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Frontier of large-scale shell-model calculations

f5pg shell
(2000s)

pf shell M=R2
(1990s-2000s)

sd shel pf-sdg shell .

(1980s) sd-pf shell e Enlarging model space

— heavier nuclei

— various states including
intruder states



Objectives of this study

e Unnatural-parity states and strength function in the sd-pf shell

— More than one major shell are required.

1. Systematics of unnatural-parity states and E1 strength function in
Ca isotopes

2. Gamow-Teller strength function of neutron-rich nuclei
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Model space and effective interaction

e Model space

— Full sd-pf-sdg shell for E1 calc. or Full sd-pf shell for GT calc.

— 1hw [or (1+3)Aw] calculation in the given model space

e Effective interaction

— SDPF-MU for the sd-pf shell or its natural extension to the sd-pf-sdg shell:
e USD (sd) + GXPF1B (pf) + the refined V,,, for the remaining
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Y. Utsuno et al., Phys. Rev. Lett. 114,
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Monopole-based universal interaction V,,,

(a) central force :
Gaussian

(strongly renormalized)

MU ~

Bare tensor

— Renormalization

persistency
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Gaussian central
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empirical
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(b) tensor force :

T+ p meson
exchange
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Refined V,,, for the shell-model

—

° tensor: m+p Central force fitted with six parameters

: : O—r—71 7T 1T 717 7 17 17 17 17 1771
* spin-orbit: M3Y

- (a) T=0 central forces -
— Works in some cases

e central: to be close to GXPF1

—

g -
=
£
>

DI (\ ® CXPFIB |

A—d refined VMU

— Including “density dependence” to i

better fit empirical interactions

\ 4 !
a good guide for a shell-model

S0 e
interaction without direct fitting to ff I ’_’\’\.
>

experiment 1

|

&

=
|

|
p]
o
I~
Y—
|

T T T
_ (b) T=1 central forces

f5-p1 —
p3-p1 —

f5-f5 —
p3-p3 —
f7-f5 —
f7-p3 —
f7-p1 —
f5-p3 —

|
L
=

Y. Utsuno et al., EP) Web of Conferences 66, 02106 (2014).



T=1 monopole: case of sd-pf shell

* SDPF-MU interaction based on the refined V,,,
— USD for the sd shell and GXPF1B for the pf shell

— Refined V,,, for the cross-shell
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S. R. Stroberg, A. Gade et al., Phys. Rev. C 91, 041302(R) (2015).
Cross-shell of SDPF-U: two-body G martix



Evolution of unnatural-parity states in Si
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Position of g4, in n-rich Ca isotopes

* Jy orbit in neutron-rich Ca isotopes

— Plays a crucial role in determining the drip
line and the double magicity in ®°Ca

— Unnatural-parity states are examined.
e Determining SPE of sdg
— gq,: to reproduce the 9/2*; of >'Ti

— other sdg: to follow schematic spin-orbit

splitting
Optical pot. B4 CA
C?S(gy),) 0.54 0.37 0.47

What happens in Ca levels?
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Systematics of the 3-, state in even-A Ca

e Three calculations 121111 .
- (a) ;
A) excitations from sd to pf only S 10 (sdg)"”’ ’
o . 8+ -
B) excitations from pf to sdg only __ﬁ'i
= 6 -
C) full 1hw configurations I :
e 4_V e i
LLI L i
o 3_1 levels oL full1hw 7
_ sd-pfcalc. obLL 1 1 | | ||
1001 ' 1 | B n(sd)”
e good agreement for N <28 < v(sd)”
e large deviation for N > 28 E || ™ v(sdg)”
— full 1hw calc. = |
S |
e Strong mixing with the sdg S i
configuration accounts for 0_

the stable positioning of the 20 22 24 25 28 30 32 34

3" levels.



Systematics of the 9/2+1 state in odd -A Ca

e 9/2* in the sd-pf calculation

— Core-coupled state

— Located stably at 5-6 MeV
e 9/2* inthe pf-sdg calculation
— Sharply decreasing due to the shift
of the Fermi level

e 9/2* inthe full 1hw calculation

— 3-4 MeV up to N=33 but drops
considerably at N=35

— The state at N=55 is nearly a single-
particle character.
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Application to photonuclear reaction

N. Shimizu et al., in preparation; Y. Utsuno et al., Prog. Nucl. Ener. 82, 102 (2015).

A good Hamiltonian for the full 1Aw space is constructed.

It is expected that photonuclear reaction, dominated by E1
excitation, is well described with this shell-model calculation:

16m3E
Oaps(E) = 9%c Sg1(E)

with Sz, (E) = )., B(E1;g.s.» v)6(E — E,, + E,)

Shell-model calculation provides good level density, including non-

collective levels, the coupling to which leads to the width of GDR.

Application of shell model to photonuclear reaction has been very
limited due to computational limitation.

— Sagawa & Suzuki (O isotopes), Brown (2°8Pb), Ormand & Johnson (ab initio)



Lanczos strength function method

e Itis almost impossible to calculate all the eigenstates concerned
using the exact diagonalization.

e Moment method of Whitehead [Phys. Lett. B 89, 313 (1980)]

— The shape of the strength function can be obtained with much less Lanczos
iterations.

1. Take an initial vector: v; = T(E1)|g.s.)

2. Follow the usual Lanczos procedure

r/2
+Eo)?+('/2)?
by summing up all the eigenstates v in the Krylov subspace with an

3. Calculate the strength function };, B(E1; g.s.— v) % (E—E

appropriate smoothing factor I until good convergence is achieved.

— See Caurier et al., Rev. Mod. Phys. 77, 427 (2005), for application to
Gamow-Teller.
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e GDR peak height: overestimated
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Beyond 1hAw calculation

(1+3)hw M-Scheme dimension for Ca isotopes
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 3hw states in the sd-pf-sdg shell are included.

— No single-nucleon excitation to the 3hw above shell

e Dimension becomes terrible!



KSHELL: MPI + OpenMP hybrid code

N. Shimizu, arXiv:1310.5431 [nucl-th]
e M-scheme code

— “On the fly”: Matrix Parallel performance  *°Ni, pf-shell 10°dim.
elements are not stored in sol
memory (analogous to

ANTOINE and MSHELL64)

e Good parallel efficiency

Speedup

— Owing to categorizing basis
states into “partition”, 20
which stands for a set of i

basis states with the same e

sub-shell occupancies 0 512 1024
number of cores

time/iteration : 25 min. (16 cores) = 30 sec. (1024 cores)



Removal of spurious center-of-mass motion

Usual prescription of Lawson and Gloeckner
H' = H + fH;y with § = 10hw/A MeV

— Confirming that eigenstates are well separated

0.6—
*0Ca (1+3)hw calc.
705 Lanczos iter.
0.4+
£
)
0.2
o8} spurious states removed spurious states
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Effect of correlation

200
150
2 0 I
£ 100
o) K 1hw 16.5
: (1+3)hw 13.6
50
i MCSM 50 dim. 10.1
%

e GDR peak height is suppressed and improved with increasing
ground-state correlation.

 Low-energy tail is almost unchanged.
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Development of pygmy dipole resonance

photoabsorption cross section (mb)
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PDR develops for A > 50, but the tail of GDR makes the peak less

pronounced.



B decay

e Describing the Gamow-Teller

strength for very neutron-rich J<

nuclei using the shell model is i

t o
a big challenge because a
large model space is required forbidden
. ey /7
to satisfy the sum rule. transition .,

Most of previous shell-model
studies were one-major-shell
calculations such as the pf-shell
calc.

proton neutron



sd-pf case: example of multi major shell

e (Calculation for Z< 20, N > 20 nuclei

— Model space: Ohw state for the parent state and 1hw states in the sd-pf shell
for the daughter states

e Satisfying the lkeda sum rule
* Applicable to all the nuclei except the “island of inversion”

— SDPF-MU interaction

or
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Half lives and delayed neutron probabilities

1 1

t1/2 it1/2(i)
* Calculate the GT distribution with
the Lanczos strength function S

method until convergence

e P_isevaluated by the partial half-
lives with E, > S_.

Comparison with recent data

half
lives RIBF Expt. Calc.

37| 11.5(4)ms  11.0 ms (5/2%)
38A 9.0(7) ms 8.3ms(5),8.8ms (0)  quenching factor: 0.77

K. Steiger, ..., Y. Utsuno, N. Shimizu et al., accepted in EPJA.



half life (s)

Systematics of even-A S and Ar isotopes

10° — , , , , S. Yoshida et al.
10°- ® -
10° S 7
Delayed neutron emission

10°F Ar - probability (P,)
o' | Expt. Calc.

443 18(3)% 16%
10°F - S0Ar  35(10)% 48%
107 7
jo2b——L o L . | R B

20 22 24 26 28 30 32 34

N

qguenching factor: 0.77
Q values used: experimental or AME2012 evaluation (*3>%Ar and 46S)



Summary

Recent development in large-scale shell-model calculations
(methodology, computing, effective interaction ...) allows to extend
its frontier for heavier nuclei and higher excited states.

We focus on unnatural-parity states and their E1 and Gamow-Teller
strength functions in exotic nuclei in the sd-pf shell region, which
also provide a good testing ground for effective interaction.

Photonuclear cross sections are well reproduced in stable Ca
isotopes, and pygmy dipole resonances are predicted for N > 28.

The ground-state correlation works to reduce the B(E1) sum.

Half lives and delayed neutron emission probabilities are excellently
reproduced for N > 20 exotic nuclei. More systematic calculations
will be performed.
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