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THE BASIC PROBLEM

The basic science question is to model detailed quantum structure of
many-body systems, such the electronic structure of an atom,
or structure of an atomic nucleus.

To answer this, we attempt to solve Schrédinger’s

equation:
)

2—%V2 +U(r)+ Y V(F - F) R Ry ..) = EW
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THE BASIC PROBLEM

The basic science question is to model detailed quantum structure of
many-body systems, such the electronic structure of an atom,
or structure of an atomic nucleus.

This differential equation is too difficult to solve directly

Y-V 4+ U®r) + Y W(F 7. F...) = EW

so we use the matrix formalism

H W)= E|W)



THE BASIC PROBLEM

The basic science question is to model detailed quantum structure of
many-body systems, such the electronic structure of an atom,
or structure of an atomic nucleus.

This differential equation is too difficult to solve directly

Y-V 4+ U@r) + Y W(F 7. F...) = EW

so we use the matrix formalism

I/—\I‘IIJ> — E‘\P> Now the dimensions

can be large, up to 2 x 101°!



THE GOAL OF THIS TALK...

...is to get “under the hood” of a shell-model
configuration-interaction code to stimulate
discussion of efficient algorithms....



THE GOAL OF THIS TALK...

In particular I will compare

“matrix storage” codes:

-- more straightforward

-- requires more memory

vs. “on-the-fly” or “factorization” algorithms
-- uses less memory

-- more complex algorithmically



ANATOMY OF SHELL MODEL CODES

Basis: trade off between
“correlated” bases which
contains more correlations (physics)
and thus need “fewer” basis states
but are more complicated to handle
and lead to slower algorithm
e.g. states with good ] (“J-scheme”)
or with known physics such as deformation

or

“uncorrelated” bases which

are easier to handle -> fast algorithms

but need more states to build up correlations
e.g. Slater determinants with good M (“M-scheme”)
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ANATOMY OF SHELL MODEL CODES

Hamiltonian:
trade off between
“« = ”» .
matrix storage codes: The more correlated the basis,
-- more straightforward the more this 1s indicated
-- requires more memory (especially since basis dimension
1s smaller)
vs. “on-the-fly” or “factorization” algorithms

-- uses less memory Works more effectively with
-- more complex algorithmically less correlated bases



SOME SHELL-MODEL CODES

Matrix storage:

Oak Ridge-Rochester (small matrices)

Glasgow-Los Alamos (M-scheme, stored on disk; introduced Lanczos)

OXBASH /Oxford-MSU (J-scheme, stored on disk)

MFDn/ Iowa State (M-scheme, stored in RAM; plans for J-scheme,
SU(3)-scheme w/LSU)

MCSM/ Tokyo (J-scheme from selected states)

Importance Truncation SM/Darmstadt (M-scheme from selected states)

Sym Adapted SM / LSU (J-scheme + symplectic; see T. Dytrych’s talk)

Factorization:

ANTOINE Strasbourg (M-scheme; originator of factorization)
NATHAN Strasbourg (J-scheme)

EICODE (J-scheme)

NuShell/NuShellX (J-scheme)

MSHELL64 / KSHELL Tokyo (M-scheme)
REDSTICK+BIGSTICK/ LSU-SDSU-Livermore
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THE KEY IDEAS

Basic problem: find extremal eigenvalues of very large, very
sparse Hermitian matrix

> Lanczos algorithm

fundamental operation is matrix-vector multiply

Despite sparsity, nonzero matrix elements can require TB of storage

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

The algorithms described today are best applied to many body systems with
(a)two “species” (protons and neutrons, or +1/2 and -1/2 electrons)

(b)single-particle basis states with good rotational symmetry (j, m)
11



THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

> Lanczos algorithm

fundamental operation is matrix-vector multiply

we use the matrix formalism

H W)= E|W)
W)= Yca)  Hy =(aH|B)

zHaﬁcﬁ = FEc_ if <0“/3> = 5a/3
p
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

Hp = <O“ﬁ‘ﬁ>

* H is generally a very large matrix — dimensions up to
101% have been tackled.

* H is generally very sparse.

* We usually only want a few low-lying states

, Lanczos algorithm!
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix
| > Lanczos algorithm

fundamental operation is matrix-vector multiply

A‘71 = al‘_;l + /3)1‘72
A‘_;z = /51‘71 + O‘z‘_;z + /3)2‘73
A‘_;3 = /3)2‘72 T 053\73 + /33‘74

A‘74 ﬁ3‘73 + OC4\74 + ﬁ4‘75

Lanczos algorithm!
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THE BASIC PROBLEM

Find extremal eigenvalues of very large, very sparse Hermitian matrix

| > Lanczos algorithm

fundamental operation is matrix-vector multiply

:A‘_;z = /51‘71 + O‘z‘_;z + ﬁz‘_;s

| — | — — —

AV, = Py, +asv, + Py,

| - | — — —
Av, 1= psvs+o,v, + [,V

L = = =

matrix-vector multiply
Lanczos algorithm!
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THE BASIC PROBLEM

I need to quickly cover:

* How the basis states are represented

* How the Hamiltonian operator is represented
* Why most matrix elements are zero

* Typical dimensions and sparsity
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HOW TO BUILD AN M-SCHEME BASIS

-

(You probably already know
this, my apologies! We might
still learn something.)

~

£
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HOW TO BUILD AN M-SCHEME BASIS

This differential equation is too difficult to solve directly

2m

i i<j

(E__vz LU+ SV —?J->)‘P<%;,@f3...>= EW

Can only really solve 1D differential equation
nod’
(_ 2m dr’

+ U(r))qbl(r) = €i¢i(l’)

Usually assume spherical symmetry!
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HOW TO BUILD AN M-SCHEME BASIS

Can only really solve 1D differential equation
( n o d

e + U(r))qﬁi(’”) =£,0,(r) :> {qu(?)}

Single-particle wave functions labeled by, e.g., n,j, [, m
Atomic case: 1s, 2s, 2p, 3s, 3p, 3d etc

Nuclear: 0sy/, 0P, 0py/9, 0d5/9, 1819, Odg, etc
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HOW TO BUILD AN M-SCHEME BASIS

Can only really solve 1D differential equation
( n o d

e + U(r))qbi(r) =£,0,(r) :> {qu(?)}

Product wavefunction (“Slater Determinant”)

W 7 ) = b, ()0, (B, (B, (7

20



HOW TO BUILD AN M-SCHEME BASIS

* How the basis states are represented

Product wavefunction (“Slater Determinant”)
W 7y ) =ty (F )y )y (7). iy (7

Each many-body state can be uniquely determined
by a list of “occupied” single-particle states
= “occupation representation”

‘OC>=CZ a d ...d

ny ny, nj ny

0)
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HOW TO BUILD AN M-SCHEME BASIS

“occupation representation” ‘(x> — &; 21; 21; .
1 2 3

no |1 |2 |3 |4 |5 |6 |7

a=1 |1 0 0 1 1 0 1

a=2 |1 0 1 0 0 1 1

a=3 |0 1 1 1 0 1 0

Convenient for digital computers!

A+

ny

0)
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HOW TO BUILD AN M-SCHEME BASIS

* How the basis 1s represented

A+ A+ /\+ /\+

some technical details: ‘(x> =a a, a, ...d
the “M-scheme” b

0)

ny

Because J, commutes with H, we can use a basis with M fixed
= “M-scheme”

For any Slater determinant, the total M = sum of the m; s,
making construction of an M-scheme basis easy.

(In general, any J-scheme basis state is a sum of
M-scheme states — or a projection integral which is also a sum)
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A SPARSE MATRIX

“occupation representation” ‘(x> =a a a .
1 2 3
n 11 |2 |3 |4 |s |s |7
oa=1 |1 0 0 1 1 0 1
a=2 |1 0 1 0 0 1 1
a=3 |0 1 1 1 0 1 0
H = ETyal a;+ EVZ.]Hai aa,a,

Va\

.a

+

0)
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A SPARSE MATRIX

“occupation representation” ‘(x> —a a a ...a O>
ny T n, T ng ny

n, |1 2 4 5 7

a=2 |1 |0 |1¥ |o ™M |1

a=3 |0 1 1 1 1 0

aata,aga=1)=|a=2)
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A SPARSE MATRIX

* How the Hamiltonian 1s represented

“occupation representation” ‘a> —a a a ...a ()>
ny np nj ny

n, 1 2 3 4 5 6 7

a=1 |1 0 0 1 1 0 1

a=2 |1 0 1 0 0 1

a=3 |0 1 1 1 0 1 0

a,a,a,0;|/a =2)=|o = 3)
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A SPARSE MATRIX

“occupation representation” ‘(x> — &;1 2122 21;:3 .. &;N
no |1 2 |3 |a |5 |e |7
o=1 |1, |0 o |1 J1 [o |1
< o=2 |1 \Jo |1 |o flo |1 / 1
a=3 [0 1 |1 |1 Jo |17 Jo

a2a4a6ala5a7‘(x = 1> = ‘(x = 3>

need 3 particles to
interact simultaneously!

0)
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A SPARSE MATRIX

 Typical dimensions and sparsity

Nuclide | valence Valence Valence ba31s sparsity
space (%)
‘

2)Ne 2

Mg “sd” 4 5 44,133 0.5
wCor  “pf” 4 5 6M 0.01
OFe “pf’ 6 10 500M 2x10*

/

This corresponds to 2 T'b of data!
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A PROBLEM....

Despite sparsity, nonzero matrix elements can require TB of storage

*5Fe 501 M 3.5Tb _
Spread nonzero matrix

‘Li N,,=12 252 M 3.6Tb elements over many
i N__=14 1200 M 23 Th MPI compute nodes:
2C N__=6 32M 0.2Th

2C  N,,=8 590M 5Tb

2C N,_,=10 7800M 111 Tb

0  N__ =6 26 M 0.14Tb

max

%0 N__=8 990 M 9.7Tb

maXx
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A SPARSE M ATRIX, BUT....

Despite sparsity, nonzero matrix elements can require TB of storage

/

My algorithm is ideal as one
can use sparse matrix-vector

~

/

4 N
That’s true, but there 1s

(Cornelius Lanczos) \_ «

more to the story... i Q\N

30



RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

no |1 |2 [3 |4 |5 |6 |7 |8
c a=111 |1 1\\0 0/_ 0_1
a=2 |1 1 10 1 170 |0 |0
c a=30 |1 1\\0 0 1 0__11
=40 |1 |0 ™M |1€ 0 |0
=60 |0 |0 ™M |1€ 1 |0

All of these have the same
matrix element: V4o
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RECYCLED MATRIX ELEMENTS

Only a fraction of matrix elements are unique; most are reused.
Reuse of matrix elements understood through spectator particles.

# of nonzero matrix elements vs. # unique matrix elements

Nuclide | valence Valence Valence
spaee nonzero | unique
“

28Si 26 x 10° 3600
2Fe “pf’ 90 x 10 21,500

Atom space unique
Nnonzero

110x10% 521,000
B CVB2 1.4x10° 879,000
C CVBI1 260x10° 40,751
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

A quantum number is the eigenvalue of an operator

For composite systems, one can apply the operator to
each component separately:

O|W) = ( +0,+0, +.. )(\11’1>®\‘P2>®\‘I’3>®

Sometimes the total quantum number is a simple sum/product
as is the case for J, or parity....

jz“P>= ‘I’>=(m1+m2+m3+...)

...but in other cases the addition is complicated (e.g. for J?)

)
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

I consider composite many-fermion systems,
in particular those with 2 major components
protons and neutrons
or
spin-up and spin-down electrons

‘qj>=‘q{>®‘qj2>

Each component itself is a Slater determinant which is
composed of many particles

J|W)=MW) M=M+M,
(2)

(1) (
M, =m" +m,

+m? + ...
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FACTORIZATION

Reuse can be exploited using exact factorization

enforced through additive/multiplicative quantum numbers

Because the M values are discrete integers or half-integers
(-3,-2,-1,0,1, 2, ...or-3/2,-1/2,+1/2, +3/2....)
we can organize the basis states in discrete sectors

Example: 2 protons, 4 neutrons, total M =0

M,(v) = +4

M,(v) = +3

M, (v) = +2

35



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

Example: 2 protons, 4 neutrons, total M =0

M,(v) = +4: 24 SDs

M,(v) = +3: 39 SDs

M,(v) = +2: 60 SDs

48 combined

156 combined

540 combined
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

In fact, we can see an example of factorization here because
all proton Slater determinants in one M-sector must combine
with all the conjugate neutron Slater determinants

[Vi@E4280 ] | M= +4:245Ds | 48 combines

Vl> ”1>‘V1>
) v v
)X T P
V4> J72>“’2>
‘V24> ‘”1>‘V24>

‘J‘L’2>‘V24> 37



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Proton SDs

o o
L g

@)=|a,)x|a,)

Neutron SDs

Nuclide Basis dim

Example N = Z nuclei

L 4

o o
) 4 \ g v L g

“Ne 640 66

2Mg 28,503 495
283 93,710 924
Cr 1,963,461 4895

2Fe 109,954,620 38,760

%Ni 1,087,455,228 125,970

38
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Factorization allows us to keep track of all basis states
without writing out every one explicitly
-- we only need to write down the proton/neutron components

The same trick can be applied to matrix-vector multiply

IA{ = %A + : + [{‘A
Move 2 protons; @ \

neutrons are
spectators

Move 2 neutrons;
protons are
spectators

Move 1 proton +
1 neutron;

rest are
spectators

39



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

A\

Move 2 protons;

neutrons are Example: 2 protons, 4 neutrons, total M =0

spectators
D@ 42805 0 | M,)=+4:245Ds | “8combined

There are potentially 48 X 48 matrix elements
But for H ) at most 4 X 24 are nonzero
and we only have to look up 4 matrix elements

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.

40



FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

[VI@E880] [ M= +4:245Ds | 48 combines

V)
v,)
|”1> _(Hu le) V3>
|n’2> " \H, H, V>

4
|V24>

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

M,(v) = +4: 24 SDs

48 combined

v,)
)
T, 21 22 V4>

Vi)

v,)

S

pp

S

pp

pp

X =

pp

Hll"ﬂ;l ‘V1> + HIZ“TE2>‘V1>

)
70,)|Vi) = Hy| )| Vi) + Hyp|7,)[vy)
NVa) = Hy|m)|vy) + Hylm, )|v,)

”2>‘V2> le‘”1>“’2> + sz‘”2>“’2>

)|V,

<

pr‘”1>‘vz4> = Hll‘”1>“’24> + le‘”2>“’24>
pr‘”2>“’24> = H,|m,)|Vay )+ Hop| 7, )| V)

Advantage: we can store 98 matrix elements as 4 matrix elements
and avoid 2000+ zero matrix elements.
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FACTORIZATION

Reuse can be exploited using exact factorization
enforced through additive/multiplicative quantum numbers

Comparison of nonzero matrix storage with factorization

C DT T

S6Fe 501 M 3500 Gb 0.72 Gb
Li N__ =12 252 M 3800 Gb 61 Gb
Li N__=14 1200 M 23 Tb 624 Gb
12c N__=6 32M 196 Gb 3.3 Gb
2 N__=8 590M 5000 Gb 65 Gb
12c N__ =10 7800M 111 Tb 1.4Tb
160 N, =6 26 M 142 Gb 3.0 Gb

max

0 N__=8 990 M 9700 Gb 130 Gb

max




Comparison of nonzero matrix storage with factorization

Lj
Basis dim | matrix store | factorization matrix | factorization
(2-body) store (3-body)
(3-body)

I 6M 36 Gb 1.5Gb 1Tb 26 Gb
N..=10 43 M 430 Gb 10 Gb 170 Tb 250 Gb
N, =12 250 M 4 Tb 60 Gb

Basis dim | matrix store | factorization | matrix store | factorization

(2-body) (2-body) (3-body) (3-body)

Npe =3 0.4 M 0.8 Gb 6 Mb 10 Gb 44 Mb
N o =4 45 M 330 Gb 0.3 Gb 9Tb 4 Gb
Npe =5 2G 38 Thb 16 Gb 2 Pb 140 Gb

N, =6 50 G 2 Pb 87 Gb 170 Pb 37Tb

44



PARALLEL IMPLEMENTATION

Factorization makes it easier to compute workload

and distribute across multiple nodes

length of sides =
information to be stored

4 )
Arfa = total # of operations We can compute the
length of number of operations
sides = without actually
information counting them!
to be stored
Vs /
Then we can ; Q\N‘
easily divide A ik
K &
the work across C®)
compute nodes /‘j

\_

45



EXECUTIVE SUMMARY ON THE BIGSTICK CODE

Many-fermion code: 2" generation after REDSTICK code
(started in Baton Rouge, La.)

Uses “factorization” algorithm: Johnson, Ormand, and Krastev,

Comp. Phys. Comm. 184, 2761(2013)

Arbitrary single-particle radial waveforms
Allows local or nonlocal two-body interaction

Three-body forces implemented and validated
Applies to both nuclear and atomic cases

Runs on both desktop and parallel machines
—-can run at least dimension 300M+ on desktop
—-has done dimension 20 billion+ on supercomputers

Inline calculations of one-body density matrices,
single-particle occupations,

(+ options to compute strength functions via Lanczos trick, etc.)
Will add 2-body non-scalar transition operators later this year

45 kilolines of code Fortran 90 + MPI + OpenMP

46



PARALLEL IMPLEMENTATION - LATEST

DEVELOPMENTS

Over the past year we have dramatically improved our

parallel performance (mostly through better use of MPI)
due to Ken McElvain, UC Berkeley grad student

2000

>Mn in pfshell 5 500
(dim=187M) £
200 iterations g
§ 1000
500

LLNL Sierra

- - Lanczos

® Total

¢— - < Mat-vec multiply
4 - - -A Reorthogonalization

V 7.4.3 Feb 2015

V 7.2.12 July 2014

‘A....l.A |

| | | |
0 2000 4000 6000 8000

0

2000 4000 6000 8000

Cores




PARALLEL IMPLEMENTATION - LATEST
DEVELOPMENTS

Strong scaling

T T T | T T
= @ ©—© Total N
L \a — - Lanczos 1
8 N\, &—- -9 Mat-vec multiply
S 0.8 R A. - .4 Reorthogonalization —
S
2 i
8
2 0.6
= i
£
> 04
=
L _
2
i
R 02
0 | | | | | | | | |
0 2000 4000 6000 8000
Cores
54 :
Mn in pf shell LLNL Sierra

(dim =187 M)
200 iterations V 7.4.3 Feb 2015



PARALLEL IMPLEMENTATION - LATEST

DEVELOPMENTS
3 T | T T T
L @ Total i
- - Lanczos
25 ®- - - Mat-vec multiply .
i 4 - - -A Reorthogonalization ]
8 S ——
.5 2 B e () o __--" I
S e— > = __-@\B"
o)
2 1.5 ]
<
DL e e m e m S i
= B it 2
£ 1 ]
”g ---------- A
A At |
05 RN, S |
O | | | | | | |
0 500 1000 1500 2000
Basis dimension (millions)
pf shell nuclides LLNL Sierra
(200 iterations)
800 MPT procs x 12 OpenMP threads V 7.4.3 Feb 2015
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PARALLEL IMPLEMENTATION - LATEST

DEVELOPMENTS
2000 I
&—® Total
— - Lanczos
_ ®- - - Mat-vec multiply ]
1500 4 - - -A Reorthogonalization N
- -
Y
£ 1000 -~ N
=
=
e
500 |- B¢ 7
A...
I | . | ST, V. e e A |
00 2000 4000 6000 8000 10000
Cores
10 = 1 =
NCSM BI Nmax 9 (dlm 547 M) LLNL Sierra
V 7.4.3 Feb 2015

(100 iterations)
800 MPT procs x 12 OpenMP threads



PARALLEL IMPLEMENTATION - LATEST
DEVELOPMENTS

Strong scaling

1.25

(U

0.75

o
N
LA L N N

Efficiency (relative to 2400 cores)

.O
5
O

0

—® Total
- -1 Lanczos
&—- - - Mat-vec multiply

A - - .4 Reorthogonalization

0

NCSM 9B, N,
(100 iterations)

I I
2000 4000 6000

Cores

=9 (dim = 547 M)

800 MPT procs x 12 OpenMP threads

I
8000 10000

LLNL Sierra

V 7.4.3 Feb 2015

51



PARALLEL IMPLEMENTATION - LATEST

DEVELOPMENTS
3 | ' [
2>— Total
)50 - - Lanczos N

©— - -9 Mat-vec multiply

Time/basis dimension
[E—
¥,
[

05r Aerrennnnnnn. A |
........... a
0 | | | | | | | | | | |
0 100 200 300 400 500 600
Basis dimension (millions)
NCSM p—shell nuclides LLNL Sierra
(100 iterations)

800 MPT procs x 12 OpenMP threads V 7.4.3 Feb 2015
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PARALLEL IMPLEMENTATION - LATEST
DEVELOPMENTS

Science runs! Dark matter scattering cross-sections

30000 . . I .
i 92— Total .
25000 |- - - Lanczos -
¢— - -© Mat-vec multiply
I A - - -4 Reorthogonalization ’
20000 |- 7
3 _ _
g 15000 — 7
s I ]
= | e—mm T
10000 |~ ‘ 7
5000 -
A 3 i
A
i | | | | | | | | |
2 4 6 8 10
Basis dimension (billions)
: : 100
Xe isotopes with %Sn core LBL/NERSC Edison
V 7.4.3 Feb 2015

(140-250 iterations)
6000-12000 MPI procs x 4-6 OpenMP threads
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RECENT WORK

Pushing to larger cases

We have gone to dim 20 billion on 512 MPI nodes!

12Ba with 1%Sn core: 2s,,,-1d;,,-1d5,,-0g;/,-0hy, , valence space
LLNL Sierra 512 MPI processes with 24 Gb & 12 OpenMP threads/proc
2 Lanczos iterations took <1 hr

Nonzero matrix elements require ~ 130 Tb = 5400 nodes

We plan (hope?) to go to dim ~ 100 billion in the next year
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Advanced topic 1n factorization:
Even more divide and conquer!

In general shell-model configuration interaction
codes have three components:

e Set-up
e Matrix-vector multiply
e Linear algebra (reorthogonalization) (Lanczos algorithm)

The Lanczos part has fixed costs due to floating point
operations and one can only distribute the work efficiently

The set-up can be expensive; in MFDn and related codes
it takes a large fraction of the total time, as finding 10-°
nonzeros is nontrivial

What takes time are sorts and searches
Factorization speeds this up by reducing the lengths of lists to sorted and searched



Advanced topic 1n factorization:
Even more divide and conquer!

(Con<ider (prn‘mn)

q

ater determinants-

n(l)j: 0d;),
m :5/2 3/2 %

_1/2 23/2 -5/2 First, a Slater determinant

N
(- N

1 1
1 0
1 0
0 1

ke

_—0 = O

camposed of all single

N particle statew

o = OO
oSO O O

Next, a Slater determinant
composed of all single

S particle states with m <0...




Advanced topic in factorization:
Even more divide and conquer!
We can combine these half Slater determinants into a
“full” Slater determinant, in the same way that we
combined proton and neutron Slater determinants into
the final many-body basis.

Nuclide Basis dim  # pSDs _ # half Slater Determinants

20Nle 640 66 22
24Mg 28,503 495 57
285; 93,710 924 64
48Cr 1,963,461 4895 386
52Fe 109,954,620 38,760 848

°°Ni 1,087,455,228 125,970 1,013



Advanced topic in factorization:
Even more divide and conquer!

Sample numbers:

Nuclide Basisdim  # pSDs  # half Slater Determinants

2C (4hw) 11M 33,475 5448
12C (6hw) 32.6 M 381,159 40,247
12C (8hw) 594 M 29 M 232,553

160 (8hw) 996 M 5M 497,493



Advanced topic in factorization:
Even more divide and conquer!

Note that while all proton and neutron SDs have the same particle number,
we build SDs from half Slaters with differing # of particles (but the sum
is fixed—just another quantum number).

This leads to another innovation.

The fundamental operation on half-Slaters is not jumps but “hops” which are
single-particle creation/annihilation.

This turns out to be natural, easy, and quick.



Half-Slaters are generated recursively:

N, =0: 000000

N, =1: 100000 010000 001000 000100 ....

N, =2: 110000 011000 001100 000110 ....
101000 010100 001010 000101 ....

100100 010010 001001
100010 010001
100001



Each half-Slater has a fixed number of destruction hops:
it takes only a very short search to find the final half-Slater:

N, =0: 000000

N, =1: 100000 010000 001000 000100 ....

[~

N, =2: 110000 O\rlOOO 001100 000110 ....
101000 010100 001010 000101 ....
100100 010010 001001
100010 010001

100001
Finding all the creation hops 1s even easier,because

we just reverse the destruction hops:



Like the number of half-Slaters, the number of hops 1s small
28Si: 192 hops

2Fe: 3820 hops

2C (6hw): 171,409 hops
2C (8hw): 1,061,255 hops

Using hops we can build arbitrary operations :
1-body jumps, 2-body jumps, 3-body jumps,
spectroscopic factors, etc, all using the same underlying structure.

Using half-Slater determinants speeds up basis
construction by 3x-4x, and jump construction by 10x
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STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

APPLICATIONS

ab initio Gamow-Teller transitions:

the search for quenching



STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

Part IIb: ab initio Gamow-Teller transitions

e Gamow-Teller important for weak physics, astrophysics
 Avoids dependence on radial wavefunctions (at lowest order);
mostly SU(4) irreps; Ikeda sum rule strong constraint
 Consistent quenching of coupling—exchange currents, or what?
e What about O-neutrino double-beta decay?

Two recent highlights:

Anomalously long '*C half-life (Maris, Vary, Navratil, Ormand, Nam, Dean)
Phys. Rev. Lett. 106, 202502 (2011): ‘accidental’ cancellation of
matrix elements driven by 3-body force

Exchange current corrections from EFT (quenching of about 0.8):
S. Vaintraub, N. Barnea, and D. Gazit, Phys. Rev. C 79, 065501 (2009);
J. Menendez, D. Gazit, and A. Schwenk, Phys. Rev. Lett 107, 062501 (2011)



STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL
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|

6He =» °Li

B(GT)
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E. (MeV)

Chiral 2-body forces SRG evolved to A=2 1
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STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

Need to run higher N . (on supercomputers) but ...

max

Despite being a “simple” operator, transition matrix elements

of Gamow-Teller ( 0T ) do not have simple behavior:

* Some transitions quickly converge as we go up in N, ,,, others not
* Should be investigated by doing L-S/SU(4) decomposition

* Effect of 3-body forces likely important

* More work on chiral EFT exchange forces should be done

e Likely strong implications for Ov—-f matrix elements...



APPLICATIONS

Ab initio E1 response
and

the Brink-Axel hypothesis



STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

Transitions and the Brink-Axel hypothesis
+ Michael K. G. Kruse (LLNL), W. Erich Ormand (LLNL), and Micah Schuster (SDSU)

Brink-Axel hypothesis (D. Brink, D. Phil. thesis, Oxford University
(unpublished), 1955; P. Axel, Phys. Rev. 126, 671 (1962)):
If the ground state has a giant dipole resonance (GDR), then excited states

should have GDR «

and
because the GDR 1is a collective proton-versus-neutrons oscillations,

the GDR should be insensitive to the initial state. Electric dipole

S(E,E,) = 2|(f\T|i)|5(Ex — Ef + E)
f

“Transition strength function”

Brink-Axel: “S(E,E,) independent of E.”



STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

Kruse, Ormand, and Johnson: arXiv:1502:03464
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0.15

o
i

0.05

0

STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

B(E1) strength with increasing basis size

T 11 | | ] T T I T 1T | L | T 177 | T 1771 I T T I T 1T I T 1T
i B BE1 strength function — Nmax=3| |
Folded with Gaussians ; '=5 MeV — Nmax=5
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Excitation Energy (MeV)

Strength distribution
shape is robust in
Nmax.

Slowly moves down
in energy as a
function of Nmax.

How to extrapolate
this distribution?

Perhaps it is best to
extrapolate
centroids?
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Kruse, Ormand, and Johnson: arXiv:1502:03464
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Kruse, Ormand, and Johnson: arXiv:1502:03464

1 10B E1 response

GDR

30 40

w— FE;; (MeV)
Brink-Axel: “S(E,E,) independent of E.”




STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

A [s this true in general? What
if you look at more states?

&‘ / »
3 4
\k/. Is this true for other

| operators? *

* Some evidence to the contrary (with Gamow-Teller operator):
Frazier, Brown, Millener, and Zelevinsky, Phys. Lett B 414, 7 (1997);
Misch, Fuller, and Brown, PRC 90, 065808 (2014)




Looks like large
fluctuations
about the
average; can we
characterize /

quantify this?

The total strength
(or non-energy-weighted sum rule)
can be computed as a simple expectation value

So(E;) = fS(Ei,Ex)dEx = Z|(f|T|i)| = (i|T*T|i)
f



The total strength (or non-energy-weighted sum rule)
[ s, EQdE, = |{f|7]0)] = (il 7))

Na
82 >

R

40
E (MeV)



Furthermore, the
smooth secular
behavior is easily
understood through
spectral distribution
theory

of J. B. French et al

Average expectation value is just a trace!

1 1
(0) =5 ) ({10l =1 tr (0)



Furthermore, the
smooth secular
behavior is easily
understood through

spectral distribution
theory
of J. B. French et al

Average expectation value is just a trace!
1 1
0) =1 ) ({0l =+ tr (0
()= D (i0li) = tr (0)
[

(Linear) energy dependence is also a trace!

1 1 1

NZ E(i|0]i) = NZ(ilOHli) = tr (OH)

l l

Slope is givenby <OH>-<O><H>



* . . '
Furthermore, the Average expectation value is just a trace!

smooth secular

1 1
behavior is easily (0) — N Z(i|0|i) = N tr (0)

understood through
spectral distribution

theory (Linear) energy dependence is also a trace!
of J. B. French et al

1 1 1
NZ Ei|0]i) = NZ(HOHU) = tr (OH)

From this we can derive the secular

behavior of expectation values



Furthermore, the
smooth secular
behavior is easily
understood through
spectral distribution
theory

of J. B. French et al
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STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

What about as we
go to extreme
1sospin?
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B(M1)

sd shell, isovector M1
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STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

What we do learn
from this?

The generalized Brink-Axel hypothesis

(for arbitrary operators) is wrong!

-- total strength evolves with initial (parent) energy

-- significant fluctuations even for nearby parent states

We can understand this through spectral
distribution theory,

that is,
traces of operators (weighted by the energy);

A lack of energy dependence can occur only
if

<OH>-<O><H>=0



STRENGTH FUNCTIONS IN THE NUCLEAR SHELL MODEL

Also
(unsurprisingly)
isovector
transitions show
more evolution as
we go to extreme

isospin

The generalized Brink-Axel hypothesis

(for arbitrary operators) is wrong!

-- total strength evolves with initial (parent) energy

-- significant fluctuations even for nearby parent states

We can understand this through spectral
distribution theory,

that is,
traces of operators (weighted by the energy);

A lack of energy dependence can occur only
if

<OH>-<O><H>=0



APPLICATIONS

Spin-orbit decomposition of ab initio nuclides
C. W. ], Phys. Rev. C 91, 034313 (2015).



Atoms :

L=0,1,2

H— L=0,1

Spin is minor in
atomic physics...

(Niels Bohr) (E. Schrodinger)

...but crucial in
nuclear physics...

Nuclei:

J=3/2

J=1/2

J=5/2
J=1/2

J=3/2

J=1/2

(Maria Goeppert-Mayer) o



11 versus L-S

11 12 13 14
+ + + +
Sy Sy S3 Sy
Jiot ot st

n T

=dJ

W

j-J coupling”

“L-S coupling”
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_ _ Nuclei:
(Calculations are standard configuration-

mixing: diagonalization of Hamiltonian
in m-scheme Slater determinants, in J=3/2
single major harmonic oscillator shell)

coupling?

J=1/2
4Ca KB3G 90 % (Of ) J=112
240 sd USDB 91% (0d s ,)° (1s ;)2 J=3/2
22 sd USDB 75% (0d ,)°
8He p Cohen- 53 % (0p 5/,)* J=1/2

Kurath

Oh no! | guess there

configuration mixing!

USDB 29 % (0d 5,)** (1s ,)*
28g; sd USDB 21% (0d 5/2)12
120 P Cohen- 37% (Op 3/2)8

Kurath

(Maria Goeppert-Mayer) o



et’s see if there is a simpler
picture, such as L-S coupling.

48C3 KB3G 90 % (Of ;)8 20% L =0
240 sd  USDB 91% (0d 5,)¢ (15 )2 34%L=0
20 sd  USDB 75% (0d )8 38% L=0
[8He P Cohen-Kurath 53 % (0p ;/,)* 96% L=0 ]
325 sd  USDB 29% (0d 5,)12 (15 ,)* 34%L=0
286 sd  USDB 21% (0d 5 )12 36% L =0
[ 12C p Cohen-Kurath 37% (0p 5,,)® 82%L=0 ]

This illustrates a (once) well-known fact: that L-S coupling is a better
approximation in the p-shell than j-j coupling.
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decomposition of ab initio
p-shell wavefunctions

Why?

-- To see if this pattern holds for ab initio interactions
-- How well do phenomenological interactions match ab initio?

-- Crucially, we know the 3-body forces strongly affects

the spin-orbit force. Can we see this happen directly?
Note: In this talk I only give 2-body results. 3-body forces later...
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1B

Phenomenological Cohen-Kurath m-scheme dimension: 62

NCSM: NSLO chiral 2-body force SRG evolved to A = 2.0 fm, N, =6, hw=22 MeV

m-scheme dimension: 20 million
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IQC

Phenomenological Cohen-Kurath force (1965) in Op shell
m-scheme dimension: 51

NCSM: N3LO chiral 2-body force SRG evolved™ to A = 2.0 fm™l, N =6, hw=22 MeV

m-scheme dimension: 35 million
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‘Be

Phenomenological Cohen-Kurath m-scheme dimension: 62

NCSM: NSLO chiral 2-body force SRG evolved to A = 2.0 fm, N, =6, hw=22 MeV

m-scheme dimension: 5.2 million
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OBe excited state band
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Since these are rotational bands,
why not look at SU(3) structure?

SU(3) Casimir = ¥4 ( Qg -Qgy +3 L?)

Qg= Elliott quadrupole = (r*+p?)Y, ;
does not contain cross-shell matrix elements

(symplectic operators couple across h.o. shells;
will address in future work)
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The “wrong” 7/2- state...
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fraction of wave function
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sd-shell nuclei: ?’Ne and #Mg

1\Imax=2

hw=16 MeV
Aspc= 2.0 fm!
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Naive method: Solve eigenpair problems, e.g.
H|VY,>=E,|V,>
and

L2 | La>=10+1) [La >

...and then take overlaps, |[<La | VY, >]|?

PROBLEM: the spectrum of L? is highly degenerate (labeled by a );
Need to sum over all anot orthogonal to | ¥ > !
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There is another way

(Cornelius Lanczos)

120



There is another way

Ssoa [ he Lanczos
crner Al gorithm!
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There is another way

Av, =ay, + v,

A‘_;z = /3’1‘71 + O‘z‘_;z + /3)2‘73
Av, p,v, +asv,+ v,

A‘_;4 = /3)3‘73 + Ot4\74 + [3’4‘75

(Cornelius Lanczos)

Starting from some initial vector (the “pivot”) v, , the Lanczos algorithm
iteratively creates a new basis (a “Krylov space”) in which to
diagonalize the matrix A.

Eigenvectors are then expressed as a linear combination of the
“Lanczos vectors” |[P>=c; |v;>+cC, |[vy>+ 5 |vg> + ...
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There is another way

Eigenvectors are expressed as a linear
combination of the “Lanczos vectors”:

|W>=c; [v;>+ ¢y [vy>+cy |ve>+ ...

It is easy to read off the overlap of an eigenstate
with the “pivot” :
(Cornelius Lanczos) |<v; |W>|2=c,?

Furthermore, the only eigenvectors (of A) that are
contained in the Krylov space are those with
nonzero overlap with the pivot |v;> .

If A is say L? then we can efficiently expand any state |v,;> into
its components with good L.
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There is another way

This trick has been applied before

Computing strength functions

Caurler, Poves, and Zuker, Phys. Lett. B252, 13 (1990);
PRL 74, 1517 (1995)

Cornelius L Caurier et al, PRC 59, 2033 (1999)
(Cornelius Lanczos) Haxton, Nollett, and Zurek, PRC 72, 065501 (2005)

Decomposition of wavefunction mto SU(3) components,

looking at effect of spin-orbit force:
V. Gueorguiev, J. P Draayer, and C. W.]J., PRC 638, 014318 (2000).

Present calculations carried out using BIGSTICK shell-model code:
Johnson, Ormand, and Krastev, Comp. Phys. Comm. 184, 2761 (2013).
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Large scale configuration interaction calculations
for nuclear structure

Summary and looking forward

Bigstick is a powerful configuration-interaction shell model code coming
into maturity. We can now reach the largest dimensions of other CI codes,
using significantly less computational resources. (Still work to be done

to fully optimize for N, ., calculations and three-body forces.) We hope to
make the code publically available in the near future.

As a sample application, we can decompose wave functions using
operators, usually Casimirs of groups. This gives us an “x-ray” into
the wavefunctions and illustrate (a) overall similarity with
phenomenological calculations and (b) clearly show the fingerprint of
“intrinsic states.”

“*More work to be done!”



