Comparative studies for baryon interactions with

HAL QCD method and Luscher's method

(YITP, Kyoto University)

for HAL QCD Collaboration

- S. Aoki, S. Gongyo, D. Kawai, T. Miyamato (YITP)
- T. Doi, T.Hatsuda, Y. Ikeda (RIKEN)
- F. Etminan (Univ. of Birjand)
- T. Inoue (Nihon Univ.)
- T. Iritani (Stony Brook Univ.)
- N. Ishii, K. Murano (RCNP)
- H. Nemura, K. Sasaki (Univ. of Tsukuba)

Interactions on the Lattice

Luscher's method

M.Luscher (1986, 91)

- Energy spectrum in finite V \rightarrow phase shift by Luscher's formula

$$\Delta E = 2\sqrt{m^2 + k^2} - 2m$$

HAL QCD method

Ishii-Aoki-Hatsuda (2007), Ishii et al. (HAL) (2012)

- NBS wave func. ← → E-indep & non-local "potential"
 - phase shifts by solving Schrodinger eq in infinite V →

$$\left(-\frac{\partial}{\partial t} + \frac{1}{4m}\frac{\partial^2}{\partial t^2} - H_0\right)R(\mathbf{r}, t) = \int d\mathbf{r}' \underline{U(\mathbf{r}, \mathbf{r}')}R(\mathbf{r}', t)$$

E-indep & non-local pot

Interactions on the Lattice

Luscher's method

M.Luscher (1986, 91)

Energy spectrum in finite V → phase shift by Luscher's formula

$$\Delta E = 2\sqrt{m^2 + k^2} - 2m$$

Theoretically equivalent

HAL QCD method

Ishii-Aoki-Hatsuda (2007), Ishii et al. (HAL) (2012)

- NBS wave func. ← → E-indep & non-local "potential"
 - ➔ phase shifts by solving Schrodinger eq in infinite V

$$\left(-\frac{\partial}{\partial t} + \frac{1}{4m}\frac{\partial^2}{\partial t^2} - H_0\right)R(\mathbf{r}, t) = \int d\mathbf{r}' \frac{U(\mathbf{r}, \mathbf{r}')R(\mathbf{r}', t)}{\mathbf{r}'}$$

E-indep & non-local pot

Interactions on the Lattice

Luscher's method

M.Luscher (1986, 91)

– Energy spectrum in finite V →

phase shift by Luscher's formula

• HAL QCD method

Ishii-Aoki-Hatsuda (2007), Ishii et al. (HAL) (2012)

- NBS wave func. ← → E-indep & non-local "potential"
 - phase shifts by solving Schrodinger eq in infinite V

$$\left(-\frac{\partial}{\partial t} + \frac{1}{4m}\frac{\partial^2}{\partial t^2} - H_0\right)R(\mathbf{r}, t) = \int d\mathbf{r}' \frac{U(\mathbf{r}, \mathbf{r}')R(\mathbf{r}', t)}{\mathbf{r}'}$$

E-indep & non-local pot

Luscher vs HAL : NN systems

Reviewed in T.D. PoS LAT2012,009 (+ updates)

HAL method (HAL) : unbound Lushcer's method (PACS-CS (Yamazaki et al.)/NPL/CalLat): bound

Luscher vs HAL : NN systems

Reviewed in T.D. PoS LAT2012,009 (+ updates)

HAL method (HAL) : unbound Lushcer's method (PACS-CS (Yamazaki et al.)/NPL/CalLat): bound

Luscher vs HAL : NN systems

Reviewed in T.D. PoS LAT2012,009 (+ updates)

HAL method (HAL) : unbound Lushcer's method (PACS-CS (Yamazaki et al.)/NPL/CalLat): bound

Luscher's method

HAL method

(Yamazaki et al. / NPL / CalLat)

(HAL Coll.)

Luscher's method

(Yamazaki et al. / NPL / CalLat)

G.S. saturation: NECESSARY

Tune quark source for better saturation ?

HAL method

(HAL Coll.)

G.S. saturation: NOT necessary

E-independence of U(r,r')

- → (elastic) excited scattering states share the same U(r,r')
- ➔ Excited states give signals

Luscher's method

(Yamazaki et al. / NPL / CalLat)

G.S. saturation: NECESSARY

Tune quark source for better saturation ?

(N/A)

HAL method

(HAL Coll.)

G.S. saturation: NOT necessary

E-independence of U(r,r')

- → (elastic) excited scattering states share the same U(r,r')
- ➔ Excited states give signals

<u>Convergence of</u> <u>derivative expansion of U(r,r')</u>

Origin: non-locality of U(r,r')

Luscher's method

(Yamazaki et al. / NPL / CalLat)

G.S. saturation: NECESSARY

Tune quark source for better saturation ?

(N/A)

smeared source
(favor (spurious?) bound states ?)

HAL method

(HAL Coll.)

G.S. saturation: NOT necessary

E-independence of U(r,r')

- → (elastic) excited scattering states share the same U(r,r')
- ➔ Excited states give signals

<u>Convergence of</u> <u>derivative expansion of U(r,r')</u>

Origin: non-locality of U(r,r')

wall source (favor scatt. states ?)

Luscher's method

(Yamazaki et al. / NPL / CalLat)

G.S. saturation: NECESSARY

Tune quark source for better saturation ?

(N/A)

HAL method

(HAL Coll.)

G.S. saturation: NOT necessary

E-independence of U(r,r')

- → (elastic) excited scattering states share the same U(r,r')
- ➔ Excited states give signals

<u>Convergence of</u> <u>derivative expansion of U(r,r')</u>

Origin: non-locality of U(r,r')

smeared source (favor (spurious?) bound states ?)

wall source (favor scatt. states ?)

Crucial test to establish a reliable LQCD method

Luscher & HAL w/ wall & smeared src

- Employ the same config used in previous Luscher method study
 - Confs by Yamazaki et al. : Claimed that NN are bound (Luscher w/ (exp-)smeared src)

T. Yamazaki et al. PRD86(2012)074514

High statistics (e.g., 48^4 smeared: x5 #stat of Yamazaki et al.)

• Nf=2+1 clover, $m\pi = 0.51$ GeV, $m_N = 1.32$ GeV, $m_{\Xi} = 1.46$ GeV, 1/a=2.2GeV

L	volume	smeared src.	wall src.	
3.6 fm	$40^3 \times 48$	200 conf. \times 256 meas.	200 conf. \times 48 meas.	
4.3 fm	$48^3 \times 48$	800 conf. \times 256 meas.	800 conf. \times 48 meas.	• Figs in this talk
5.8 fm	$64^3 \times 64$	327 conf. \times 64 meas.	327 conf. \times 128 meas.	

- First study: we use $\Xi\Xi \, {}^{1}S_{0} \,$ system (~ NN ${}^{1}S_{0}$, but much better S/N)
- (1) Luscher's method: wall vs smeared
- (2) HAL method: wall vs smeared
- (3) Comparison of Luscher vs HAL

$$\Delta E = m_{\Xi\Xi} - 2m_{\Xi} \qquad \frac{R(\vec{r}, t) = G_{\Xi\Xi}(\vec{r}, t)/G_{\Xi}(t)^2}{R(t) = \sum_{\vec{r}} R(\vec{r}, t)}$$

wall

Excellent plateaux for both cases ?

6

112

$$\Delta E = m_{\Xi\Xi} - 2m_{\Xi} \qquad \frac{R(\vec{r}, t) = G_{\Xi\Xi}(\vec{r}, t)/G_{\Xi}(t)^2}{R(t) = \sum_{\vec{r}} R(\vec{r}, t)}$$

wall

Excellent plateaux for both cases ?

However, we need a few – 10 MeV precision

1.19

$$\Delta E = m_{\Xi\Xi} - 2m_{\Xi} \qquad \frac{R(r,t) = G_{\Xi\Xi}(r,t)/G_{\Xi}(t)^2}{R(t) = \sum_{\vec{r}} R(\vec{r},t)}$$

wall

1.12

NIC

$$\Delta E = m_{\Xi\Xi} - 2m_{\Xi} \qquad \frac{R(\vec{r}, t) = G_{\Xi\Xi}(\vec{r}, t)/G_{\Xi}(t)^2}{R(t) = \sum_{\vec{r}} R(\vec{r}, t)}$$

 D/\rightarrow

wall

smeared

(1)2

NIC

$$\Delta E = m_{\Xi\Xi} - 2m_{\Xi} \qquad \frac{R(\vec{r},t) = G_{\Xi\Xi}(\vec{r},t)/G_{\Xi}(t)^2}{R(t) = \sum_{\vec{r}} R(\vec{r},t)}$$

wall

smeared

. \

(1)2

NIC

$$\Delta E = m_{\Xi\Xi} - 2m_{\Xi} \qquad \frac{R(\vec{r},t) = G_{\Xi\Xi}(\vec{r},t)/G_{\Xi}(t)^2}{R(t) = \sum_{\vec{r}} R(\vec{r},t)}$$

wall

smeared

.

(1)2

NIC

 \rightarrow

Still reasonably good plateaux for both cases ?

7

10

Still reasonably good plateaux for both cases ?

However ...

$$\Delta E = m_{\Xi\Xi} - 2m_{\Xi} \qquad \frac{R(\vec{r},t) = G_{\Xi\Xi}(\vec{r},t)/G_{\Xi}(t)^2}{R(t) = \sum_{\vec{r}} R(\vec{r},t)}$$

wall

smeared

wall

smeared

wall

smeared

Still reasonably good plateaux for both cases ?

wall

smeared

Still reasonably good plateaux for both cases ?

Let's plot in the same figure

Wall and Smeared are Inconsistent: one cannot judge which (or neither) is reliable

Effective mass for ΔE is dangerous

"Fake plateau" can easily appear due to 1-body and 2-body cancellation

Ground state saturation is very difficult

(2) HAL method: wall vs smeared src

(2) HAL method: wall vs smeared src (cont'd)

smeared & wall in the same fig

Smeared/Wall almost agree : t-dep HAL method works excellently Smeared tends to converge to Wall w/ larger t, but deviation still exists ¹²

(2) HAL method: analysis w/ LO + NLO potentials

 $U(\vec{r}, \vec{r}') = \left[V_{\rm LO}(\vec{r}) + V'_{\rm NLO}(\vec{r}) \nabla^2 \right] \delta(\vec{r} - \vec{r}') \quad \text{(derivative expansion)}$

Combined analyses of wall & smeared data

The difference from wall / smeared are not fake but physics ($V_{NLO}(r)$)

New method to obtain NLO potential !

We also found

(3) Comparison between Luscher and HAL

(3) Comparison between Luscher and HAL

Summary

- Systematic study btw Luscher method and HAL method
 - Nf=2+1 clover, m(pi) = 0.51 GeV, L = (2.9), 3.6, 4.3, 5.8fm
 - wall & smeared src for $\Xi\Xi$ ¹S₀ system

Luscher's method

- G.S. saturation is necessary, but difficult to achieve ("Fake Plateau Crisis")
 - wall and smeared are inconsistent

HAL QCD method

- t-dep HAL method works well w/o G.S. saturation
- V(r) (smeared) \rightarrow V(r) (wall) w/ larger t
- LO + (small) NLO potential can explain the remaining difference
 - New method to determine NLO potential
- FV spectra from V(r) are consistent w/ Luscher's method from wall src

"potential" is useful tool to reliably extract phase shifts in LQCD

- Prospects / Comments
 - We are increasing #stat \rightarrow NN \rightarrow direct comparison w/ Yamazaki et al.
 - Luscher's method needs breakthrough at least one should check src-dependence

Summary

- Systematic study btw Luscher method and HAL method
 - Nf=2+1 clover, m(pi) = 0.51 GeV, L = (2.9), 3.6, 4.3, 5.8fm
 - wall & smeared src for $\Xi\Xi$ ¹S₀ system

Luscher's method

- G.S. saturation is necessary, but difficult to achieve ("Fake Plateau Crisis")
 - · wall and smeared are inconsistent

HAL QCD method

- t-dep HAL method works well w/o G.S. saturation
- V(r) (smeared) \rightarrow V(r) (wall) w/ larger t
- LO + (small) NLO potential can explain the remaining difference
 - New method to determine NLO potential
- FV spectra from V(r) are consistent w/ Luscher's method from wall src

"potential" is useful tool to reliably extract phase shifts in LQCD

- Prospects / Comments
 - We are increasing #stat \rightarrow NN \rightarrow direct comparison w/ Yamazaki et al.
 - Luscher's method needs breakthrough at least one should check src-dependence

Backup Slides

c.f. Yamazaki et al. (2012) by exp.src (smeared)

 $\Delta E = 7.3(1.7)(0.5) \text{ MeV} @ t=[10,14]$ $\Delta E = 11.1(1.7)(0.3) \text{ MeV} @ t=[10,14]$

N.B. our #stat for smeared is > x5 of Yamazaki et al.