Shell-model study of strength function in the *sd-pf* shell region

Yutaka Utsuno

Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of Tokyo

Collaborators

- Noritaka Shimizu (CNS, Univ. Tokyo)
- Takaharu Otsuka (Univ. Tokyo/CNS/MSU/KU Leuven)
- Michio Honma (Univ. Aizu)
- Sota Yoshida (Univ. Tokyo)
- Shuichiro Ebata (Hokkaido Univ.)

Frontier of large-scale shell-model calculations

Objectives of this study

- Unnatural-parity states and strength function in the sd-pf shell
 - More than one major shell are required.
- Systematics of unnatural-parity states and *E*1 strength function in Ca isotopes
- 2. Gamow-Teller strength function of neutron-rich nuclei

Model space and effective interaction

- Model space
 - Full *sd-pf-sdg* shell for E1 calc. or Full *sd-pf* shell for GT calc.
 - $1\hbar\omega$ [or (1+3) $\hbar\omega$] calculation in the given model space
- Effective interaction
 - SDPF-MU for the *sd-pf* shell or its natural extension to the *sd-pf-sdg* shell:

Y. Utsuno et al., Phys. Rev. C 86,

Y. Utsuno et al., Phys. Rev. Lett. 114,

051301(R) (2012).

032501 (2015).

• USD (sd) + GXPF1B (pf) + the refined V_{MU} for the remaining

Monopole-based universal interaction V_{MU}

Refined $V_{\rm MU}$ for the shell-model

- tensor: $\pi + \rho$
- spin-orbit: M3Y
 - Works in some cases
- central: to be close to GXPF1
 - Including "density dependence" to better fit empirical interactions

a good guide for a shell-model interaction without direct fitting to experiment

Central force fitted with six parameters

Y. Utsuno et al., EPJ Web of Conferences 66, 02106 (2014).

T=1 monopole: case of *sd-pf* shell

- SDPF-MU interaction based on the refined V_{MU}
 - USD for the sd shell and GXPF1B for the pf shell
 - Refined $V_{\rm MU}$ for the cross-shell

S. R. Stroberg, A. Gade et al., Phys. Rev. C 91, 041302(R) (2015).

Cross-shell of SDPF-U: two-body G martix

Evolution of unnatural-parity states in Si

The gap changes with increasing neutrons in $f_{7/2}$ depending on the T=1 monopole strength.

Unnatural-parity states are good indicators of the gap.

*d*_{5/2}

 A recent experiment at NSCL supports nearly zero value of *T*=1 cross-shell monopole matrix elements.

S. R. Stroberg, A. Gade et al., Phys. Rev. C 91, 041302(R) (2015).

Position of $g_{9/2}$ in *n*-rich Ca isotopes

- $g_{9/2}$ orbit in neutron-rich Ca isotopes
 - Plays a crucial role in determining the drip line and the double magicity in ⁶⁰Ca
 - Unnatural-parity states are examined.
- Determining SPE of *sdg*
 - $-g_{9/2}$: to reproduce the 9/2⁺₁ of ⁵¹Ti
 - other *sdg*: to follow schematic spin-orbit splitting

		Expt.	Calc.
Optical pot.	B4	CA	
C ² S(g _{9/2})	0.54	0.37	0.47

What happens in Ca levels?

Systematics of the 3⁻¹ state in even-A Ca

- Three calculations
 - A) excitations from *sd* to *pf* only
 - B) excitations from *pf* to *sdg* only
 - C) full $1\hbar\omega$ configurations
- 3^{-}_{1} levels
 - *sd-pf* calc.
 - good agreement for $N \le 28$
 - large deviation for *N* > 28
 - full $1\hbar\omega$ calc.
 - Strong mixing with the sdg configuration accounts for the stable positioning of the 3⁻ levels.

Systematics of the $9/2_{1}^{+}$ state in odd-A Ca

- 9/2⁺₁ in the *sd-pf* calculation
 - Core-coupled state
 - Located stably at 5-6 MeV
- 9/2⁺₁ in the *pf-sdg* calculation
 - Sharply decreasing due to the shift of the Fermi level
- $9/2_{1}^{+}$ in the full $1\hbar\omega$ calculation
 - 3-4 MeV up to N=33 but drops considerably at N=35
 - The state at N=55 is nearly a singleparticle character.

Application to photonuclear reaction

N. Shimizu et al., in preparation; Y. Utsuno et al., Prog. Nucl. Ener. 82, 102 (2015).

- A good Hamiltonian for the full $1\hbar\omega$ space is constructed.
- It is expected that photonuclear reaction, dominated by *E*1 excitation, is well described with this shell-model calculation:

$$\sigma_{\rm abs}(E) = \frac{16\pi^3 E}{9\hbar c} S_{E1}(E)$$

with $S_{E1}(E) = \sum_{\nu} B(E1; g. s. \rightarrow \nu) \delta(E - E_{\nu} + E_0)$

- Shell-model calculation provides good level density, including noncollective levels, the coupling to which leads to the width of GDR.
- Application of shell model to photonuclear reaction has been very limited due to computational limitation.
 - Sagawa & Suzuki (O isotopes), Brown (²⁰⁸Pb), Ormand & Johnson (ab initio)

Lanczos strength function method

- It is almost impossible to calculate all the eigenstates concerned using the exact diagonalization.
- Moment method of Whitehead [Phys. Lett. B 89, 313 (1980)]
 - The shape of the strength function can be obtained with much less Lanczos iterations.
 - 1. Take an initial vector: $\overrightarrow{v_1} = T(E1)|g.s.\rangle$
 - 2. Follow the usual Lanczos procedure
 - 3. Calculate the strength function $\sum_{\nu} B(E1; g. s. \rightarrow \nu) \frac{1}{\pi} \frac{\Gamma/2}{(E E_{\nu} + E_0)^2 + (\Gamma/2)^2}$ by summing up all the eigenstates ν in the Krylov subspace with an appropriate smoothing factor Γ until good convergence is achieved.
 - See Caurier et al., Rev. Mod. Phys. 77, 427 (2005), for application to Gamow-Teller.

Convergence of strength distribution

Comparison with experiment for ⁴⁸Ca

- GDR peak height: overestimated
- Low-lying states: about 0.7 MeV shifted

Beyond $1\hbar\omega$ calculation

- $3\hbar\omega$ states in the *sd-pf-sdg* shell are included.
 - No single-nucleon excitation to the $3\hbar\omega$ above shell
- Dimension becomes terrible!

KSHELL: MPI + OpenMP hybrid code

- *M*-scheme code
 - "On the fly": Matrix
 elements are not stored in
 memory (analogous to
 ANTOINE and MSHELL64)
- Good parallel efficiency
 - Owing to categorizing basis states into "partition",
 which stands for a set of basis states with the same sub-shell occupancies

N. Shimizu, arXiv:1310.5431 [nucl-th]

time/iteration : 25 min. (16 cores) \Rightarrow 30 sec. (1024 cores)

Removal of spurious center-of-mass motion

- Usual prescription of Lawson and Gloeckner $H' = H + \beta H_{CM}$ with $\beta = 10\hbar\omega/A$ MeV
 - Confirming that eigenstates are well separated

Effect of correlation

- GDR peak height is suppressed and improved with increasing ground-state correlation.
- Low-energy tail is almost unchanged.

Development of pygmy dipole resonance

 PDR develops for A ≥ 50, but the tail of GDR makes the peak less pronounced.

β decay

 Describing the Gamow-Teller strength for very neutron-rich nuclei using the shell model is a big challenge because a large model space is required to satisfy the sum rule.

Most of previous shell-model studies were one-major-shell calculations such as the *pf*-shell calc.

proton

neutron

sd-pf case: example of multi major shell

- Calculation for *Z* < 20, *N* > 20 nuclei
 - Model space: $0\hbar\omega$ state for the parent state and $1\hbar\omega$ states in the *sd-pf* shell for the daughter states
 - Satisfying the Ikeda sum rule
 - Applicable to all the nuclei except the "island of inversion"
 - SDPF-MU interaction

Half lives and delayed neutron probabilities

- $\frac{1}{t_{1/2}} = \sum_i \frac{1}{t_{1/2}(i)}$
- Calculate the GT distribution with the Lanczos strength function method until convergence
- P_n is evaluated by the partial halflives with E_x > S_n.

S _n +	
\bigvee	

Comparison with recent data

K. Steiger, ..., Y. Utsuno, N. Shimizu et al., accepted in EPJA.

Systematics of even-A S and Ar isotopes

quenching factor: 0.77

Q values used: experimental or AME2012 evaluation (^{48,50}Ar and ⁴⁶S)

Summary

- Recent development in large-scale shell-model calculations (methodology, computing, effective interaction ...) allows to extend its frontier for heavier nuclei and higher excited states.
- We focus on unnatural-parity states and their *E*1 and Gamow-Teller strength functions in exotic nuclei in the *sd-pf* shell region, which also provide a good testing ground for effective interaction.
- Photonuclear cross sections are well reproduced in stable Ca isotopes, and pygmy dipole resonances are predicted for N > 28.
- The ground-state correlation works to reduce the B(*E*1) sum.
- Half lives and delayed neutron emission probabilities are excellently reproduced for N > 20 exotic nuclei. More systematic calculations will be performed.