

HPCI project field 5 "The origin of matter and the universe"

CANHP2015@YITP 2015/10/02

# Large-scale shell-model calculations of nuclei around N=80



Noritaka Shimizu



CENTER for NUCLEAR STUDY Center for Nuclear Study, University of Tokyo

> M. Honma (Aizu Univ.), T. Mizusaki (Senshu Univ.), T. Otsuka (Univ. of Tokyo), T. Togashi (CNS),N. Tsunoda (CNS), Y. Tsunoda (CNS), Y. Utsuno (JAEA)



- Quadrupole collectivity, triaxial deformation, mixed symmetry state, E(5) critical point symmetry, scissors mode, isomers, ...
- Shell-model study is a challenge in this region due to huge configuration space

E. Teruya *et al.*, PRC 92, 034320 (2015), C. Qi *et al.*, PRC 86 044323 (2014),
C. Bianco *et al.*, PRC 85, 034332 (2012), K. Sieja *et al*. PRC 80, 054311 (2009),
B. A. Brown et al., PRC 71, 044317 (2005) ...

### Two tools for shell-model calculations

 $3x10^{14}$  M-scheme dim. for  $^{140}$ Ho

- Large-scale shell model calculations (LSSM)
  - conventional Lanczos method in parallel computation
  - Max: ~O(10<sup>10</sup>) M-scheme dimension
- advanced Monte Carlo shell model (MCSM)
  - a tool to go beyond Lanczos limit
  - variation after superposition of *J*-projected Slater determinants
  - extrapolation utilizing energy variance

#### M-scheme dimension vs. year





![](_page_5_Figure_0.jpeg)

#### M.Honma *et al.,* RIKEN Accel. Prog. Rep. 45 (2012) 35 SNBG3 interaction

Realistic interaction for 50<N<82 Sn isotopes

- start with N3LO + G-matrix
- chi-square fit with linear-combination method for ~300 experimental data including 3<sup>-</sup> states

![](_page_6_Figure_4.jpeg)

### Shell evolution in Sb isotopes

- Shell evolution
  - Important not only in single-particle energy levels but also in collectivity
- How to deduce?
  - Follow the change of "single-particle energies" along a long isotope chain.
- Purity of single-particle (SP) states
  - Controversial levels in Sb (Z=51) isotopes
    - SP (Schiffer et al., 2004) or coupling to collective (Sorlin and Porquet, 2008)
    - Absolute values of *C*<sup>2</sup>*S*: ambiguous

Many-body calculations with a suitable shell-evolution mechanism are needed.

![](_page_7_Figure_10.jpeg)

J. P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004).

## Two major sources of evolution in p-n channel

![](_page_8_Figure_1.jpeg)

known for several decades known for a decade: Otsuka mechanism (2005)

- Monopole-based universal interaction V<sub>MU</sub> (Otsuka et al., 2010)
  - Quantitative implementation of this concept on a microscopic basis of "Renormalization Persistency" (N. Tsunoda et al., 2011)

# Sb (Z=51) isotopes<sup>Y. Utsuno et al., in preparation</sup>

- Shell-model calculation in the  $50 \le N(Z) \le 82$  space
  - *n*-*n* interaction: semi-empirical SNBG3 by Honma et al. (good fit including 3<sup>-</sup>)
  - p n interaction:  $V_{MU}$  with a scaling factor 0.84 for the central (binding energy)

![](_page_9_Figure_4.jpeg)

### Importance of the tensor force

- Without tensor
  - 11/2<sup>-</sup> ≈ 2 MeV
- 3NF effect
  - enhances effective *T*=0 tensor force (Kohno, 2013).
  - Almost perfect agreement
     with experiment

![](_page_10_Figure_7.jpeg)

### Sb isotopes

![](_page_11_Figure_1.jpeg)

### Sb isotopes (odd-odd nuclei)

![](_page_12_Figure_1.jpeg)

Reasonable description of low-lying states valid proton-neutron interaction (VMU)

![](_page_13_Figure_0.jpeg)

SN100PN: Ref. B. A. Brown et al., Phys. Rev. C 71, 044317 (2005)

### Effective SPEs of Sb isotopes

- Although SN100PN includes tensor force, the shift of singleparticle energy is half of the VMU with bare pi+rho tensor force
- Proton-neutron monopole interaction has a problem

$$H^{(m)} = \sum_{ij} V_{ij}^{(m)} n_i n_j$$

![](_page_14_Figure_4.jpeg)

This gradient V(n0h11/2-p0h11/2) – V(n0h11/2-p0g7/2)

### Monopole part of the effective interaction and many-body perturbation theory (MBPT)

|                                                                                                        | VMU   | V <sub>low-k</sub> | SN100PN<br>(KK 3 <sup>rd</sup> ) | KK 2 <sup>nd</sup><br>order | EKK 2 <sup>nd</sup><br>order | EKK large<br>space         |
|--------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------------------|-----------------------------|------------------------------|----------------------------|
| n0h11/2-<br>p0h11/2                                                                                    | -0.34 | -0.27              | -0.31                            | -0.30                       | -0.08                        | -0.38                      |
| n0h11/2-<br>p0g7/2                                                                                     | -0.58 | -0.48              | -0.43                            | -0.48                       | -0.43                        | -0.60                      |
| diff                                                                                                   | 0.23  | 0.21               | 0.12                             | 0.18                        | 0.35                         | 0.23                       |
| w/o MBPT                                                                                               |       |                    | w/ MBPT                          |                             |                              |                            |
|                                                                                                        |       |                    | 50 < Z, N < 82, 0g9/2 inert core |                             |                              | 0g9/2 active               |
| VMU VMU interaction (pi+rho tensor)                                                                    |       |                    |                                  |                             |                              | renormalization            |
| $V_{low-k}$ N3LO + $V_{low-k}$ w/o perturbation                                                        |       |                    |                                  |                             |                              | persistency"               |
| SN100PN CD-Bonn + KK 3 <sup>rd</sup> order by Brown, Jensen                                            |       |                    |                                  |                             |                              | for <i>ls</i> -closed core |
| KK 2 <sup>nd</sup> order       V <sub>low-k</sub> + Krenciglowa-Kuo (EKK) method 2 <sup>nd</sup> order |       |                    |                                  |                             |                              |                            |
| EKK 2 <sup>nd</sup> order V <sub>low-k</sub> + Extended Krenciglowa-Kuo (EKK) method 2nd order         |       |                    |                                  |                             |                              |                            |
| EKK large space EKK 2 <sup>nd</sup> order in pf+sdg+h11/2+f7/2+p3/2 KK. EKK by N. Tsur                 |       |                    |                                  |                             |                              | bv N. Tsunoda              |

EKK large space is close to VMU with bare tensor force.

2<sup>nd</sup> order term with *jj*-closed core may deteriorate ? Further investigation is required. Now, we adopt VMU for p-n interaction.

### proton-proton int. for N=82 isotones

- SN100PN TBME is used for p-p TBME
  - Mass dependence of TBME, (A/102)<sup>-0.3</sup> is introduced
  - SN100PN (pp) + SNBG3 (nn) + VMU (pn)

![](_page_16_Figure_4.jpeg)

Good agreement at N=64 subshell magic (except for 3- collective states)

### N=82 isotone, odd nuclei

![](_page_17_Figure_1.jpeg)

### Te isotopes

![](_page_18_Figure_1.jpeg)

- SN100PN for pp, SNBG3 for nn, VMU for pn interactions
- Good agreements

### Xe isotopes

![](_page_19_Figure_1.jpeg)

• problem in quasi-gamma band

<sup>•</sup> Good agreements especially for yrast band

### Ba isotopes

![](_page_20_Figure_1.jpeg)

• problem in quasi-gamma band

<sup>•</sup> Good agreements especially for yrast band

### Ce, Nd isotopes (N=80)

![](_page_21_Figure_1.jpeg)

• excellent agreement except for N=80 isotones

![](_page_22_Figure_1.jpeg)

Mixed symmetry states around N=80 : experiments

![](_page_23_Figure_1.jpeg)

Ref. N. Pietralla et al., J. Phys. Conf. Ser. 445, 012030 (2013)

#### Mixed symmetry states in N=80 isotones Exp. LSSM spin quenching 0.7 Energy (keV) 1600 1800 2000 2200 2400 1600 1800 2000 2200 2400 <sup>138</sup>Ce <sup>136</sup>Ce 0.3 0.3<sup>138</sup>Ce <sup>136</sup>Ce 0.25 0.2 0.2 0.15 0.1 0.1 0.05 400 1600 1800 2000 2200 <sup>132</sup>Ba t=4 trunc. <sup>136</sup>Ba <sup>134</sup>Ba 0.3 0.3 <sup>134</sup>Ba <sup>136</sup>Ba <sup>132</sup>Ba 25 0.2 ightarrow 2<sup>+</sup>1) ( $\mu_{N^2}$ ) 0.2 15 0.1 0.1.05 <sup>134</sup>Xe <sup>132</sup>Xe 0.3 - <sup>130</sup>Xe 130 Xe <sup>132</sup>Xe <sup>134</sup>Xe B(M1; 2<sup>+</sup> 0.2 0.1 n <sup>132</sup>Te 0.3 - <sup>128</sup>Te <sup>130</sup>Te 1600 1800 2000 2200 2400 130 Te 128 Te 0.25 0.2 0.20.15 0.1 0.10.05 0 1.6 2 2.4 1.6 2 2.4 1.6 2 2.4 400 1600 1800 2000 2200 2400 1600 1800 2000 2200 2400 Ex. (MeV)

### M1 excitation of <sup>134</sup>Ba

![](_page_25_Figure_1.jpeg)

Exp. H. Maser et al., PRC 54 2129R (1995)

### Summary

- Nuclei around N=80 are investigated in LSSM and MCSM
- P+QQ interaction successful for triaxially deformed states
- Construct realistic effective interaction towards unified description of 50<N,Z<82 region</li>
  - Sb isotopes and shell evolution by tensor force
  - discuss mixed symmetry states, scissors mode in LSSM
  - in preparation for MCSM calc.