Structure and reactions in Fermionic Molecular Dynamics

Thomas Neff

YIPQS Long-term workshop
"Computational Advances in
Nuclear and Hadron Physics"
Yukawa Institute, Kyoto, Japan
October 13, 2015

Overview

Realistic Effective Nucleon-Nucleon interaction:

Unitary Correlation Operator Method

Many-Body Approach:

Fermionic Molecular Dynamics

Applications:

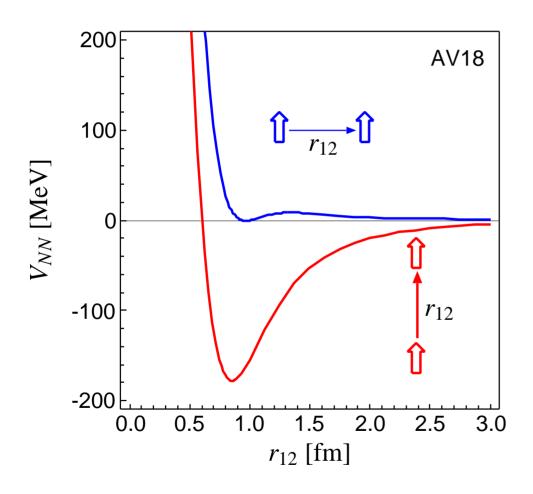
³He(α , γ)⁷Be Radiative Capture Reaction

¹²C in the Microscopic Cluster Model

¹²C in Fermionic Molecular Dynamics

Nuclear Force

Argonne V18 (T=0) spins aligned parallel or perpendicular to the relative distance vector



- strong repulsive core:
 nucleons can not get closer
 than ≈ 0.5 fm
- **→** central correlations

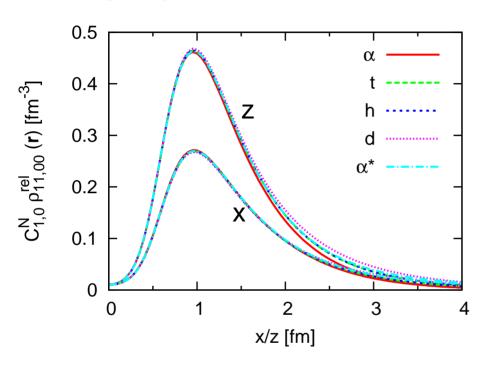
- strong dependence on the orientation of the spins due to the tensor force
- > tensor correlations

the nuclear force will induce
strong short-range
correlations in the nuclear
wave function

Two-body densities in A = 2, 3, 4 Nuclei — AV8'

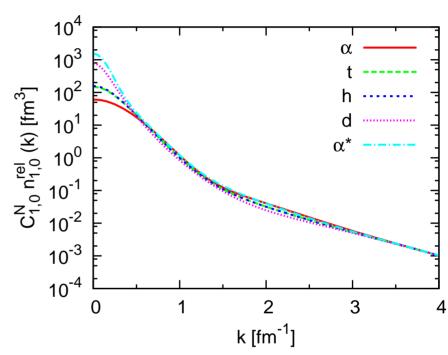
coordinate space

$$S = 1$$
, $M_S = 1$, $T = 0$



momentum space

$$S = 1$$
, $T = 0$



- normalize two-body density in coordinate space at r=1.0 fm
- normalized two-body densities in coordinate space are identical at short distances for all nuclei
- use the same normalization factor in momentum space high momentum tails agree for all nuclei

Correlations and Energies



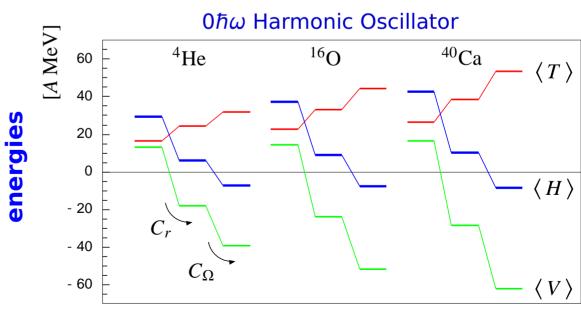
central correlator $\mathcal{C}_{\mathbf{r}}$

shifts density out of the repulsive core

tensor correlator \mathcal{C}_{Ω}

aligns density with spin orientation

both central and tensor correlations are essential for binding



Neff and Feldmeier, Nucl. Phys. **A713** (2003) 311 Roth, Neff, Feldmeier, Prog. Part. Nucl. Phys. **65**, (2010) 50

FMD

Intrinsic Basis States

Fermionic

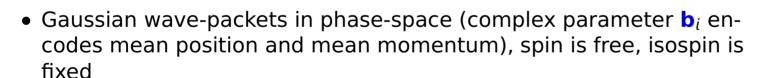
Slater determinant

$$|Q\rangle = \mathcal{A}(|q_1\rangle \otimes \cdots \otimes |q_A\rangle)$$

antisymmetrized A-body state

single-particle states

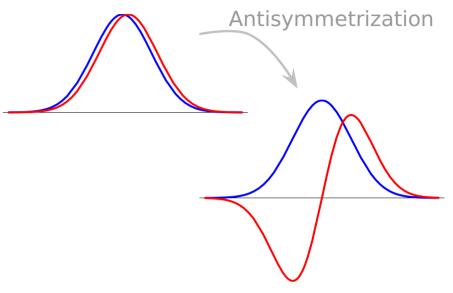
$$\langle \mathbf{x} | q \rangle = \sum_{i} c_{i} \exp \left\{ -\frac{(\mathbf{x} - \mathbf{b}_{i})^{2}}{2\alpha_{i}} \right\} \otimes |\chi^{\dagger}_{i}, \chi^{\downarrow}_{i}\rangle \otimes |\xi\rangle$$



• width a_i is an independent variational parameter for each wave packet

• use one or two wave packets for each single particle s

FMD basis contains
HO shell model and
microscopic cluster model
as limiting cases



Feldmeier, Schnack, Rev. Mod. Phys. **72** (2000) 655 Neff, Feldmeier, Nucl. Phys. **A738** (2004) 357

Evaluation of Matrix Elements

non-orthogonal basis, use inverse overlap matrix

One-Body Operators

$$\frac{\langle Q | \mathcal{T}^{[1]} | Q \rangle}{\langle Q | Q \rangle} = \sum_{k,l}^{A} \langle q_k | \mathcal{T}^{[1]} | q_l \rangle o_{lk}$$

Two-Body Operators

$$\frac{\langle Q | \mathcal{V}^{[2]} | Q \rangle}{\langle Q | Q \rangle} = \frac{1}{2} \sum_{k,l,m,n}^{A} \langle q_k, q_l | \mathcal{V}^{[2]} | q_m, q_n \rangle (o_{mk}o_{nl} - o_{ml}o_{nk})$$

$$o = n^{-1} = \left(\left\langle q_i \, \middle| \, q_j \, \right\rangle \right)^{-1}$$

Operator Representation of V_{UCOM}

$$C^{\dagger}(T+V)C = T$$

one-body kinetic energy

$$+ \sum_{ST} \hat{V}_{c}^{ST}(r) + \frac{1}{2} \left(p_{r}^{2} \hat{V}_{p^{2}}^{ST}(r) + \hat{V}_{p^{2}}^{ST}(r) p_{r}^{2} \right) + \hat{V}_{l^{2}}^{ST}(r) \mathbf{l}^{2}$$

central potentials

$$+ \sum_{T} \hat{V}_{ls}^{T}(r) \underbrace{\mathbf{l}}_{l} \cdot \underbrace{\mathbf{s}}_{l} + \hat{V}_{l^{2}ls}^{T}(r) \underbrace{\mathbf{l}}_{l}^{2} \underbrace{\mathbf{l}}_{l} \cdot \underbrace{\mathbf{s}}_{\underline{s}}$$

spin-orbit potentials

$$+ \sum_{T} \hat{V}_{t}^{T}(r) \underset{\sim}{S}_{12}(\mathbf{r}, \mathbf{r}) + \hat{V}_{trp_{\Omega}}^{T}(r) \underset{\sim}{p_{r}} \underset{\sim}{S}_{12}(\mathbf{r}, \mathbf{p_{\Omega}}) + \hat{V}_{tll}^{T}(r) \underset{\sim}{S}_{12}(\mathbf{l}, \mathbf{l}) + \hat{V}_{tp_{0}p_{0}}^{T}(r) \underset{\sim}{S}_{12}(\mathbf{p_{\Omega}}, \mathbf{p_{\Omega}}) + \hat{V}_{l^{2}tp_{0}p_{0}}^{T}(r) \underset{\sim}{\mathbf{l}^{2}} \underset{\sim}{S}_{12}(\mathbf{p_{\Omega}}, \mathbf{p_{\Omega}})$$

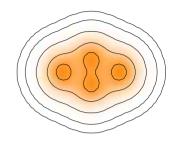
tensor potentials

bulk of tensor force mapped onto central part of correlated interaction tensor correlations also change the spin-orbit part of the interaction

Symmetries and Projection

Breaking of symmetries

• Slater determinants $|Q\rangle$ may break symmetries of the Hamiltonian with respect to parity, rotations and translations



Projection

Restore symmetries by projection

$$P^{\pi} = \frac{1}{2}(1 + \pi \Pi), \qquad P^{J}_{MK} = \frac{2J + 1}{8\pi^2} \int d^3\Omega \, D^{J^{*}}_{MK} (\Omega) R(\Omega), \qquad P^{\mathbf{P}} = \frac{1}{(2\pi)^3} \int d^3X \, \exp\{-i(\mathbf{P} - \mathbf{P}) \cdot \mathbf{X}\}$$

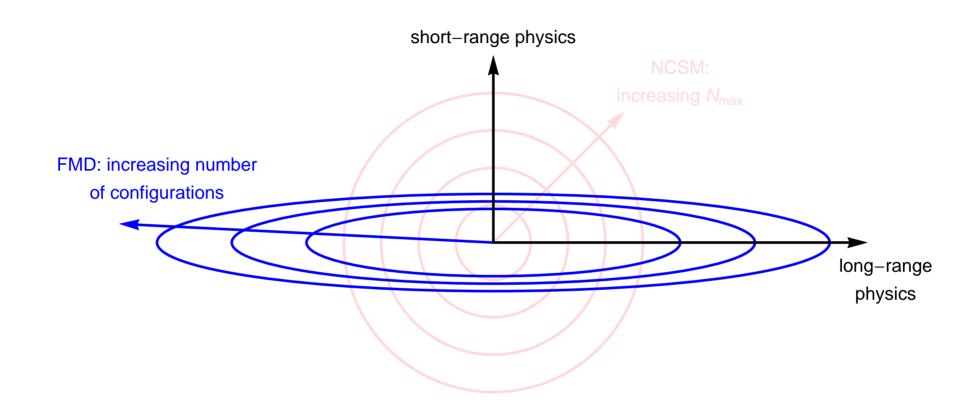
Multiconfiguration Mixing

• **diagonalize** Hamiltonian in a set of projected intrinsic states $\{|Q^{(a)}\rangle, \alpha = 1, ..., N\}$

$$\left|\Psi;J^{\pi}M\alpha\right\rangle = \sum_{K\alpha} P^{\pi} P^{J}_{MK} P^{\mathbf{P}=0} \left|Q^{(a)}\right\rangle c^{\alpha}_{K\alpha}$$

$$\sum_{K'b} \underbrace{\left\langle Q^{(a)} \left| HP^{\pi} P^{J}_{KK'} P^{\mathbf{P}=0} \left|Q^{(b)}\right\rangle \right\rangle c^{\alpha}_{K'b}}_{\text{Hamiltonian kernel}} = E^{J^{\pi}\alpha} \sum_{K'b} \underbrace{\left\langle Q^{(a)} \left| P^{\pi} P^{J}_{KK'} P^{\mathbf{P}=0} \left|Q^{(b)}\right\rangle \right\rangle c^{\alpha}_{K'b}}_{\text{norm kernel}}$$

FMD vs NCSM model spaces



- NCSM allows good description of short-range physics, but long-range behavior suffers from harmonic oscillator asymptotics
- FMD allows to describe long-range physics by superposition of localized cluster configurations, but limited in description of short-range physics

³He(α , γ)⁷Be radiative capture

one of the key reactions in the solar pp-chains

• • • • • • • • • • • • • • • • • • • •

Effective Nucleon-Nucleon interaction:

AV18-UCOM(SRG)

 $\alpha = 0.20 \text{ fm}^4 - \lambda \approx 1.5 \text{ fm}^{-1}$

Many-Body Approach:

Fermionic Molecular Dynamics

- bound state wave functions
- scattering state wave functions
- electromagnetic transitions matrix elements between scattering and bound states

Neff, Phys. Rev. Lett. 106, 042502 (2011)

Frozen configurations

• antisymmetrized wave function built with ${}^4\text{He}$ and ${}^3\text{He}$ FMD clusters up to channel radius $\alpha = 12$ fm

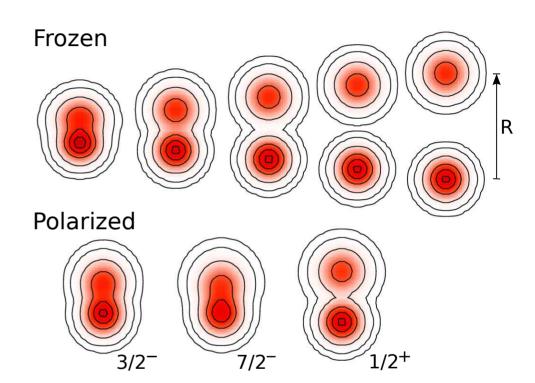
Polarized configurations

FMD wave functions obtained by Variation after Projection on 1/2⁻, 3/2⁻, 5/2⁻, 7/2⁻ and 1/2⁺, 3/2⁺ and 5/2⁺ combined with radius constraint in the interaction region

Boundary conditions

 Match relative motion of clusters at channel radius to Whittaker/Coulomb functions with the microscopic Rmatrix method of the Brussels group

D. Baye, P.-H. Heenen, P. Descouvemont



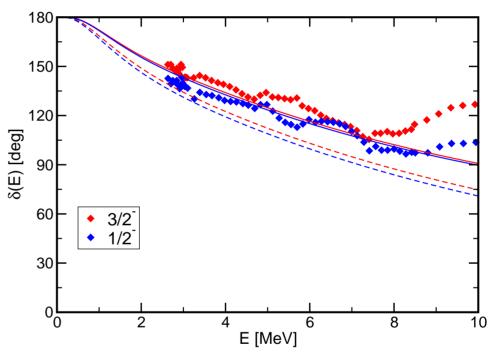
Bound states

		Experiment	FMD	
⁷ Be	E _{3/2} _	-1.59 MeV	-1.49 MeV	
	$E_{1/2-}$	-1.15 MeV	-1.31 MeV	
	r_{ch}	2.647(17) fm	2.67 fm	
	Q	_	-6.83 <i>e</i> fm²	
⁷ Li	E _{3/2} _	-2.467 MeV	-2.39 MeV	
	$E_{1/2-}$	-1.989 MeV	-2.17 MeV	
	r_{ch}	2.444(43) fm	2.46 fm	
	Q	-4.00(3) <i>e</i> fm ²	-3.91 <i>e</i> fm ²	

- centroid of bound state energies well described if polarized configurations included
- tail of wave functions tested by charge radii and quadrupole moments

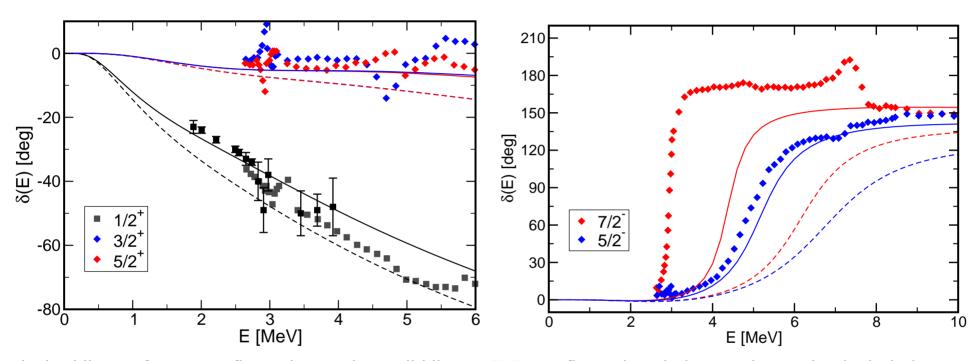
Phase shift analysis:

Spiger and Tombrello, PR **163**, 964 (1967)



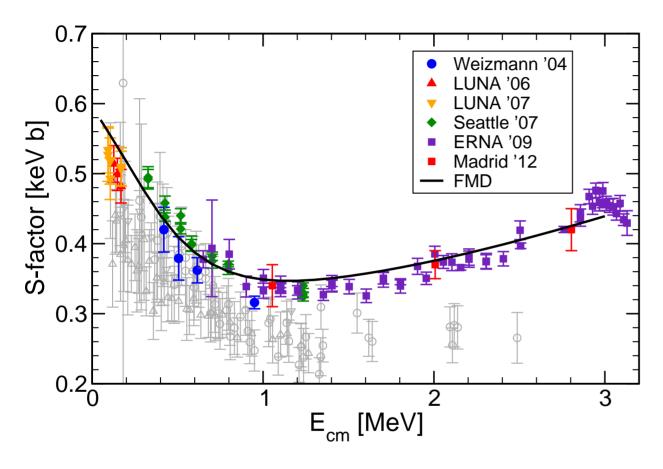
dashed lines – frozen configurations only solid lines – polarized configurations in interaction region included

 Scattering phase shifts well described, polarization effects important



dashed lines - frozen configurations only - solid lines - FMD configurations in interaction region included

- polarization effects important
- s- and d-wave scattering phase shifts well described
- f-wave splittings too small, additional spin-orbit strength from threebody forces expected



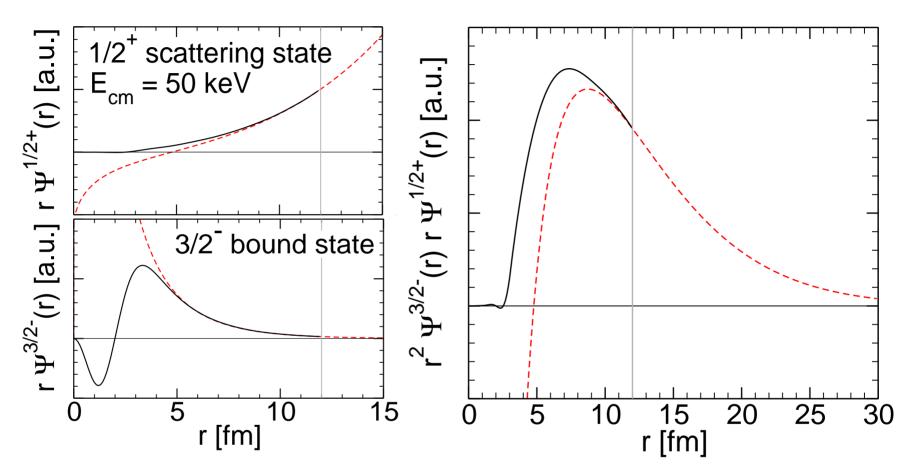
S-factor:

$$S(E) = \sigma(E)E \exp\{2\pi\eta\}$$
$$\eta = \frac{\mu Z_1 Z_2 e^2}{k}$$

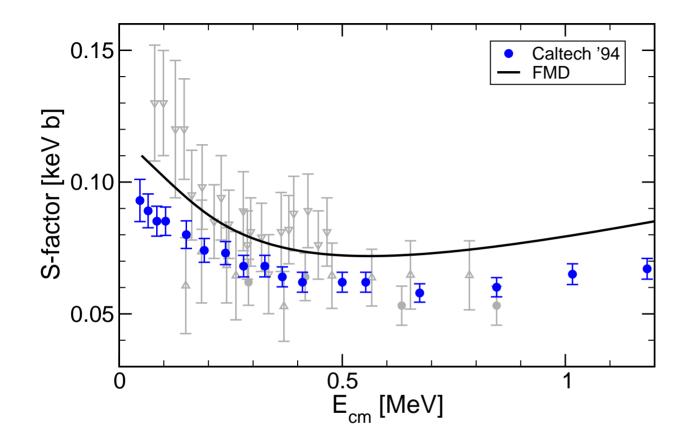
Nara Singh *et al.*, PRL **93**, 262503 (2004) Bemmerer *et al.*, PRL **97**, 122502 (2006) Confortola *et al.*, PRC **75**, 065803 (2007) Brown *et al.*, PRC **76**, 055801 (2007) Di Leva *et al.*, PRL **102**, 232502 (2009)

- dipole transitions from 1/2+, 3/2+, 5/2+ scattering states into 3/2-, 1/2- bound states
- >> FMD is the only model that describes well the energy dependence and normalization of new high quality data
- >> fully microscopic calculation, bound and scattering states are described consistently

Overlap Functions and Dipole Matrixelements



- Overlap functions from projection on RGM-cluster states
- Coulomb and Whittaker functions matched at channel radius $\alpha=12$ fm
- Dipole matrix elements calculated from overlap functions reproduce full calculation within 2%
- cross section depends significantly on internal part of wave function, description as an "external" capture is too simplified

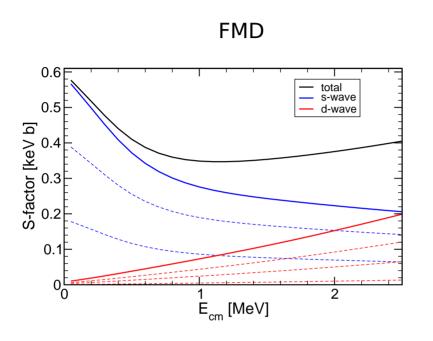


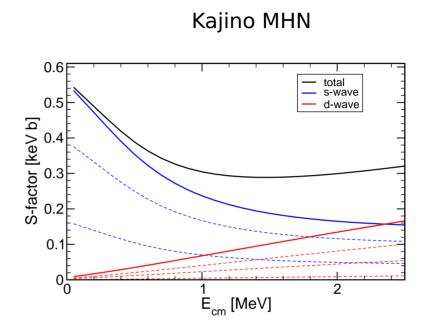
S-factor:

$$S(E) = \sigma(E)E \exp\{2\pi\eta\}$$
$$\eta = \frac{\mu Z_1 Z_2 e^2}{k}$$

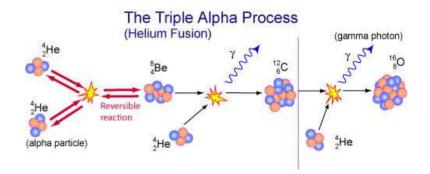
Brune et al., PRC **50**, 2205 (1994)

- isospin mirror reaction of ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$
- ⁷Li bound state properties and phase shifts well described
- ► FMD calculation describes energy dependence of Brune *et al.* data but cross section is larger by about 15%





- main difference between FMD and Kajino results is originating in s-wave capture both in normalization and energy dependence
- difference in normalization related to ground state properties as seen in charge radius/quadrupole moment
- difference in energy dependence not understood yet –
 long-range of realistic interaction due to explicit description of pion-exchange ?



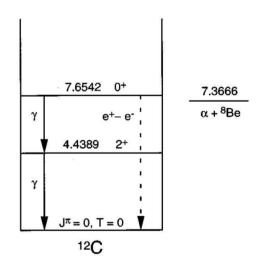
Cluster States in ¹²C

Structure

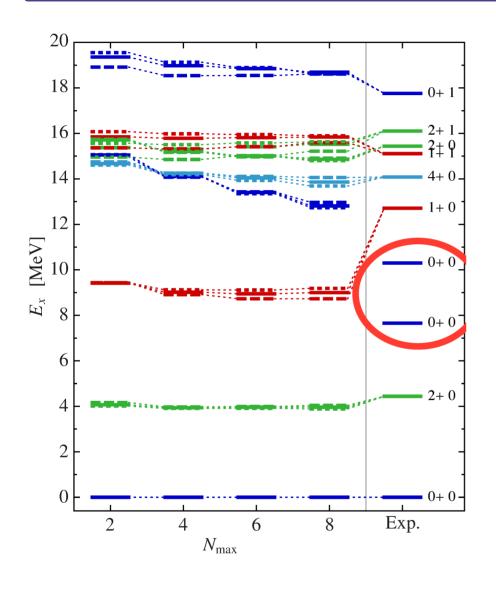
• Is the Hoyle state a pure α -cluster state ?

 $\frac{7.2747}{3\alpha}$

- **Second** 2⁺ **state** Zimmermann *et al.*, Phys. Rev. Lett. 110, 152502 (2013)
- Second 4⁺ state
 Freer et al., Phys. Rev. C 83, 034314 (2011)
- Other states in the continuum Fynbo et al., ...
- > Include continuum in the calculation!
- \rightarrow Compare microscopic α -cluster model and FMD



12C Cluster States in ab initio approaches?



State of the art NCSM calculation with chiral NN+NNN forces

Hoyle state and other cluster states missing!

Lattice EFT

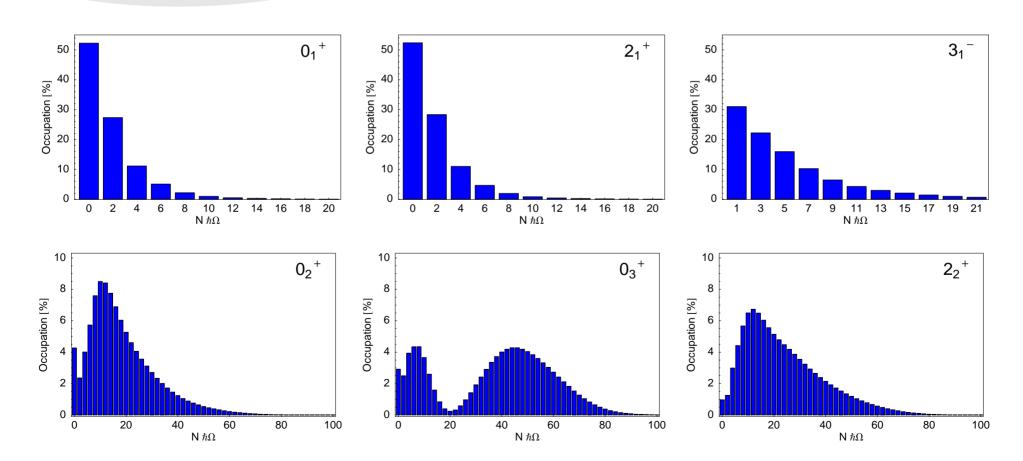
Maris, Vary, Calci, Langhammer, Binder, Roth, Phys. Rev. C **90**, 014314 (2014)

Green's Function Monte Carlo

Y. Suzuki et al, Phys. Rev. C 54, 2073 (1996).

$$Occ(N) = \langle \Psi | \delta \left(\sum_{i} (H_{i}^{HO} / \hbar \Omega - 3/2) - N \right) | \Psi \rangle$$

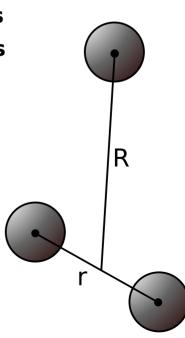
Cluster Model



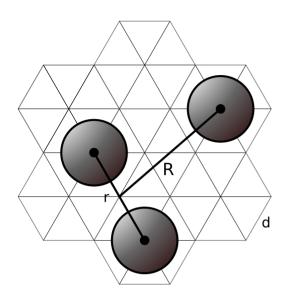
Microscopic α -cluster model

What are the degrees of freedom?

- 12 C is described as a system of three lpha-particles
- α -particles are given by HO $(0s)^4$ wave functions
- wave function is fully antisymmetrized
- effective nucleon-nucleon interaction adjusted to reproduce α - α and 12 C ground state properties
- \rightarrow include ⁸Be- α channels for continuum



Model space in internal region



$$\rho^2 = \frac{1}{2}\mathbf{r}^2 + \frac{2}{3}\mathbf{R}^2$$

Hyperradius

Model Space

- include all possible configurations on triangular grid $(d = 1.4 \, \text{fm})$ up to a certain hyperradius ρ
- no restriction on relative angular momenta

Basis States

Intrinsic states are projected on parity and angular momentum

$$|\Psi_{JMK\pi}^{3\alpha}(\mathbf{R}_{1},\mathbf{R}_{2},\mathbf{R}_{3})\rangle =$$

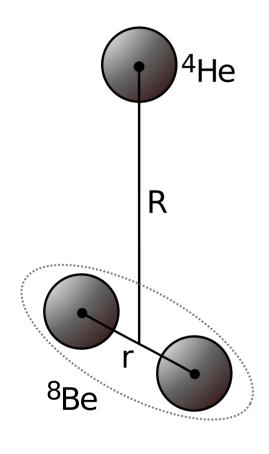
$$\mathcal{P}^{\pi}\mathcal{P}_{MK}^{J}\mathcal{A}\left\{ |\Psi^{^{4}\text{He}}(\mathbf{R}_{1})\rangle \otimes |\Psi^{^{4}\text{He}}(\mathbf{R}_{2})\rangle \otimes |\Psi^{^{4}\text{He}}(\mathbf{R}_{3})\rangle \right\}$$

Volkov Interaction

- simple central interaction
- parameters adjusted to give reasonable α binding energy and radius, $\alpha-\alpha$ scattering data, adjusted to reproduce ¹²C ground state energy
- ✗ only reasonable for ⁴He, ⁸Be and ¹²C nuclei

Kamimura, Nuc. Phys. **A351** (1981) 456 Funaki et al., Phys. Rev. C **67** (2003) 051306(R)

Model space in external region



Model Space

- ⁸Be-⁴He cluster configurations with generator coordinate *R*
- ⁸Be ground state (0_1^+) and pseudo states $(2_1^+, 0_2^+, 2_2^+, 4_1^+)$ obtained by diagonalizing α - α configurations up to r = 10 fm

Basis States

• ¹²C basis states are obtained by **double projection**: Project first ⁸Be

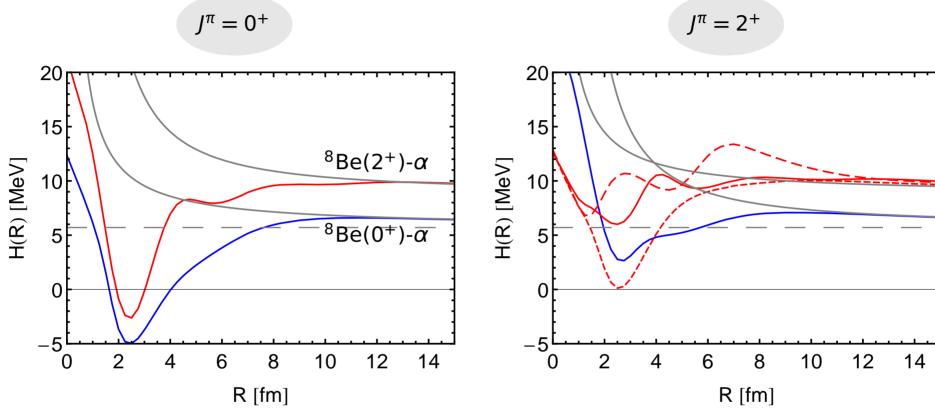
$$|\Psi_{IK}^{^{8}\text{Be}}\rangle = \sum_{i} P_{K0}^{I} \mathcal{A}_{\sim} \left\{ |\Psi^{^{4}\text{He}}(-\frac{r_{i}}{2}\mathbf{e}_{z}) \otimes |\Psi^{^{4}\text{He}}(+\frac{r_{i}}{2}\mathbf{e}_{z}) \right\} c_{i}^{I}$$

then the combined wave function

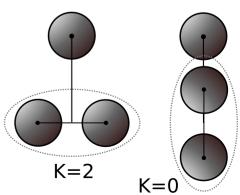
$$\left| \Psi_{IK;JM\pi}^{^{8}\text{Be},^{^{4}\text{He}}}(R_{j}) \right\rangle = \mathcal{P}^{\pi} \mathcal{P}_{MK}^{J} \mathcal{A} \left\{ \left| \Psi_{IK}^{^{8}\text{Be}}(-\frac{R_{j}}{3}\mathbf{e}_{z}) \right\rangle \otimes \left| \Psi^{^{4}\text{He}}(+\frac{2R_{j}}{3}\mathbf{e}_{z}) \right\rangle \right\}$$

will allow to match to Coulomb asymptotics

8 Be- α Energy Surfaces



- energy surfaces contain localization energy for relative motion of $^8{\rm Be}$ and α
- 2^+ energy surface depends strongly on orientation of 8 Be 2^+ state: K=2 most attractive



Bound state approximation – Convergence?

	.	ρ < 6 fm,	ρ < 6 fm,	ρ < 6 fm,		
	ρ < 6 fm	<i>R</i> < 9 fm	<i>R</i> < 12 fm	<i>R</i> < 15 fm	Experiment	
$E(0_1^+)$	-89.63	-89.64	-89.64	-89.64	-92.16	
$E^*(2_1^+)$	2.53	2.54	2.54	2.54	4.44	
$E^*(0_2^+), \Gamma_{\alpha}(0_2^+)$	8.53	7.82	7.78	7.76	7.65, $(8.5 \pm 1.0)10^{-6}$	
$E^*(2_2^+), \Gamma_{\alpha}(2_2^+)$	10.11	9.18	9.08	8.93	10.03(11), 0.80(13)	[3]
$r_{\text{charge}}(0_1^+)$	2.53	2.53	2.53	2.53	2.47(2)	
$r(0_1^+)$	2.39	2.39	2.39	2.39	_	
$r(0_2^+)$	3.21	3.68	3.78	3.89	_	
$B(E2, 2_1^+ \rightarrow 0_1^+)$	9.03	9.12	9.08	9.08	7.6(4)	
$M(E0, 0_1^+ \rightarrow 0_2^+)$	7.20	6.55	6.40	6.27	5.47(9)	[2]
$B(E2, 2_2^+ \rightarrow 0_1^+)$	3.65	2.48	2.09	1.33	0.73(13)	[3]

 properties of resonances (Hoyle state and second 2⁺ state) can not be determined in bound state approximation in an unambigouos way

^[1] Ajzenberg-Selove, Nuc. Phys. **A506**, 1 (1990)

^[2] Chernykh et al., Phys. Rev. Lett. **105**, 022501 (2010)

^[3] Zimmermann et al., Phys. Rev. Lett. 110, 152502 (2013); these numbers are under discussion

Model Space

- Internal region: $3-\alpha$ configurations on a grid
- External region: ${}^{8}\text{Be}(0^{+}, 2^{+}, 4^{+})$ - α configurations
- Asymptotically: only Coulomb interaction between ⁸Be and ⁴He clusters

GCM basis state expressed in RGM basis

- Microscopic GCM wave functions are functions of single-particle coordinates: internal wave functions of cluster, the relative motion of the clusters and the total center-of-mass motion are entangled
- Write GCM basis state in external region with RGM basis states

$$\left| \Psi_{IK;JM\pi}^{^{8}\text{Be},^{4}\text{He}}(R_{j}) \right\rangle = \sum_{I} \left\langle \begin{matrix} I & L \\ K & 0 \end{matrix} \middle| \begin{matrix} J \\ K \end{matrix} \right\rangle \int dr r^{2} \, \Gamma_{L}(R_{j};r) \left| \Phi_{(IL)JM\pi}^{^{8}\text{Be},^{4}\text{He}}(r) \right\rangle \otimes \left| \Phi^{\text{cm}} \right\rangle$$

with $(\pi = (-1)^{L})$

$$\langle \boldsymbol{\rho}, \boldsymbol{\xi}_{a}, \boldsymbol{\xi}_{b} | \Phi_{(IL)JM\pi}^{^{8}\text{Be},^{4}\text{He}}(r) \rangle = \sum_{M_{I},M_{L}} \left\langle \begin{matrix} I & L \\ M_{I} & M_{L} \end{matrix} \right| \begin{matrix} J \\ M \end{matrix} \rangle \stackrel{\mathcal{A}}{\sim} \left\{ \frac{\delta(\rho - r)}{r^{2}} \Phi_{IM_{I}}^{^{8}\text{Be}}(\boldsymbol{\xi}_{a}) \Phi^{^{4}\text{He}}(\boldsymbol{\xi}_{b}) Y_{LM_{L}}(\hat{\rho}) \right\}$$

asymptotically RGM states have good channel spin I and orbital angular momentum L

Matching to Coulomb asymptotics

RGM norm kernel and Overlap functions

• RGM norm kernel reflects effects of antisymmetrization, channel c = (IL)J

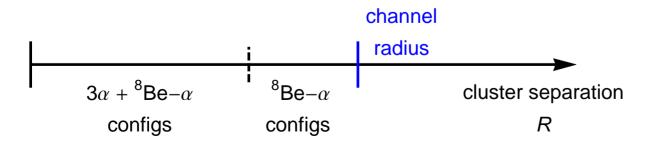
$$N_{c,c'}(r,r') = \left\langle \Phi_c(r) \middle| \Phi_{c'}(r') \right\rangle \xrightarrow{r,r' \to \infty} \delta_{cc'} \frac{\delta(r-r')}{rr'}$$

Overlap functions can be interpreted as wave functions for point-like clusters

$$\psi_c(r) = \int dr' r'^2 N_{c,c'}^{-1/2}(r,r') \langle \Phi_{c'}(r') | \Psi \rangle$$

Matching to the asymptotic solution

- Use multichannel microscopic *R*-matrix approach Descouvement, Baye, Phys. Rept. 73, 036301 (2010)
- Check that results are independent from channel radius: used $\alpha = 16.5$ fm here



Matching to Coulomb asymptotics

Bound states

Whittaker functions

$$\psi_c(r) = A_c \frac{1}{r} W_{-\eta_c, L_c + 1/2}(2\kappa_c r), \qquad \kappa_c = \sqrt{-2\mu(E - E_c)}$$

Resonances

• purely outgoing Coulomb, k complex

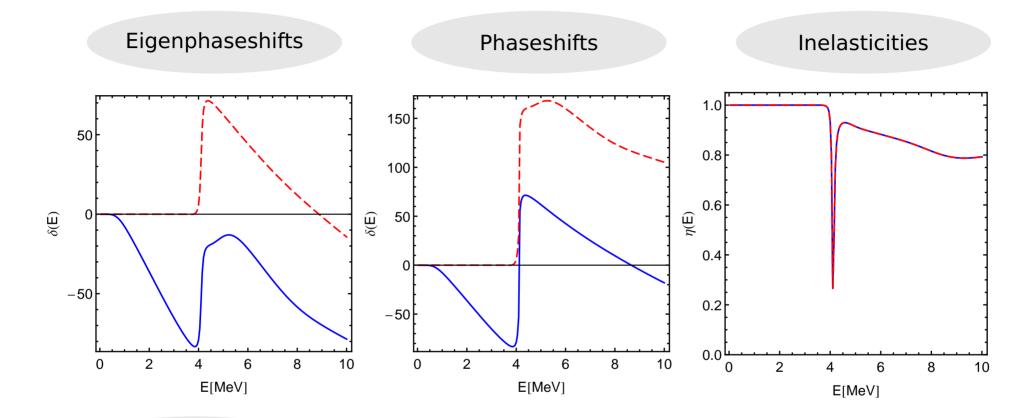
$$\psi_c(r) = A_c \frac{1}{r} O_{L_c}(\eta_c, k_c r), \qquad k_c = \sqrt{2\mu(E - E_c)}$$

Scattering states

• in- and outgoing Coulomb (incoming channel c_0)

$$\psi_c(r) = \frac{1}{r} \left\{ \delta_{L_c, L_0} I_{L_c}(\eta_c, k_c r) - S_{c, c_0} O_{L_c}(\eta_c, k_c r) \right\}, \qquad k_c = \sqrt{2\mu(E - E_c)}$$

- Diagonal phase shifts and inelasticity parameters: $S_{cc} = \eta_c \exp\{2i\delta_c\}$
- Eigenphases: $S = U^{-1}DU$, $D_{\alpha\alpha} = \exp\{2i\delta_{\alpha}\}$

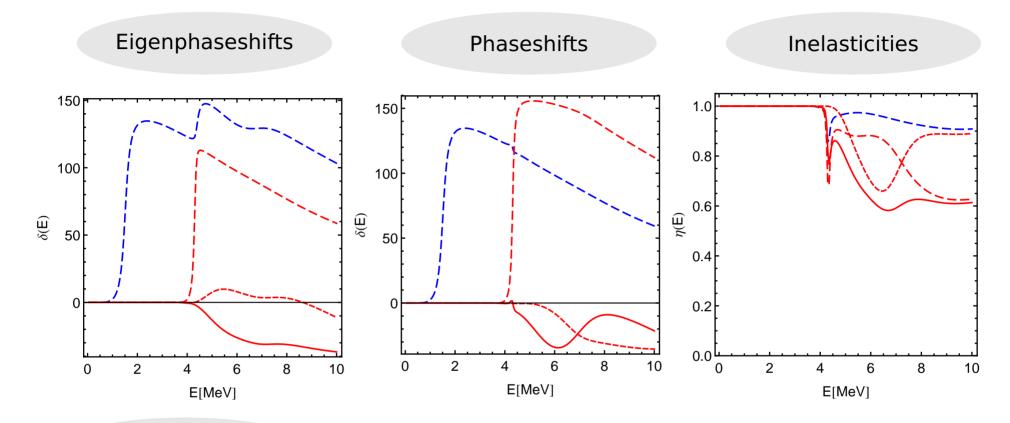


Gamow states

	E [MeV]	Γ_{α} [MeV]
0+	0.29	$1.78 \cdot 10^{-5}$
0_{3}^{-}	4.11	0.12
0+	4.76	1.57

- Hoyle state missed when scanning the phase shifts
- non-resonant background
- strong coupling between ⁸Be(0+) and ⁸Be(2+) channel at 4.1 MeV

Cluster Model: $^8\text{Be}(0^+_1, 2^+_1)$ - α Continuum 2^+ Phase shifts



• non-resonant background

• L = 2 ⁸Be(0⁺) and ⁸Be(2⁺)

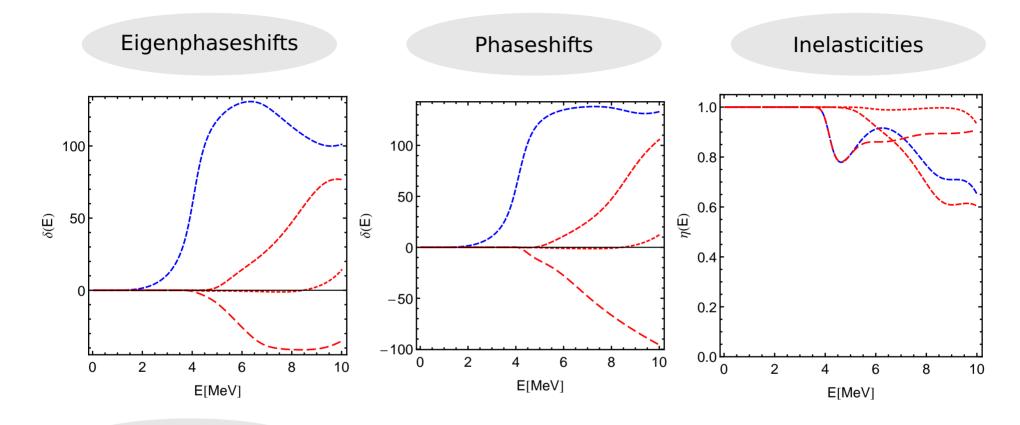
resonances

Gamow states

	E [MeV]	Γ_{α} [MeV]
2+2	1.51	0.32
2+	4.31	0.14

. . .

Cluster Model: ${}^8\text{Be}(0_1^+, 2_1^+)$ - α Continuum 4^+ Phase shifts



Gamow states

	E [MeV]	Γ_{α} [MeV]
4+1	1.17	$8.07 \cdot 10^{-6}$
4 ⁺ ₂	4.06	0.98

- 4₁ state (ground state band) very narrow, missed when scanning phase shifts
- 4⁺₂ state mostly ⁸Be(0+) but some mixing

Observables with proper treatment of Continuum

	ρ < 6 fm	ρ < 6 fm	ρ < 6 fm	ρ < 6 fm	
	$R < 9 \mathrm{fm}$	$R < 12 \mathrm{fm}$	$R < 15 \mathrm{fm}$	Continuum	Experiment
$E(0_1^+)$	-89.64	-89.64	-89.64	-89.64	-92.16
$E^*(2_1^+)$	2.54	2.54	2.54	2.54	4.44
$E^*(0^+_2), \Gamma_{\alpha}(0^+_2)$	7.82	7.78	7.76	$7.76, 3.04 \cdot 10^{-3}$	7.65, $(8.5 \pm 1.0) \cdot 10^{-6}$
$E^*(2^+_2), \Gamma_{\alpha}(2^+_2)$	9.18	9.08	8.93	8.98, 0.46	10.03(11), 0.80(13)
$r_{\text{charge}}(0_1^+)$	2.53	2.53	2.53	2.53	2.47(2)
$r(0_1^+)$	2.39	2.39	2.39	2.39	_
$r(0^{+}_{2})$	3.68	3.78	3.89	4.08 + 0.07i	-
$B(E2, 2_1^+ \rightarrow 0_1^+)$	9.12	9.08	9.08	9.08	7.6(4)
$M(E0, 0_1^+ \rightarrow 0_2^+)$	6.55	6.40	6.27	6.15 + 0.01i	5.47(9)
$B(E2, 2^{+}_{2} \rightarrow 0^{+}_{1})$	2.48	2.09	1.33	2.14 + 1.45i	0.73(13)

- Resonances are calculated as Gamow states
- Matrix elements including resonances are regulated according to Berggren and Gyarmati
- Imaginary part provides information about uncertainty of matrix elements

Berggren, Nucl. Phys. **A109**, 265 (1968) Gyarmati, Krisztinkovics, Vertse, Phys. Lett. **B41**, 475 (1972)

Berggren, Phys. Lett. **B373**, 1 (1996)

Work in Progress: FMD calculations with ${}^8\text{Be-}\alpha$ continuum

UCOM interaction

- AV18 UCOM(SRG) (α =0.20 fm⁴, λ =1.5 fm⁻1)
- Increase strength of spin-orbit force by a factor of two to partially account for omitted three-body forces

8 Be- α Continuum

- To get a good description of ⁸Be it is essential to include polarized configurations
- > Calculate strength distributions
- **▶** Investigate non-cluster states: non-natural parity states, T = 1 states, M1 transitions, ¹²B and ¹²N β -decay into ¹²C, . . .

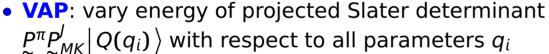
Model space in internal region

Model Space

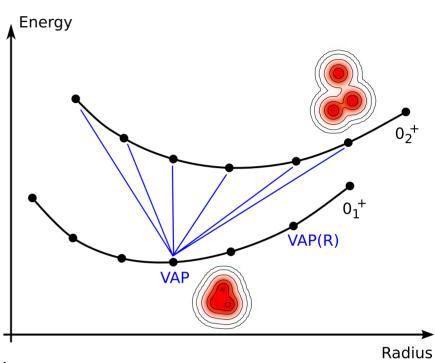
- no assumption of α -clustering
- complete basis not feasible, find the "most important" basis states
- determine wave packet parameters by variation

VAP, VAP with constraints, Multiconfiguration-VAP

For each angular momentum $(0^+, 1^+, 2^+, ...)$

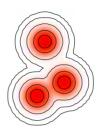


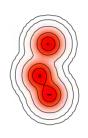
- VAP(R): create additional basis states by variation with a constraint on the radius of the intrinsic state
- MC-VAP: keep VAP state fix and vary the parameters of a second Slater determinant to minimize the energy of the second eigenstate in a multiconfiguration mixing calculation
- MC-VAP(R): create additional basis states by adding a constraint on the radius of the second intrinsic state

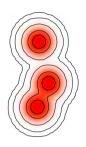


Important Configurations

 Calculate the overlap with FMD basis states to find the most important contributions to the eigenstates (in bound state approximation)







$$\left|\left\langle \cdot \mid 0_{1}^{+} \right\rangle \right| = 0.94$$
$$\left|\left\langle \cdot \mid 2_{1}^{+} \right\rangle \right| = 0.93$$

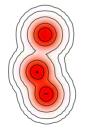
$$\left|\left\langle \cdot \mid 0_2^+ \right\rangle \right| = 0.64$$

$$\left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle \right| = 0.64 \quad \left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle \right| = 0.58 \quad \left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle \right| = 0.57 \quad \left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle \right| = 0.45$$

$$\left|\left\langle \cdot \mid 0_2^+ \right\rangle \right| = 0.57$$

$$\left|\left\langle \cdot \mid 0_{2}^{+} \right\rangle \right| = 0.45$$

$$|\langle \cdot | 3_1^- \rangle| = 0.91$$

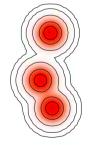


$$\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0.50$$



$$\left|\left\langle \cdot \mid 3_{1}^{-} \right\rangle\right| = 0.91$$
 $\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle\right| = 0.50$ $\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle\right| = 0.49$ $\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle\right| = 0.44$ $\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle\right| = 0.41$

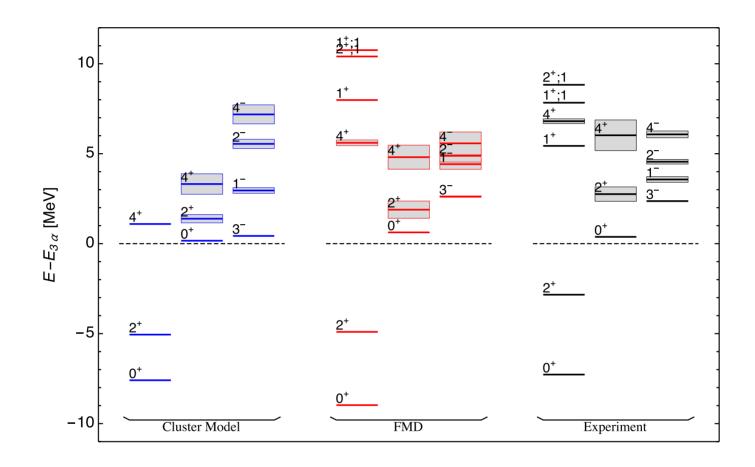
$$\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0.44$$



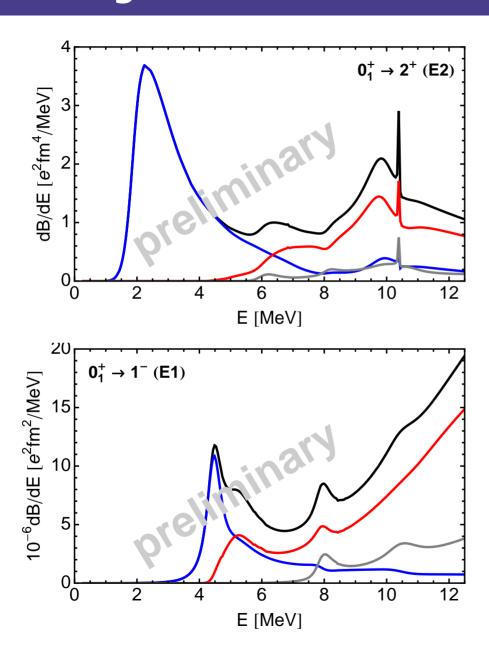
$$\left|\left\langle \cdot \mid 2_{2}^{+} \right\rangle \right| = 0.41$$

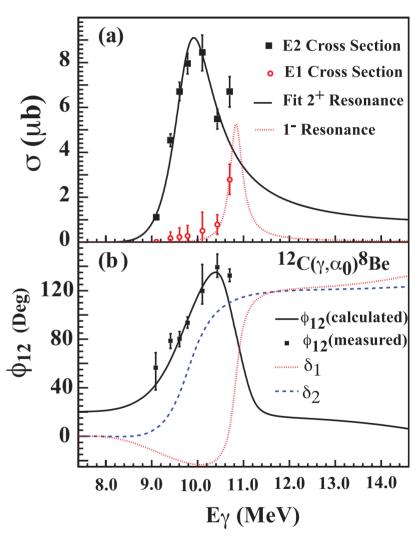
FMD basis states are not orthogonal!

 0_2^+ and 2_2^+ states have no rigid intrinsic structure



- FMD describes the ground state band, the cluster states related to the Hoyle state and the negative parity states reasonably well
- Spin-flip states (1⁺ T = 0, 1 and 2⁺ T = 1) are somewhat too high in energy

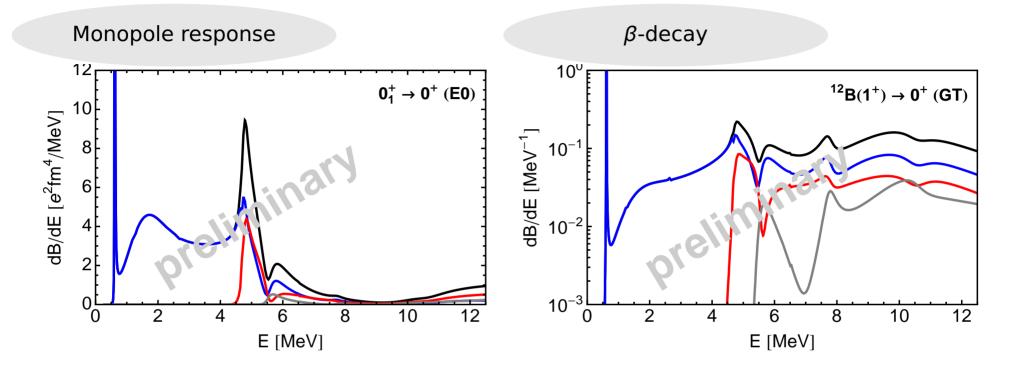




Zimmermann et al., Phys. Rev. Lett. **110**, 152502 (2013)

X E1 transition isospin-forbidden in cluster model!

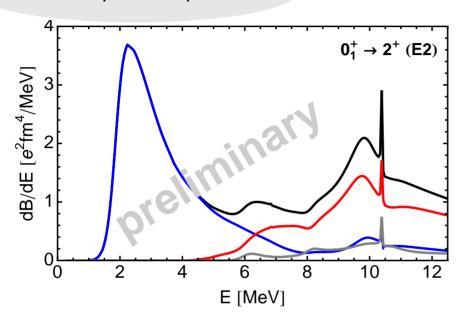
Population of 0+ continuum with different reactions



- GT transitions probe admixtures of "shell model" components
- Hoyle state populated in β -decay
- third 0⁺ state decays through both 8 Be(0⁺)- α and 8 Be(2⁺)- α channels does this reflect a three-body resonance ?

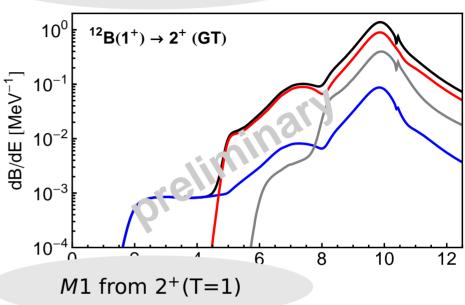
Population of 2⁺ continuum with different reactions

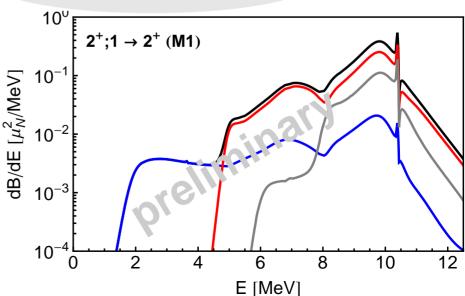
Quadrupole response



• β -decay and M1 transitions from 2⁺ (T=1) state strongly populate 2⁺ states that decay mainly through 8 Be(2⁺)- α

β -decay





Summary

Unitary Correlation Operator Method

• Explicit description of short-range central and tensor correlations

Fermionic Molecular Dynamics

 Gaussian wave-packet basis contains HO shell model and Brink-type cluster states

³He(α , γ)⁷Be Radiative Capture

Bound states, scattering states, capture cross sections

Microscopic cluster model for ¹²C

- Model space with 3 α and 8 Be- α configurations
- Matching with Coulomb continuum, resonances and scattering states
- Hoyle state band build on 8 Be(gs)- α

FMD calculations for ¹²C

- VAP and Multiconfig-VAP in internal region, 8 Be- α in external region
- Investigate EM and GT transitions to the continuum
- \rightarrow 8Be- α vs real three-body asymptotics?