Magnetic properties of light nuclei from lattice QCD

William Detmold, MIT

Computational Advances in Nuclear and Hadron Physics (CANHP 2015), Kyoto, Oct 7th 2015

Magnetic properties of light nuclei from lattice QCD

I. Nuclei in LQCD

II. Magnetic moments & polarisabilities [NPLQCD PRL 113, 252001 (2014), 1506.05518]

III. Thermal neutron capture cross-section: $np \rightarrow d\gamma$ [NPLQCD PRL 115, 132001 (2015)]

IV. Nuclear physics at the Intensity Frontier

William Detmold, MIT

Computational Advances in Nuclear and Hadron Physics (CANHP 2015), Kyoto, Oct 7th 2015

Nuclear physics from Lattice QCD

From Quarks to the Cosmos

- Complexity of nuclear physics emerges from the Standard Model
 - Same underlying physics at vastly different scales
 - EM, weak and strong (QCD) interactions
 - Only relevant parameters: $\Lambda_{ ext{QCD}}$, $m_{ ext{u,d,s}}$, lpha

neutron stars & supernovae

Quantum Chromodynamics

- Lattice QCD: tool to deal with quarks and gluons
 - Formulate problem as functional integral over quark and gluon d.o.f. on R₄

$$\langle \mathcal{O} \rangle = \int dA_{\mu} dq d\bar{q} \, \mathcal{O}[q, \bar{q}, A] e^{-S_{QCD}[q, \bar{q}, A]}$$

- Discretise and compactify system
 - Finite but large number of d.o.f $(\sim 10^{10})$
- Integrate via importance sampling (average over important configurations)
- Undo the harm done in previous steps

Spectroscopy

- How do we calculate the proton mass?
- Create three quarks at a source: and annihilate the three quarks at sink far from source
- QCD adds all the quark anti-quark pairs and gluons automatically: only eigenstates with correct q#'s propagate

Spectroscopy

 Correlation decays exponentially with distance

 $C(t) = \sum_{n \leftarrow all \text{ eigenstates with q#'s of proton}} Z_n \exp(-E_n t)$ at late times

 $\rightarrow Z_0 \exp(-E_0 t)$

 Ground state energy revealed through "effective mass plot"

$$M(t) = \ln \left[\frac{C(t)}{C(t+1)} \right] \stackrel{t \to \infty}{\longrightarrow} E_0$$

- LQCD is an mature field: 30+ years since first calculations
 - ~2000: QCD (no "quenched" mutilation)
 - ~2008: QCD with physical quark masses

- LQCD is an mature field: 30+ years since first calculations
 - ~2000: QCD (no "quenched" mutilation)
 - ~2008: QCD with physical quark masses
- For simple observables precision science

- LQCD is an mature field: 30+ years since first calculations
 - ~2000: QCD (no ''quenched'' mutilation)
 - ~2008: QCD with physical quark masses
- For simple observables precision science
 - Combine with experiment to determine SM parameters

- LQCD is an mature field: 30+ years since first calculations
 - ~2000: QCD (no ''quenched'' mutilation)
 - ~2008: QCD with physical quark masses
- For simple observables precision science
 - Combine with experiment to determine SM parameters
 - Verify CKM paradigm

- LQCD is an mature field: 30+ years since first calculations
 - ~2000: QCD (no ''quenched'' mutilation)
 - ~2008: QCD with physical quark masses of lattice
- For simple observables precision science
 - Combine with experiment to determine SM parameters
 - Verify CKM paradigm
 - SM predictions with reliable uncertainty quantification

QCD Spectrum

- After 30 years of developments
- Ground state hadron spectrum reproduced

QCD Spectrum

Standard Model Spectrum

Precise isospin mass splittings in QCD+QED

Standard Model Spectrum

Precise isospin mass splittings in QCD+QED

- Nuclear physics is Standard Model physics
 - QCD (+ electroweak)
 - Can compute the mass of lead nucleus ... in principle
- In practice: a hard problem
 - QCD in non-perturbative domain
 - Physics at multiple scales

- Nuclear physics is Standard Model physics
 - QCD (+ electroweak)
 - Can compute the mass of lead nucleus ... in principle
- In practice: a hard problem
 - QCD in non-perturbative domain
 - Physics at multiple scales

- Nuclear physics is Standard Model physics
 - QCD (+ electroweak)
 - Can compute the mass of lead nucleus ... in principle
- In practice: a hard problem
 - QCD in non-perturbative domain
 - Physics at multiple scales

- Nuclear physics is Standard Model physics
 - QCD (+ electroweak)
 - Can compute the mass of lead nucleus ... in principle
- In practice: a hard problem
- At least two exponentially difficult challenges
 - Noise: statistical uncertainty grows exponentially with A
 - Contraction complexity grows factorially

Importance sampling of QCD functional integrals
 Correlators determined stochastically

Ν

Importance sampling of QCD functional integrals
 Correlators determined stochastically

Proton

signal $\sim \langle C \rangle \sim \exp[-M_N t]$

Ν

Importance sampling of QCD functional integrals
 Correlators determined stochastically

Proton

- signal $\sim \langle C \rangle \sim \exp[-M_N t]$
- Variance determined by

$$\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2$$

[Lepage '89]

Ν

- Importance sampling of QCD functional integrals
 Correlators determined stochastically
- Proton
 - signal $\sim \langle C \rangle \sim \exp[-M_N t]$
 - Variance determined by

$$\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2$$

- Importance sampling of QCD functional integrals
 Correlators determined stochastically
- Proton
 - signal $\sim \langle C \rangle \sim \exp[-M_N t]$
 - Variance determined by

$$\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2$$

- Importance sampling of QCD functional integrals
 Correlators determined stochastically
- Proton
 - signal $\sim \langle C \rangle \sim \exp[-M_N t]$
 - Variance determined by

$$\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2$$

noise ~ $\sqrt{\langle CC^{\dagger} \rangle} \sim \exp[-3/2M_{\pi}t]$

Ν

- Importance sampling of QCD functional integrals
 Correlators determined stochastically
 - Proton signal $\sim \langle C \rangle \sim \exp[-M_N t]$

Variance determined by

$$\sigma^2(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^2$$

noise ~ $\sqrt{\langle CC^{\dagger} \rangle} \sim \exp[-3/2M_{\pi}t]$

$$\frac{\text{signal}}{\text{noise}} \sim \exp\left[-(M_N - 3/2m_\pi)t\right]$$

Ν

- Importance sampling of QCD functional integrals
 Correlators determined stochastically
 - Proton signal $\sim \langle C \rangle \sim \exp[-M_N t]$

Variance determined by

$$\sigma^{2}(C) = \langle CC^{\dagger} \rangle - |\langle C \rangle|^{2}$$

noise ~ $\sqrt{\langle CC^{\dagger} \rangle} \sim \exp[-3/2M_{\pi}t]$

$$\frac{\text{signal}}{\text{noise}} \sim \exp\left[-(M_N - 3/2m_\pi)t\right]$$

For nucleus A: $\frac{\text{signal}}{\text{noise}} \sim \exp\left[-A(M_N - 3/2m_\pi)t\right]$

Ν

[Lepage '89]

High statistics study using anisotropic lattices (fine temporal resolution)

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

No? trouble with baryons

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

No? trouble with baryons

High statistics study using anisotropic lattices (fine temporal resolution)

Golden window of time-slices where signal/noise const

Signal-noise optimisation

Matrix of correlation functions

$$C_{ij}(\tau) = \langle \Omega | \hat{\mathcal{O}}'_i e^{-\hat{H}\tau} \hat{\mathcal{O}}^{\dagger}_j | \Omega \rangle$$
$$= \sum_n Z'_{in} Z^*_{jn} e^{-E_n \tau}$$

- Solve generalised eigenvalue problem to optimise overlap onto eigenstates: variational method of Michael/Lüscher&Wolff
- Solve optimisation problem to maximize signal-noise ratio [WD & M Endres, PRD 2014]
 - Very large enhancements theoretically possible
- Combination of both

Signal-noise optimisation

5x5 correlation matrix

τ

[WD & M Endres, PRD 2014]
Bound states at finite volume

- Focus on bound states
- Two particle scattering amplitude in infinite volume

$$\mathcal{A}(p) = \frac{8\pi}{M} \frac{1}{p \cot \delta(p) - ip}$$

bound state at $p^2 = -\gamma^2$ when $\cot \delta(i\gamma) = i$

Scattering amplitude in finite volume (Lüscher method)

$$\cot \delta(i\kappa) = i - i \sum_{\vec{m} \neq 0} \frac{e^{-|\vec{m}|\kappa L}}{|\vec{m}|\kappa L} \qquad \qquad \kappa \stackrel{L \to \infty}{\longrightarrow} \gamma$$

- Need multiple volumes
- More complicated for n>2 body bound states

Ex: H dibaryon ($\Lambda\Lambda$)

Effective mass plots of energies

- Multiple volumes needed to disentangle bound state from attractive scattering state
- Bayes factor: test bound state vs scattering state model

Dibaryons

- H dibaryon, di-neutron and deuteron
- More exotic channels also considered ($\Xi\Xi$, n Ω and $\Omega\Omega$)
- Clearly more work needed at lighter masses

- Quarks need to be tied together in all possible ways
 - $\square N_{\text{contractions}} = N_u! N_d! N_s!$

- Managed using algorithmic trickery [WD & Savage; Doi & Endres; WD & Orginos; Günther et al.]
 - Study up to N=72 pion systems, A=5 nuclei

- Many baryon correlator construction is messy
- Interpolating fields express weighted sums $\sum_{k=1}^{N_w} z^{(a_1,a_2\cdots a_{n_q}),k} \sum_{i=1}^{N_w} i = (i = 1)$

$$\bar{\mathcal{N}}^h = \sum_{k=1}^{N} \tilde{w}_h^{(a_1, a_2 \cdots a_{n_q}), k} \sum_{\mathbf{i}} \epsilon^{i_1, i_2, \cdots, i_{n_q}} \bar{q}(a_{i_1}) \bar{q}(a_{i_2}) \cdots \bar{q}(a_{i_{n_q}})$$

- Generation of weights can be automated (symbolic c++ code) for given quantum numbers
 - Specify final quantum numbers (spin, isospin, strangeness etc)
 - Build up from states of smaller quantum numbers using rules of eg angular momentum addition
- Contraction just reads in weights and can be implemented independent of the particular process being considered

- Given a complex many baryon system to perform contractions for, always possible to group colour singlets at one end (sink)
- Contractions can be written in terms of baryon blocks (objects that are contracted at sink)
- A particular set of quantum numbers b for the block is select by a weighted sum of components of quark propagators

$$\mathcal{B}_{b}^{a_{1},a_{2},a_{3}}(\mathbf{p},t;x_{0}) = \sum_{\mathbf{x}} e^{i\mathbf{p}\cdot\mathbf{x}} \sum_{k=1}^{N_{B(b)}} \tilde{w}_{b}^{(c_{1},c_{2},c_{3}),k} \sum_{\mathbf{i}} \epsilon^{i_{1},i_{2},i_{3}}$$

 $\times S(c_{i_1}, x; a_1, x_0) S(c_{i_2}, x; a_2, x_0) S(c_{i_3}, x; a_3, x_0)$

 Can be generalised to multi-baryon blocks if desired although storage requirements rapidly increase

 $\begin{aligned} & \left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0)\right]_{U} = \int \mathcal{D}q\mathcal{D}\bar{q} \ e^{-S_{QCD}[U]} \ \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \ \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k'} \times \\ & \sum_{j} \sum_{i} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}}) q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}}) \bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ & = e^{-S_{eff}[U]} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \ \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ & \sum_{i} \sum_{i} \sum_{i} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}}) \end{aligned}$

Make a particular choice of correlation function (momentum projection at sink) and express in terms of blocks (quark-hadron level contraction)

 $\begin{aligned} & \left[\mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0)\right]_{U} = \int \mathcal{D}q\mathcal{D}\bar{q} \ e^{-S_{QCD}[U]} \ \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \ \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ & \sum_{j} \sum_{i} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} q(a'_{j_{n_{q}}}) \cdots q(a'_{j_{2}})q(a'_{j_{1}}) \times \bar{q}(a_{i_{1}})\bar{q}(a_{i_{2}}) \cdots \bar{q}(a_{i_{n_{q}}}) \\ & = e^{-S_{eff}[U]} \ \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \ \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \\ & \sum_{j} \sum_{i} \epsilon^{j_{1},j_{2},\cdots,j_{n_{q}}} \epsilon^{i_{1},i_{2},\cdots,i_{n_{q}}} S(a'_{j_{1}};a_{i_{1}}) S(a'_{j_{2}};a_{i_{2}}) \cdots S(a'_{j_{n_{q}}};a_{i_{n_{q}}}) \end{aligned}$

Or write as determinant (quark-quark level contraction)

$$\langle \mathcal{N}_{1}^{h}(t)\bar{\mathcal{N}}_{2}^{h}(0)\rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D}\mathcal{U} \ e^{-\mathcal{S}_{eff}} \sum_{k'=1}^{N'_{w}} \sum_{k=1}^{N_{w}} \tilde{w}_{h}^{\prime(a'_{1},a'_{2}\cdots a'_{n_{q}}),k'} \tilde{w}_{h}^{(a_{1},a_{2}\cdots a_{n_{q}}),k} \times \det G(\mathbf{a}';\mathbf{a})$$

$$\text{where} \qquad G(\mathbf{a}';\mathbf{a})_{j,i} = \begin{cases} S(a'_{j};a_{i}) & a'_{j} \in \mathbf{a}' \text{ and } a_{i} \in \mathbf{a} \\ \delta_{a'_{j},a_{i}} & \text{otherwise} \end{cases}$$

$$\text{Determinant can be evaluated in polynomial number of }$$

 Determinant can be evaluated in polynomial number of operations (LU decomposition)

Quark-quark determinant based contraction method

Many baryon correlators using determinant-based method

Quark-quark determinant based contraction method 4 He (SP) 40 20 $log_{10}C(t)$ 0 -20 -40 10 30 20 40 0 t/a

Quark-quark determinant based contraction method ⁸Be (SP) 60 40 20 $log_{10}C(t)$ 0 -20 -40 -60 30 10 20 40 0 t/a

(low statistics, single volume)

WD, Kostas Orginos, Phys.Rev. D87 (2013) 114512

Quark-quark determinant based contraction method ²⁸Si (SP) 200 100 $log_{10}C(t)$ 0 -100 -200 10 30 20 40 0 t/a

Hypernuclei

[NPLQCD Phys.Rev. D87 (2013), 034506]

NPLQCD study at SU(3) point (physical m_s)

- Isotropic clover lattices
- Single lattice spacing
- Multiple volumes: 3.4, 4.5, 6.7 fm
- High statistics

Label	L/b	T/b	β	$b m_q$	$b \; [\mathrm{fm}]$	$L [{\rm fm}]$	$T [\mathrm{fm}]$	$m_{\pi} [{ m MeV}]$	$m_{\pi} L$	$m_{\pi} T$	$N_{\rm cfg}$	$N_{\rm src}$
А	24	48	6.1	-0.2450	0.145	3.4	6.7	806.5(0.3)(0)(8.9)	14.3	28.5	3822	48
В	32	48	6.1	-0.2450	0.145	4.5	6.7	806.9(0.3)(0.5)(8.9)	19.0	28.5	3050	24
С	48	64	6.1	-0.2450	0.145	6.7	9.0	806.7(0.3)(0)(8.9)	28.5	38.0	1212	32

Nuclei (A=3,4)

[NPLQCD Phys.Rev. D87 (2013), 034506]

Light nuclei and hypernuclei

• Light hypernuclear binding energies @ m_{π} =800 MeV

QCD Nuclei (s=0,-1)

Heavy quark universe

[Barnea et al. PRL 2014; see also Kirscher et al. 1506.09048]

- Combine LQCD and nuclear EFT (pionless EFT)
- EFT matching to LQCD determines NN, NNN interactions: allows predictions for larger nuclei

Other many-body methods significantly extend reach

- Quarkonium interactions with light quark systems via colour van der Waals
- Colour stark effect: quarkonium induces dipoles in nucleons that attract
 - Brodsky et al. [PRL64,1011 (1990)] suggested large binding: ${}^9\text{Be}-\eta_c \sim 400 \text{ MeV}$
 - Nuclei not point-like: gluons screened
 Typical model estimates now:
 J/Ψ–Α ~ 10 MeV
- Eta-mesic nuclei possibly seen at COSY
- ATHENNA experiment at JLab12GeV will look for charmonium nuclei

- Quarkonium interactions with light quark systems via colour van der Waals
- Colour stark effect: quarkonium induces dipoles in nucleons that attract
 - Brodsky et al. [PRL64,1011 (1990)] suggested large binding: ${}^9\text{Be}-\eta_c \sim 400 \text{ MeV}$
 - Nuclei not point-like: gluons screened
 Typical model estimates now:
 J/Ψ–Α ~ 10 MeV
- Eta-mesic nuclei possibly seen at COSY
- ATHENNA experiment at JLab12GeV will look for charmonium nuclei

- Straightforward LQCD calculation
- Study at m_π~800 MeV using strangonium and charmonium
- Energy shift from $M_{\eta}+M_{A}$
- Multiple volumes to extract infinite volume binding energy
- Binding energy vs A
 - Very strong binding!
- Quantum numbers of pentaquark!

- Study at m_π~800 MeV using strangonium and charmonium
- Energy shift from $M_{\eta}+M_{A}$
- Multiple volumes to extract infinite volume binding energy
- Binding energy vs A
 - Very strong binding!
- Quantum numbers of pentaquark!

- Study at m_π~800 MeV using strangonium and charmonium
- Energy shift from $M_{\eta}+M_{A}$
- Multiple volumes to extract infinite volume binding energy
- Binding energy vs A
 - Very strong binding!
- Quantum numbers of pentaquark!

Hadron-hadron interactions

Two particles in a box: eigen-energies depend on interactions

Two particles in a box: eigen-energies depend on interactions

- Two particles in a box: eigen-energies depend on interactions
- Calculate two particle energies to determine scattering phase shift

Hadron-hadron interactions

- Two particles in a box: eigen-energies depend on interactions
- Calculate two particle energies to determine scattering phase shift
- Requires multiple different volumes

Hadron scattering

- Maiani-Testa: extracting multi-hadron S-matrix elements from Euclidean lattice calculations of Green functions in infinite volume is impossible
- Lüscher: volume dependence of two-particle energy levels

 \Rightarrow scattering phase-shift, $\delta(p)$, up to inelastic threshold

$$\Delta E_{(n)} = \sqrt{|\mathbf{q}_{(n)}|^2 + m_A^2} + \sqrt{|\mathbf{q}_{(n)}|^2 + m_B^2 - m_A - m_B}$$

$$q_{(n)} \cot \delta(q_{(n)}) = \frac{1}{\pi L} S\left(\frac{q_{(n)}L}{2\pi}\right)$$
$$S(\eta) = \lim_{\Lambda \to \infty} \left[\sum_{\vec{n}}^{|\vec{n}| < \Lambda} \frac{1}{|\vec{n}|^2 - \eta^2} - 4\pi\Lambda \right]$$

Hadron scattering

- Maiani-Testa: extracting multi-hadron S-matrix elements from Euclidean lattice calculations of Green functions in infinite volume is impossible
- Lüscher: volume dependence of two-particle energy levels

 \Rightarrow scattering phase-shift, $\delta(\mathbf{p})$, up to inelastic threshold

- Exact relation provided r«L
- Used for $\pi\pi$, KK, ...
 - A precision science for stretched states
- Known for many years in QM, NP

Example: $I=2 \pi \pi$

Study multiple energy levels of two pions in a box for multiple volumes and with multiple P_{CM}

Example: $I=2 \pi \pi$

Study multiple energy levels of two pions in a box for multiple volumes and with multiple P_{CM}

Dashed lines are non-interacting energy levels

Example: $I=2 \pi \pi$

Allows phase shift to be extracted at multiple energies

@ m_{π} = 390 MeV

Example: I=2 $\pi\pi$

- Combine with chiral perturbation theory to interpolate to physical pion mass
- D wave phase shift also extracted [JLab]

NN phase shifts

NN phase shifts

NN fine tuning

Σ -n (I=3/2) phase shifts

 Hyperon-nucleon phase shifts impor³ EoS of neutron stars

- Determine at one quark mass
- Match to effective field theory to extract phase shift at physical mass
- Future calculations will inform EoS

Magnetic moments and polarisabilities of nuclei

Unphysical Nuclei

- Spectroscopy reveals nuclei at unphysical quark masses are quite different
 - Many improvements still needed
 - Much to learn at lighter quark masses (even lighter than physical)
- What is the structure of these nuclei?
 - Probe as in experiment
 - Magnetic moments, form factors, quadrupole moment,...

Background field methods

- Hadron/nuclear energies are modified by presence of fixed external fields
- Eg: fixed B field

$$E_{h;j_{z}}(\mathbf{B}) = \sqrt{M_{h}^{2} + (2n+1)|Q_{h}eB|} - \boldsymbol{\mu}_{h} \cdot \mathbf{B} - 2\pi\beta_{h}^{(M0)}|\mathbf{B}|^{2} - 2\pi\beta_{h}^{(M2)}\langle\hat{T}_{ij}B_{i}B_{j}\rangle + ...$$

- QCD calculations with multiple fields enable extraction of coefficients of response
 - Magnetic moment
 - Magnetic polarisabilities (scalar and tensor for J≥I)

External field method

Partially-quenched external fields easy to apply

$$\begin{array}{ll} U_{\mu}(x) \rightarrow U_{\mu}(x) \cdot U_{\mu}^{\mathrm{ext}}(x) & U_{\mu} = e^{i\,g\,A_{\mu}} & U_{\mu}^{\mathrm{ext}} = e^{i\,q\,A_{\mu}^{\mathrm{ext}}} \\ & & & \\ &$$

PQ is enough for non-singlet linear shifts

- Full background field needs to be present during ensemble generation (or requires reweighting)
- E.g.: constant Euclidean magnetic field

$$A^{\text{ext}}_{\mu} = \mathcal{B}x_1 \delta_{\mu,2} \qquad \Longrightarrow \qquad U^{\text{ext}}_{1,3,4} = 1, \ U^{\text{ext}}_2 = e^{iq\mathcal{B}x_1}$$

• Look for shift in energy quadratic in \mathcal{B} (spin 0)

$$C_2(t;\mathcal{B}) = \sum_{\mathbf{x}} \langle 0|\chi(\mathbf{x},t)\overline{\chi}\mathbf{0},0)|0\rangle_{\mathcal{B}} \xrightarrow{t\to\infty} Z(\mathcal{B}) \exp\left(-[M+2\pi\beta\mathcal{B}^2+\mathcal{O}(\mathcal{B}^4)]t\right)$$
Magnetic polsarisability

Quantisation conditions

- On a torus, L³xT not all values of external field are allowed
- Example: constant B field
- Periodicity of links requires

$$q\mathcal{B} = \frac{2\pi n}{L}, \qquad n \in \mathbb{Z}$$

- Periodicity up to a gauge transform is less restrictive ['t Hooft 79]
- Add in transverse links on the periodic boundary

$$A_{\mu}^{\text{ext}} \longrightarrow A_{\mu}^{\text{ext},\perp} = \mathcal{B}x_1\delta_{\mu,2} - \mathcal{B}x_2L\delta_{\mu,1}\delta_{x_1,L-1}$$

• Quantisatiation condition for electric field: $q\mathcal{B} = \frac{2\pi n}{L^2}$, $n \in \mathbb{Z}$

 $A_{\mu}^{\rm ext}$

 A_{μ}^{ext}

Non-quantised case

Use non quantised field value n=e=2.71828 (Electric field)

Kinks in correlators

- Also problematic to use Dirichelet BCs
- Can go beyond constant field and preserve periodic nature [Z Davoudi, WD 2015]

Magnetic field in z-direction (quantised n)

$$U_{\mu}^{\text{QCD}} \longrightarrow U_{\mu}^{\text{QCD}} \cdot U_{\mu}^{(Q)}$$

$$U_{\mu}^{(Q)}(x) = e^{i\frac{6\pi Q_q \tilde{n}}{L^2}x_1\delta_{\mu,2}} \times e^{-i\frac{6\pi Q_q \tilde{n}}{L}x_2\delta_{\mu,1}\delta_{x_1,L-1}}$$

Magnetic moments from spin splittings

$$\delta E^{(B)} \equiv E^{(B)}_{+j} - E^{(B)}_{-j} = -2\mu |\mathbf{B}| + \gamma |\mathbf{B}|^3 + \dots$$

 Extract splittings from ratios of correlation functions

$$R(B) = \frac{C_j^{(B)}(t) \ C_{-j}^{(0)}(t)}{C_{-j}^{(B)}(t) \ C_j^{(0)}(t)} \xrightarrow{t \to \infty} Z e^{-\delta E^{(B)}t}$$

 Careful to be in single exponential region of each correlator

[NPLQCD 1409.3556]

[NPLQCD PRL 2014]

- Numerical values are surprisingly interesting
- Shell model expectations $\mu_d = \mu_p + \mu_n$

 $\mu_{^{3}\mathrm{H}} = \mu_{p}$

$$\mu_{^{3}\mathrm{He}} = \mu_{n}$$

 Lattice results appear to suggest heavy quark nuclei are shell-model like!

	d	3	3
δμ	0.01(3)(7)	-0.34(2)(9)	0.45(4)(16)

Difference from NSM expectation

[[]NPLQCD PRL 2014]

Magnetic Polarisabilities

[NPLQCD 1506.05518]

Second order shifts determine polarisabilities

 $E_{h;j_z}(\mathbf{B}) = \sqrt{M_h^2 + (2n+1)|Q_h eB|} - \boldsymbol{\mu}_h \cdot \mathbf{B} - 2\pi\beta_h^{(M0)}|\mathbf{B}|^2 - 2\pi\beta_h^{(M2)}\langle \hat{T}_{ij}B_iB_j\rangle + \dots$

Characterise deformation of state by constant magnetic field

Magnetic Polarisabilities

[NPLQCD 1506.05518]

Second order shifts determine polarisabilities

 $E_{h;j_z}(\mathbf{B}) = \sqrt{M_h^2 + (2n+1)|Q_h eB|} - \boldsymbol{\mu}_h \cdot \mathbf{B} - 2\pi\beta_h^{(M0)}|\mathbf{B}|^2 - 2\pi\beta_h^{(M2)}\langle \hat{T}_{ij}B_iB_j\rangle + \dots$

- Vary field strength to extract energy shifts
- Care required with Landau levels
 - Sources couple to strongly to n>0

Neutron and proton

- Study how different spin states respond
- Estimate fit systematics based on multiple order polynomials

Two nucleon systems

Nuclei: A=3,4

Magnetic Polarisabilities

- Significant isovector nucleon polarisability
- Unambiguous two-body physics
- Nuclear polarisabilities similar to nucleon polarisabilities

Feshbach resonances in nuclei?

[NPLQCD 1508.05884]

Strong magnetic fields shift energies significantly compared to binding

- Appearance of Feshbach resonances where system binds/unbinds at large B (B~10¹⁹ Gauss)
 - Potentially persists at physical quark masses
 - Possible consequences in n-stars, ultra-peripheral HIC

Thermal neutron capture cross-section: $np \rightarrow d\gamma$

Thermal Neutron Capture Cross-Section

[NPLQCD PRL 115, 132001 (2015)]

- Thermal neutron capture cross-section: $np \rightarrow d\gamma$
 - Critical process in Big Bang Nucleosynthesis
 - Historically important: 2-body contributions ~10%

 $d = np ({}^{3}S_{1})$

First QCD nuclear reaction!

np ($|S_0)$

$np \rightarrow d\gamma$ in pionless EFT

Cross-section at threshold calculated in pionless EFT

$$\sigma(np \to d\gamma) = \frac{e^2(\gamma_0^2 + |\mathbf{p}|^2)^3}{M^4 \gamma_0^3 |\mathbf{p}|} |\tilde{X}_{M1}|^2 + \dots$$

 EFT expansion at LO given by mag. moments NLO contributions from short-distance two nucleon operators

$$\tilde{X}_{M1} = \frac{Z_d}{-\frac{1}{a_1} + \frac{1}{2}r_1|\mathbf{p}|^2 - i|\mathbf{p}|} \times \left[\frac{\kappa_1\gamma_0^2}{\gamma_0^2 + |\mathbf{p}|^2} \left(\gamma_0 - \frac{1}{a_1} + \frac{1}{2}r_1|\mathbf{p}|^2\right) + \frac{\gamma_0^2}{2}l_1\right]$$

- Phenomenological description with 1% accuracy for E< IMeV</p>
 - Short distance (MEC) contributes ~10%

$Z_d = 1/\sqrt{1 - \gamma_0 r_3}$

Riska, Phys.Lett. B38 (1972) 193MECs:Hokert et al, Nucl.Phys. A217 (1973) 14Chen et al.,Nucl.Phys. A653 (1999) 386EFT:Chen et al, Phys.Lett. B464 (1999) 1Rupak Nucl.Phys. A678 (2000) 405

np→dγ

[NPLQCD PRL 115, 132001 (2015)]

Presence of magnetic field mixes $I_z=J_z=0$ ³S₁ and ¹S₀ np systems

- Wigner SU(4) super-multiplet (spin-flavour) symmetry relates ³S₁ and ¹S₀ states (diagonal elements approximately equal)
 - Shift of eigenvalues determined by transition amplitude $\Delta E_{^{3}S_{1},^{1}S_{0}} = \mp \left(\kappa_{1} + \overline{L}_{1}\right) \frac{eB}{M} + \dots$
- More generally eigenvalues depend on transition amplitude [WD, & M Savage 2004, H Meyer 2012]

[NPLQCD PRL 115, 132001 (2015)]

Lattice correlator with ${}^{3}S_{1}$ source and ${}^{1}S_{0}$ sink

np→dγ

■ Iz=Jz=0 correlation matrix

$$\mathbf{C}(t; \mathbf{B}) = \begin{pmatrix} C_{3S_{1}, 3S_{1}}(t; \mathbf{B}) & C_{3S_{1}, 1S_{0}}(t; \mathbf{B}) \\ C_{1S_{0}, 3S_{1}}(t; \mathbf{B}) & C_{1S_{0}, 1S_{0}}(t; \mathbf{B}) \end{pmatrix}$$

Generalised eigenvalue problem

$$[\mathbf{C}(t_0;\mathbf{B})]^{-1/2}\mathbf{C}(t;\mathbf{B})[\mathbf{C}(t_0;\mathbf{B})]^{-1/2}v = \lambda(t;\mathbf{B})v$$

Ratio of correlator ratios to extract 2-body

$$R_{3S_{1},1S_{0}}(t;\mathbf{B}) = \frac{\lambda_{+}(t;\mathbf{B})}{\lambda_{-}(t;\mathbf{B})} \xrightarrow{t \to \infty} \hat{Z} \exp\left[2 \Delta E_{3S_{1},1S_{0}}t\right]$$

$$\delta R_{{}^{3}\!S_{1},{}^{1}\!S_{0}}(t;\mathbf{B}) = \frac{R_{{}^{3}\!S_{1},{}^{1}\!S_{0}}(t;\mathbf{B})}{\Delta R_{p}(t;\mathbf{B})/\Delta R_{n}(t;\mathbf{B})} \to A \ e^{-\delta E_{{}^{3}\!S_{1},{}^{1}\!S_{0}}(\mathbf{B})t}$$

$$\delta E_{{}^{3}S_{1},{}^{1}S_{0}} \equiv \Delta E_{{}^{3}S_{1},{}^{1}S_{0}} - [E_{p,\uparrow} - E_{p,\downarrow}] + [E_{n,\uparrow} - E_{n,\downarrow}]$$

$$\rightarrow 2\overline{L}_{1}|e\mathbf{B}|/M + \mathcal{O}(\mathbf{B}^{2})$$

[NPLQCD PRL 115, 132001 (2015)]

np→dγ

Extracted short-distance contribution at physical mass

$$\overline{L}_{1}^{\text{lqcd}} = 0.285(^{+63}_{-60}) \text{ nNM}$$
 $l_{1}^{\text{lqcd}} = -4.48(^{+16}_{-15}) \text{ fm}$

Combine with phenomenological nucleon magnetic moment, scattering parameters at incident neutron velocity v=2,200 m/s

$$\sigma^{\text{lqcd}}(np \to d\gamma) = 307.8(1 + 0.273 \ \overline{L}_1^{\text{lqcd}}) \ \text{mb}$$

$$\sigma^{\text{lqcd}}(np \to d\gamma) = 332.4(^{+5.4}_{-4.7}) \text{ mb}$$

c.f. phenomenological value

$$\sigma^{\text{expt}}(np \to d\gamma) = 334.2(0.5) \text{ mb}$$

■ NB: at m_{π} =800 MeV, use LQCD for all inputs (ab initio)

$$\sigma^{800 \text{ MeV}}(np \rightarrow d\gamma) \sim 10 \text{ mb}$$

Nuclear physics at the intensity frontier

- Seek new physics through quantum effects
- Precise experiments
 - Sensitivity to probe the rarest interactions of the SM
 - Look for effects where there is no SM contribution
- Important focus of HEP(NP) experimental program
 - Dark matter direct detection
 - Neutrino physics
 - Charged lepton flavour violation, EDMs, proton decay, neutron-antineutron oscillations...
- Major component is nuclear targets

- Dark matter direct detection: nuclear recoils in large bucket of nuclei as signal
 - Detection rate/bounds depends on dark matter properties/dynamics and x-sec on nucleus
- 🥲 Positive signals would be unambiguous
- Post-detection: precise nuclear x-sec (with quantified uncertainties) to discern underlying dynamics
- Potentially understand seemingly conflicting positive and negative signals

og₁₀(S2_b/S1) x,y,:

Inform experimental design and backgrounds

http://www.hep.ucl.ac.uk/darkMatter/

- Important goal of LBNF/DUNE: extraction of neutrino mass hierarchy and precise mixing parameters
- Neutrino scattering on <u>argon</u> target
- Requires knowing energies/fluxes to high accuracy
 - Nuclear axial & transition form factors
 - Resonances
 - Neutrino-nucleus DIS
- ~10% uncertainty on oscillation parameters [C Mariani, INT workshop 2013]

- EDMs: potential light nuclear EDM experiments offer complementary handles on CPV
- $0\nu\beta\beta$ decay: fundamental nature of neutrinos
 - Rates depend on nuclear matrix elements
- μ 2e: search for charged lepton flavour violation
 - $\mu \rightarrow$ e conversion in field of Al nucleus
- Positive signals would be unambiguous
- Post-detection: precise nuclear matrix elements (with quantified uncertainties) to discern underlying dynamics

Nuclear uncertainties

How well do we know nuclear matrix elements?

- Stark example of problems: Gamow-Teller transitions in nuclei
 - Well measured for large range of nuclei (30<A<60)
 - Many nuclear structure calcs (QRPA, shell-model,...) – spectrum well described
 - Matrix elements systematically off by 20–30%
 - "Correct" by "quenching" axial charge in nuclei ...

$$T(GT) \sim \sqrt{\sum_{f} \langle \boldsymbol{\sigma} \cdot \boldsymbol{\tau} \rangle_{i \to f}}$$

$$\langle \boldsymbol{\sigma} \boldsymbol{\tau}
angle = rac{\langle f || \sum_k \boldsymbol{\sigma}^k \boldsymbol{t}_{\pm}^k || i
angle}{\sqrt{2J_i + 1}}$$

The EMC effect

- Proton structure modified in a nuclear environment
- Only "understood" in phenomenological models

- Definitive need for precision determinations of nuclear matrix elements
 - Must be based on the Standard Model (no hand-waving)
 - Must have fully quantified uncertainties
 - Timeframe and precision goals set by experiment
- Current state is far from this
- Nuclear physics is the new flavour physics!
 - Develop appropriate tools

Goal: develop the tools for precision predictions

Goal: develop the tools for precision predictions

Exploit effective degrees of freedom Xe Ge Ar Si

- Goal: develop the tools for precision predictions
- Exploit effective degrees of freedom
- Establish quantitative control through linkages between different methods
 - QCD forms a foundation determines few body interactions & matrix elements
 - Match existing EFT and many body techniques onto QCD
- Now: focus on QCD

External currents and nuclei

- Nuclear effective field theory:
 - I-body currents are dominant
 - 2-body currents are sub-leading but non-negligible
- Determine one body contributions from single nucleon
- Determine few-body contributions from A=2,3,4...
- Match EFT and many body methods to LQCD to make predictions for larger nuclei

Nucleon form factors

LQCD FFs studied from ratios of 2- and 3-point correlators [Martinelli & Sachrajda 1988]

$$R(t,\tau;\mathbf{q}) \sim \sum_{\mathbf{y}} e^{i\mathbf{q}\cdot\mathbf{y}} \frac{\langle 0|\chi(0)\mathcal{O}(\mathbf{y},\tau)\chi^{\dagger}(t)|0\rangle}{\langle 0|\chi(0)\chi^{\dagger}(t)|0\rangle} \longrightarrow \langle N(p)|\mathcal{O}|N(p+q)\rangle$$

 Determines ground state FF at large source/operator/sink separation

Nuclear matrix elements

For deeply bound nuclei, use the techniques as for single hadron matrix elements

- At large time separations gives matrix element of current
- For near threshold states: care with volume effects
- Alternatively use background fields works well for magnetic case

Further matrix elements

- Axial coupling to NN system
 - pp fusion: "Calibrate the sun"
 - Muon capture: MuSun @ PSI
 - $d\nu \rightarrow nne^+$: SNO
- Quadrupole moments: requires non-constant fields [Z Davoudi, WD 1507.01908]
- Axial form factors
- Scalar, ... matrix elements for dark matter
- Twist-2 operators: EMC effect $\langle N, Z | \bar{q} \gamma_{\{\mu_1} D_{\mu_2} \dots D_{\mu_n\}} q | N, Z \rangle$

Nuclear sigma terms

One possible DM interaction is through scalar exchange

$$\mathcal{L} = \frac{G_F}{2} \sum_{q} a_S^{(q)}(\overline{\chi}\,\chi)(\overline{q}\,q)$$

- Accessible via Feynman-Hellman theorem
- At hadronic/nuclear level $\mathcal{L} \to G_F \,\overline{\chi}\chi \,\left(\frac{1}{4} \langle 0 | \overline{q}q | 0 \rangle \, \mathrm{Tr} \left[a_S \Sigma^{\dagger} + a_S^{\dagger} \Sigma \right] \, + \, \frac{1}{4} \langle N | \overline{q}q | N \rangle N^{\dagger} N \mathrm{Tr} \left[a_S \Sigma^{\dagger} + a_S^{\dagger} \Sigma \right] \\
 - \, \frac{1}{4} \langle N | \overline{q} \tau^3 q | N \rangle \left(N^{\dagger} N \mathrm{Tr} \left[a_S \Sigma^{\dagger} + a_S^{\dagger} \Sigma \right] \, - \, 4N^{\dagger} a_{S,\xi} N \right) \, + \, ... \right)$
 - Contributions:

Quark mass dependence of nuclear binding energies bounds such contributions

$$\delta\sigma_{Z,N} = \frac{\langle Z, N(\mathrm{gs}) | \,\overline{u}u + \overline{d}d | Z, N(\mathrm{gs}) \rangle}{A \,\langle N | \,\overline{u}u + \overline{d}d | N \rangle} - 1 = -\frac{1}{A\sigma_N} \frac{m_\pi}{2} \frac{d}{dm_\pi} B_{Z,N}$$

 Lattice calculations + physical point suggest such contributions are O(10%) or less for light nuclei (A<4)

[NPLQCD PRD 2014]

QCD for nuclei

- Nuclei are under serious study directly from QCD
 - Spectroscopy of light nuclei and exotic nuclei (strange, charmed, ...)
 - Structure: magnetic moments and polarisabilities
 - Electroweak interactions: thermal capture cross-section
- Prospect of a quantitative connection to QCD makes this a very exciting time for nuclear physics
 - Critical role in current and upcoming particle physics experimental program
 - Learn many interesting things about nuclear physics along the way

Observation of 1.97 M n-star [Demorest et al., Nature, 2010] "effectively rules out the presence of hyperons, bosons, or free quarks"

- Observation of 1.97 M n-star [Demorest et al., Nature, 2010] "effectively rules out the presence of hyperons, bosons, or free quarks"
- Relies significantly on poorly known hadronic interactions at high density
 - Hyperon-nucleon
 - nnn, ...

- Observation of 1.97 M* n-star [Demorest et al., Nature, 2010] "effectively rules out the presence of hyperons, bosons, or free quarks"
- Relies significantly on poorly known hadronic interactions at high density
 - Hyperon-nucleon
 - nnn, ...
- Calculable in QCD
 - 30% determinations would have impact
 - Happening for YN [NPLQCD PRL 109 (2012) 172001]

Σ -n (I=3/2) phase shifts

Phys. Rev. Lett. 109 (2012) 172001

0.5