factor

\[\Phi(T) = \exp \left\{ - \frac{aT^2}{E_d} \right\} \]

\(E_d = 20 \text{ MeV} \)
Taking into account the fluctuation around the mean trajectory

Thermal fluctuation of nuclear shape
→ thermal fluctuation of collective motion
Multi-dimensional Langevin Equation

\[
\frac{dq_i}{dt} = (m^{-1})_{ij} p_j \\
\frac{dp_i}{dt} = -\frac{\partial V}{\partial q_i} - \frac{1}{2} \frac{\partial}{\partial q_i} (m^{-1})_{jk} p_j p_k - \gamma_{ij} (m^{-1})_{jk} p_k + g_{ij} R_j(t)
\]

\[
\langle R_i(t) \rangle = 0, \quad \langle R_i(t_1) R_j(t_2) \rangle = 2\delta_{ij}\delta(t_1 - t_2) : \text{white noise (Markovian process)}
\]

\[
\sum_k g_{ik} g_{jk} = T\gamma_{ij} \quad \text{Einstein relation}
\]

\[
E_{\text{int}} = E^* - \frac{1}{2} (m^{-1})_{ij} p_i p_j - V(q)
\]

\[
E_{\text{int}} : \text{intrinsic energy}, \quad E^* : \text{excitation energy}
\]

- \(q_i \): deformation coordinate (nuclear shape)
- \(p_i \): momentum
- \(m_{ij} \): Hydrodynamical mass (inertia mass)
- \(\gamma_{ij} \): Wall and Window (one-body) dissipation (friction)

Two-center parametrization \((z, \delta, \alpha)\)

(Maruhn and Greiner, Z. Phys. 251(1972) 431)
Fission process ^{240}U, $E^* < 20\text{ MeV}$

Trajectory on potential energy surface
236U E*=20 MeV

揺動項なし Newton Eq

揺動項あり Langevin Eq.

質量分布
Overview of Dynamical Process in reaction $^{36}\text{S} + ^{238}\text{U}$
Projectile dependence of fragment mass distributions

Experiments by K. Nishio et al. (JAEA)
Calculated spectra for fusion-fission and quasi-fission

Experiments by K. Nishio et al. (JAEA)
4. Mechanism of Dynamical process

MDFF at Low incident energy

\(^{30}\text{Si} + ^{238}\text{U} \) vs \(^{36}\text{S} + ^{238}\text{U} \)

\[E_{c.m.} = 129.0 \text{ MeV}, \quad \varepsilon^* = 35.5 \text{ MeV} \]

\[E_{c.m.} = 154.0 \text{ MeV}, \quad \varepsilon^* = 39.5 \text{ MeV} \]

Clarify the origin of the difference
(b) Trajectory Analysis on Potential Energy Surface \(z-A \) plane

\[^{30}\text{Si} + ^{238}\text{U} \quad E^* = 35.5 \text{ MeV} \]
\(L=0, \theta=0 \)

\[^{36}\text{S} + ^{238}\text{U} \quad E^* = 39.5 \text{ MeV} \]
\(L=0, \theta=0 \)
Time evolution of probability distribution

$^{30}\text{Si} + ^{238}\text{U} \rightarrow ^{268}\text{Sg} \ (E^* = 35.5 \text{ MeV})$

Try to clarify the origin of difference between the both cases →
Probability distribution on the z-A plane

(a) $E^*=35.5$ MeV, $L=0$, $\theta=0$

(b) $^{30}\text{Si}+^{238}\text{U}$

(a) $E^*=35.5$ MeV, $L=0$, $\theta=0$

(b) $^{36}\text{S}+^{238}\text{U}$
Probability distribution of total time on the z-δ plane

30Si + 238U, E^* = 35.5 MeV

36S + 238U, E^* = 39.5 MeV

The relation between the touching point and the ridge line is very important to decide the process -> fusion hindrance
(1) Origin of the reaction process
(2) Building times
(3) Deformation of fragments
Fission Process
Fission process 240U \hspace{1cm} E^* < 20 MeV

Trajectory on potential energy surface
$^{236}\text{U}^* \ (E^* = 20\text{MeV})$

Experiment

J. Katakura, JENDL FP Decay Data File 2011 and Fission Yields

calculation

Exp. Phys. Rev. 141(1966) 1146
Mass distribution of fission fragments

\[E^* = 20 \text{ MeV} \]

\[^{234}\text{U} \]

\[^{240}\text{Pu} \]
Comparison between Cal. and Exp.

Cal. $E_D = 20$ MeV

Cal. $E_D = 30$ MeV

234Th 235Pa 236U

E^*

40–50 MeV

30–40 MeV

20–30 MeV

Fragment Mass (u)

Cal. $\Phi(T) = \exp \left\{ - \frac{aT^2}{E_d} \right\}$

Compiled by K. Nishio and JAEA group
5. Summary

1. In order to analyze the fusion-fission process in superheavy mass region, we apply the Couple channels method + Langevin calculation.

2. **Incident energy dependence** of mass distribution of fission fragments (MDFF) is reproduced in reaction $^{36}\text{S}+^{238}\text{U}$ and $^{30}\text{Si}+^{238}\text{U}$.

3. The shape of the MDFF is analyzed using *probability distribution*

4. The relation between the touching point and the ridge line is very important to decide the process \rightarrow fusion hindrance

And....
Collaborators

K. Hagino
Department of Physics, Tohoku University

K. Nishio
Advanced Science Research Center, Japan Atomic Energy Agency

S. Chiba
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

V.I. Zagrebaev, A.V. Karpov
Flerov Laboratory of Nuclear Reactions

W. Greiner
Frankfurt Institute for Advanced Studies, J.W. Goethe University