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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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To develop such an ab initio nuclear theory we: 
 1) Start with accurate nuclear forces (and currents) 
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Chiral Effective Field Theory 

•  Inter-nucleon forces from chiral 
effective field theory 
–  Based on the symmetries of QCD 

•  Chiral symmetry of QCD 
(mu≈md≈0), spontaneously broken 
with pion as the Goldstone boson 

•  Degrees of freedom: nucleons + 
pions 

–  Systematic low-momentum 
expansion to a given order (Q/Λχ) 

–  Hierarchy 
–  Consistency 
–  Low energy constants (LEC) 

•  Fitted to data 
•  Can be calculated by lattice QCD 

Λχ~1 GeV :  
Chiral symmetry breaking scale 
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Low-energy QCD 
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NN+3N interactions  
from chiral EFT 

…or accurate 
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potentials 

Unitary/similarity 
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Identity or SRG 
or OLS or UCOM … 

Softens NN, induces 3N 

Many-Body methods H Ψ = E Ψ
NCSM, NCSM/RGM,  
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 Calculations with chiral 3N: SRG softening needed 

•  Chiral N3LO NN plus N2LO NNN 
potential 

–  Bare interaction (black line) 
•  Strong short-range 

correlations 
§  Large basis needed 

–  SRG evolved effective 
interaction (red line) 

•  Unitary transformation 

•  Two- plus three-body 
components, four-body 
omitted 

•  Softens the interaction 
§  Smaller basis sufficient 
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Unified approach to bound & continuum states; 
to nuclear structure & reactions 

•  Ab initio no-core shell model 
–  Short- and medium range correlations 
–  Bound-states, narrow resonances 

1max += NN

NCSM 

•  …with resonating group method 
–  Bound & scattering states, reactions 
–  Cluster dynamics, long-range correlations 

NCSM/RGM 

•  Most efficient: ab initio no-core shell model with continuum NCSMC 
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PRL 110, 022505 (2013); PRC 87, 034326 (2013). 
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… to be simultaneously determined  
by solving the coupled NCSMC equations 
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The 4He and 5Li states of Eqs. (1) and (2), identified
respectively by the energy labels �↵ and �, are anti-
symmetric under exchange of internal nucleons. They
are obtained ahead of time by means of the ab initio

no-core shell model [25] through the diagonalization of
their respective microscopic Hamiltonians in finite bases
constructed from many-body harmonic oscillator (HO)
wave functions with up to N

max

HO quanta and fre-
quency ~⌦. The index ⌫ collects the quantum num-
bers {4He �↵J

⇡↵
↵ T↵; p

1

2

+
1

2

; s`} associated with the con-
tinuous basis states of Eq. (1), and the operator A⌫ =
1p
5

(1 � P
4

i=1

Pi,5), with Pi,5 the permutation between

a nucleon belonging to the 4He nucleus and the proton,
ensures the full antisymmetrization of the five-nucleon
system. The discrete coe�cients, c�, and the continuous
amplitudes of relative motion, �⌫(r) = (N�1/2�)⌫(r), are
the unknowns of the problem and are obtained as solu-
tions, in the interaction region, of the coupled equations

✓
H5

Li

h̄
h̄ H

◆✓
c
�

◆
= E

✓
I5

Li

ḡ
ḡ I

◆✓
c
�

◆
. (3)

Here, E denotes the total energy of the system and
the two by two block-matrices on the left- and right-
hand side of the equation represent, respectively, the
NCSMC Hamiltonian and norm kernels. In the up-
per diagonal block one can recognize the matrix ele-
ments of the Hamiltonian H (identity I) over the dis-
crete 5Li states, (H5

Li

)��0 = ���0E� [(I5
Li

)��0 = ���0 ].
Similarly, those over the orthonormalized p-4He por-
tion of the basis, H⌫⌫0(r, r0) = (N�1/2HN�1/2)⌫⌫0(r, r0)
[I⌫⌫0(r, r0) = �⌫⌫0�(r � r0)/(rr0)], which are obtained
from N⌫⌫0(r, r0)= h�J⇡T

⌫r |A⌫A⌫0 |�J⇡T
⌫0r0 i and H⌫⌫0(r, r0)=

h�J⇡T
⌫r |A⌫HA⌫0 |�J⇡T

⌫0r0 i, appear in the lower diagonal
block. The couplings between the two sectors of the ba-
sis are described by the overlap, ḡ�⌫(r)=(gN�1/2)�⌫(r),
and Hamiltonian, h̄�⌫(r) = (hN�1/2)�⌫(r), form fac-
tors, with g�⌫(r) = h5Li�J⇡T |A⌫ |�J⇡T

⌫r i and h�⌫(r) =
h5Li�J⇡T |HA⌫ |�J⇡T

⌫r i. The scattering matrix (and from
it any scattering observable) is then obtained by match-
ing the solutions of Eq. (3) with the known asymptotic
behavior of the wave function at large distances by means
of the microscopic R-matrix method [26, 27].

Results. Di↵erent from Refs. [24], where the NCSMC
was introduced and applied to the description of the un-
bound 7He nucleus starting from an accurate NN po-
tential, here we employ this approach for the first time
with an Hamiltonian that also includes in addition ex-
plicit 3N forces. This is, from an ab initio standpoint,
necessary to obtain a truly accurate and quantitative
description of the scattering process [28, 29]. In par-
ticular, we adopt an Hamiltonian based on the chiral
N3LO NN interaction of Ref. [30] and N2LO 3N force of
Ref. [31], constrained to provide an accurate description
of the A = 2 and 3 [32] systems and unitarily softened via
the similarity-renormalization-group (SRG) method [33–
37] to minimize the influence of momenta higher than 2
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FIG. 1. (Color online) Calculated p-4He phase shifts at
N

max

= 13 and ~⌦ = 20 MeV obtained with up to four-
teen states of the compound 5Li nucleus as a function of the
number of 4He states included in the calculation. The solid
red lines represent our most complete results. Also shown
(brown dashed lines) are the results of Ref. [23], i.e. without
5Li square intregrable eigenstates, as well as the phase shifts
of Ref. [38] (crosses), previously shown in Ref. [23] as a term
of reference. All values in this and the subsequent figures are
in the laboratory frame.

fm�1.

An ab initio investigation of elastic scattering of pro-
tons on 4He using the present Hamiltonian was recently
obtained within the continuous sector only of the model
space considered here [corresponding to the second term
in the right-hand side of Eq. (2)], i.e. by solving H� =
E� [23]. There, a careful analysis of the computed scat-
tering phase shifts showed that independence with re-
spect to the parameters characterizing the HO basis is
approached at N

max

= 13 (currently our computational
limit) and ~⌦ = 20 MeV, and that small variations of
the SRG momentum scale around the value chosen here
do not lead to significant di↵erences in the results. By
far the largest variation in the obtained phase shifts was
observed as a function of the number of states used to de-
scribe the helium nucleus, particularly in the 2P

3/2 and
2P

1/2 partial waves, where even the inclusion of up to the
first seven (J⇡↵

↵ T↵ = 0+
1

0, 0+
2

0, 0-0, 2-0, 2-1, 1-1 and 1-0)
4He eigenstates proved to be insu�cient for the accurate
description of the resonances below Ep ⇠ 5 MeV proton
incident energy (see Fig. 10 of Ref. [23]).

Rather than adding higher helium excitations, which
would lead to a computationally unbearable problem,
here we augment the model space adopted in Ref. [23] by
coupling the first fourteen (of which three 3/2- and two
1/2-) square-integrable eigenstates of the 5Li compound
nucleus. As illustrated in Fig. 1, and previously demon-
strated with a two-body Hamiltonian for neutron-6He
scattering [24], this substantially mitigates the depen-
dence on the number of eigenstates of the target so that

p-4He scattering within NCSMC 

p-4He scattering phase-shifts for NN+3N potential:  
Convergence 

Differential p-4He cross section with NN+3N potentials 

4He 
p 

Predictive power in the 3/2- resonance region: 
Applications to material science 

3

0.0

1.0

2.0

3.0

d
σ

/d
Ω

p
 [

b
/s

r] Barnard et al.
Freier et al.
Kreger et al.

0 3 6 9 12
E

p
 [MeV]

0.1

0.2

d
σ

/d
Ω

p
 [

b
/s

r] Barnard et al.
Freier et al.
Miller et al.
Nurmela et al.

θ
p
= 141

o

4
He(p,p)

4
He

θ
p
= 25

o

(a)

(b)

FIG. 2. (Color online) Computed (lines) 4He(p, p)4H angular
di↵erential cross section at forward scattering angle ✓p = 25�

(a) and backscattering angle ✓p = 141� (b) as a function of the
proton incident energy compared with measurements (sym-
bols) from Refs. [3–6, 10]. The red solid line corresponds
to the most complete results of Fig. 1. Also shown (brown
dashed lines) are the results of Ref. [23], i.e. without 5Li
square intregrable eigenstates.

even a model space including only the ground state (g.s.)
of 4He is already su�cient to provide a reasonable de-
scription of the significant elastic scattering phase shifts.
Still, to reach the high accuracy we seek in the present
work higher helium excitations cannot be neglected. This
is because in spite of the correlations added by the 5Li
compound states, the J⇡↵

↵ T↵ = 0-0, 2-0, 2-1 and 1-1
(respectively the third, fourth, fifth and sixth) states do
play a role, particularly in determining the 3/2- and 1/2-

resonance energies and widths.
In Fig. 2 our most complete results (including the first

seven low-lying states of 4He) for the 4He(p, p)4He an-
gular di↵erential cross section at the laboratory proton-
scattering angles of ✓p = 25� and 141� are compared
to measurements in the range of incident energies up to
12 MeV [3–6, 10] . The agreement with data is excel-
lent both at forward and backward angles. The high en-
ergy tail of the cross section was already well described
within the more limited model space of Ref. [23], shown
as a brown dashed line. The e↵ect of the additional 5Li
states, included in the present calculation, is essentially
confined around their eigenenergies. The first 3/2- and
1/2- states play the largest role, substantially improving
the agreement with experiment at lower energies. Indeed,
we see in Fig. 2 that the calculated di↵erential cross sec-
tion lies within the experimental error bars in the peak
region dominated by the resonances, though the width of
the peak is somewhat overestimated.

In Table I, we compare the present results for the
centroids and widths of the 5Li ground and first ex-
cited states to those from an extended R-matrix anal-

TABLE I. Centroids ER, obtained as the values of the kinetic
energy in the center of mass for which the first derivative
�0(E

kin

) of the phase shift is maximal [20], and widths � =
2/�0(ER) of the 5Li ground and first excited states. The R-
matrix results are taken from Ref. [20] and correspond to the
evaluation of Ref. [39]. Units are in MeV.

R-matrix Present results

J⇡ ER � ER �

3/2� 1.67 1.37 1.77(1) 1.70(5)

1/2� 3.35 9.40 3.11(2) 7.90(50)

ysis of data [20]. The resonance positions are in
fairly good agreement. The largest deviation occurs for
the 1/2- state, which is 240 keV below the energy re-
ported in Ref. [20]. However we find larger di↵erences
for the widths, particularly for the 5Li g.s., which is
24% broader than in the R-matrix analysis. The com-
puted widths, particularly that of the 1/2- resonance,
present the largest uncertainty in terms of number of 4He
states included in the calculation (indicated in parenthe-
sis). In Fig. 3, we zoom to energies near the resonances
at the proton scattering angle of 169�, of interest for
non-Rutherford backscattering spectroscopy, where the
R-matrix analysis of Ref. [16] leads to an overestimation
of the cross section and triggered the search for new fit-
ting parameters [15]. Except for the 2.4 MeV Ep  3.5
MeV energy interval, where there is a minor disagreement
with experiment in line with our previous discussion, the
computed cross section is in overall satisfactory agree-
ment with data and shows that the present theory could
provide accurate guidance for ion beam analyses at ener-
gies/angles where measurements are not available. The
theoretical uncertainty associated with the treatment of
the helium excitations can be estimated from Fig 3, by
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and 6 4He states are shown in addition to the most complete
results. Experimental data are from Refs. [5, 8, 10, 40].
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FIG. 4. (Color online) Computed (lines) 1H(↵, p)4He angular di↵erential cross section at the proton recoil angles 'p =
4�, 16�, 20�, and 30� as a function of the incident 4He energy compared with data (symbols) from Refs. [9–15, 41, 42]. Panel
(b) focuses on the proton recoil angle 'p = 30�, and shows, in addition to the most complete results, calculations including 5
and 6 4He states.

studying the convergence of the cross section with respect
to the last three 4He states included in the calculation.
The three curves are all within 5% one from another and
di↵erences between the results with 6 and 7 states are
minimal. This and the results of Table I earlier point to
remaining deficiencies in the nuclear interaction (and in
particular 3N force) used in this work. In fact, refine-
ment of the chiral 3N force (which a↵ects the spin-orbit
splitting between 2P

3/2 and 2P
1/2 phase shifts) is a cur-

rent topic of interest in nuclear physics [43–45].

Another kinematic setting of interest is the elastic re-
coil of protons at forward angles by incident 4He nuclei.
In Fig. 4(a), the computed 1H(↵, p)4He angular di↵er-
ential cross section at the proton recoil angles 'p = 4�,
15�, 20� and 30� is compared to various data sets over a
wide range of helium incident energies, E↵. For all four
angles the agreement with experiment is excellent close
to the Rutherford threshold (particularly at the base of
the cross section) and above E↵ ⇠ 13 MeV, but once
again deteriorates at intermediate energies due to the
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FIG. 5. (Color online) Relative di↵erence (in percent) be-
tween the calculated elastic recoil cross section at N

max

= 13
and 11 as a function of the proton angle 'p for the helium
incident energies E↵ = 3.2, 6.0 and 9.5 MeV. Only the first
two 4He states are accounted for in this study.

overestimated width of the 3/2- resonance. In Fig. 4(b),
we concentrate on the well-studied proton recoil angle of
⇠ 30�. In the dip near E↵ = 3 MeV, where the cross sec-
tion is fairly insensitive to the recoil angle, measurements
di↵er up to 40%. On the contrary our results, which lie
in between the data of Baglin et al. [9] and those of Kim
et al. [12], are very stable with respect to the number
of helium states included in the calculation at this en-
ergy. Here the uncertainty associated with the size of
the HO basis, estimated conservatively as the relative
di↵erence between the cross section at N

max

= 13 and
11 shown in Fig. 5, is less than 10%. Based on the find-
ings of Ref. [37] for the g.s. of 6Li, and the substantially
improved convergence of the present results compared to
those of Ref. [23], we also expect a very small dependence
on the SRG momentum scale. However, di↵erent from
the trend observed at the smaller recoil angles, our cal-
culation here underestimates measurements in the peak
region. The extent of this deviation goes beyond the nu-
merical error due to our finite model space and is likely
to be associated with the remaining uncertainties in the
nuclear Hamiltonian.

Conclusions. We presented the most advanced ab ini-

tio calculation of p-4He elastic scattering and provided
accurate predictions for proton backscattering and recoil
cross sections at various energies and angles of interests to
ion beam spectroscopy. Our statistical error, due to the
finite size of the model space, is within 9%. This is of the
same order as experimental uncertainties. An in depth
investigation of the systematic error associated with the
nuclear Hamiltonian is beyond the scope of the present
work. However, we found evidence that the present in-
teraction leads to an overestimation of the width of the
5Li g.s. resonance as well as to a somewhat insu�cient
splitting between this and the 1/2- excited state. With
the ability to further reduce and control the theoretical
uncertainties spurred by the development of optimized

NCSM/RGM 

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 90, 061601(R) (2014)

Predictive theory for elastic scattering and recoil of protons from 4He
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Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles)
are calculated directly by solving the Schrödinger equation for five nucleons interacting through accurate two-
and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of
these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of
numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same
elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and
depth profiles of either hydrogen or helium. We compare our results to available experimental data and show that
direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets
and can be used to predict these cross sections when measurements are not available.

DOI: 10.1103/PhysRevC.90.061601 PACS number(s): 21.60.De, 24.10.Cn, 25.40.Cm, 27.10.+h

Introduction. The 4He(p,p)4He proton elastic scattering
and 1H(α,p)4He proton elastic recoil reactions are the leading
means for determining the concentrations and depth profiles of
helium and hydrogen, respectively, at the surface of materials
or in thin films. Such analyses, known among specialists
as (non-)Rutherford backscattering spectroscopy and elastic
recoil detection analysis, are very important for characterizing
the physical, chemical, and electrical behavior of materials, for
which hydrogen is one of the most common impurities, and for
studying the implantation of helium for applications in, e.g.,
waveguides or fusion energy research [1,2]. To achieve good
resolution, e.g., in the case of thick samples, measurements
are often performed at energies above the Rutherford threshold
where the purely Coulomb elastic scattering paradigm does not
hold anymore. In this regime, in which the incident particle
energy is of the order of a few mega–electron volts per nucleon,
nuclear physics becomes the main driver of the scattering
process, particularly near low-lying resonances where the
cross section can be enhanced by orders of magnitude with
respect to the Rutherford rate. Therefore, the availability of
accurate reference differential cross sections for a variety of
proton/4He incident energies and detection angles is key to the
feasibility and quality of these analyses.

Experimentally the elastic scattering of protons on 4He
has been studied extensively in the past [3–8], but only a
somewhat limited number of measurements were performed in
the energy range of interest for ion-beam analysis, and incon-
sistencies among data sets remain [9–15]. Consequently, cross
sections deduced from R-matrix analyses of data usually stand
as references [8,15–17]. However, there can be discrepancies
as large as 10% [15] among fits based on different data
sets in the critical region near the 3/2− and 1/2− low-lying
resonances of 5Li. An alternative way of fitting p-4He data,

*Present address: Department of Physics, University of Notre Dame,
Notre Dame, Indiana 46556-5670, USA; ghupin@nd.edu
†quaglioni1@llnl.gov
‡navratil@triumf.ca

based on controlled and systematic effective-field theory
expansions, was introduced in Ref. [18]. Other theoretical
investigations of p-4He scattering include microscopic cal-
culations with phenomenological interactions [19–21] as well
as ab initio calculations based on accurate nucleon-nucleon
(NN ) [22] and three-nucleon (3N ) [23] forces. However,
both sets of calculations have limited predictive power. The
former make use of effective interactions with parameters
adjusted to reproduce the experimental nucleon-4He phase
shifts [21] and a simplified description of the 4He. In the
latter, an accurate convergence was only achieved for energies
above the 5Li resonance. In this paper we report on the most
complete ab initio calculation of p-4He scattering and provide
accurate predictions for proton backscattering and recoil cross
sections at various energies and angles of interest for ion-beam
applications.

Formalism. We solve the Schrödinger equation for A = 5
interacting nucleons by means of the no-core shell model with
continuum (NCSMC) [24]. For each channel of total angular
momentum, parity, and isospin (J πT ) we expand the five-
nucleon wave function on an overcomplete basis that consists
of (i) square-integrable energy eigenstates of the 5Li compound
system, |5Li λJ πT ⟩, and (ii) continuous states built from a
proton and a 4He (or α) nucleus (in a J πα

α Tα eigenstate) whose
centers of mass are separated by the relative coordinate r⃗α,p

and that are moving in a 2s+1ℓJ partial wave of relative motion,

∣∣%J π T
νr

〉
=

[(∣∣4He λαJ πα
α Tα

〉∣∣∣∣p
1
2

+ 1
2

〉)(sT )

Yℓ(r̂α,p)
](J π T )

× δ(r−rα,p)
rrα,p

. (1)

The resulting NCSMC translational-invariant ansatz is

∣∣(J π T
A=5

〉
=

∑

λ

cλ|5Li λJ πT ⟩ +
∑

ν

∫
dr r2 γν(r)

r
Aν

∣∣%J π T
νr

〉
.

(2)
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Ab initio many-body calculations of nucleon-4He scattering with three-nucleon forces
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We extend the ab initio no-core shell model/resonating-group method to include three-nucleon (3N )
interactions for the description of nucleon-nucleus collisions. We outline the formalism, give algebraic expressions
for the 3N -force integration kernels, and discuss computational aspects of two alternative implementations. The
extended theoretical framework is then applied to nucleon-4He elastic scattering using similarity-renormalization-
group (SRG)-evolved nucleon-nucleon plus 3N potentials derived from chiral effective field theory. We analyze
the convergence properties of the calculated phase shifts and explore their dependence upon the SRG evolution
parameter. We include up to six excited states of the 4He target and find significant effects from the inclusion of
the chiral 3N force, e.g., it enhances the spin-orbit splitting between the 3/2−and 1/2− resonances and leads to
an improved agreement with the phase shifts obtained from an accurate R-matrix analysis of the five-nucleon
experimental data. We find remarkably good agreement with measured differential cross sections at various
energies below the d-3H threshold, while analyzing powers manifest larger deviations from experiment for
certain energies and angles.

DOI: 10.1103/PhysRevC.88.054622 PACS number(s): 21.60.De, 25.10.+s, 27.10.+h, 27.20.+n

I. INTRODUCTION

Recent progress in ab initio nuclear theory has been helping
us reach a basic understanding of nuclear properties while
paving the way to accurate predictions in the domain of
light nuclei. This has been made possible by simultaneous
advances in the fundamental description of the nuclear
interaction, many-body techniques, and scientific computing.
Today, accurate nucleon-nucleon (NN ) and three-nucleon
(3N ) interactions from chiral effective field theory (χEFT)
[1,2] offer a much-desired link to the underlying theory of
quantum chromodynamics at low energies. At the same time,
a first-principles solution of the many-body problem starting
from realistic Hamiltonians is not only being achieved for well-
bound states [3–7], but also is becoming possible for scattering
and reactions as successful ab initio bound-state techniques
are being extended to the description of dynamical processes
between light nuclei [8–11]. In techniques based on large-scale
expansions over many-body basis states, this success is in
part enabled by the use of similarity-renormalization-group
(SRG) [12–15] transformations of the input Hamiltonian,
where interactions can be softened in exchange for induced
many-body terms [16–19].

One of the emerging techniques in the area of ab initio
light-nucleus reactions is the no-core shell model combined
with the resonating-group method, or NCSM/RGM [9,20].
Here RGM [21–26] expansions in (A−a, a) binary-cluster
wave functions, where each cluster of nucleons is described

*hupin1@llnl.gov
†joachim.langhammer@physik.tu-darmstadt.de
‡navratil@triumf.ca
§quaglioni1@llnl.gov
∥angelo.calci@physik.tu-darmstadt.de
¶robert.roth@physik.tu-darmstadt.de

within the ab initio NCSM [27–30], are used to describe the
dynamics between nuclei made of interacting nucleons starting
from realistic Hamiltonians. In the recent past, this technique
has been successfully applied to compute nucleon [31] and
deuteron [32] scattering on light nuclei, based on accurate
NN potentials obtained by SRG softening of the χEFT NN
potential at next-to-next-to-next-to-leading order (N3LO) by
Entem and Machleidt [33]. In these first applications, the
omission of many-body forces induced by the renormalization
of the input NN potential introduced a dependence on the SRG
resolution scale λ. Also neglected was the 3N component
of the initial chiral Hamiltonian. Nevertheless, by choosing
an appropriate value of λ that reproduced the observed
particle separation energies, the NCSM/RGM was capable
of providing a promising realistic description of scattering
data and even complex reactions such as the 7Be(p,γ )8B
radiative capture [34] or the 3H(d,n)4He and 3He(d,p)4He
fusion rates [35]. In addition, nucleon-nucleus NCSM/RGM
wave functions combined with NCSM eigenstates of the com-
posite A-nucleon system have been successfully used to
compute the low-lying spectrum of the unbound 7He nucleus
within the more complete framework of the no-core shell
model with continuum (NCSMC) [11,36]. However, a truly
accurate ab initio description demands the inclusion of both
induced and initial chiral 3N interactions.

In this paper we present an extension of the ab initio
NCSM/RGM to include explicit 3N -force components of the
Hamiltonian in the description of nucleon-nucleus collisions,
and discuss two alternative implementations of the approach.
The extended formalism is then applied to the study of nucleon-
4He scattering using SRG-evolved NN + 3N Hamiltonians
derived from the N3LO NN interaction of Ref. [33] along with
the local form of the chiral 3N force at next-to-next-to-leading
order (N2LO) of Ref. [37] entirely constrained in the NN and
3N systems [38]. We account for target-polarization effects

054622-10556-2813/2013/88(5)/054622(16) ©2013 American Physical Society
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FIG. 3. (Color online) S-, 3P0- and D-wave d-4He phase shifts
computed with the NN-only, NN+3N-ind and NN+3N
Hamiltonians (lines) compared to those extracted from R-
matrix analyses of data [27, 28] (symbols). More details in
the text.

convergence for the HO expansions at Nmax = 11. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].

We start by discussing the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present in
the chiral Hamiltonian (NN+3N). In Fig. 3 we compare
our computed d-4He S-, 3P0- and D-wave phase shifts
with those of the R-matrix analyses of Refs. [27, 28]. The
results based on the two-body part of the evolved NN
force (NN -only) resemble those obtained with a softer
potential [14]. Once the SRG unitary equivalence is re-
stored via the induced 3N force, the resonance centroids
are systematically shifted to higher energies. By con-
trast, the agreement with data is much improved in the
NN+3N case and, in particular, the splitting between
the 3D3 and 3D2 partial waves is comparable to the mea-
sured one.

In Fig. 4, the resonance centroids and widths ex-
tracted [36] from the phase shifts of Fig. 3 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths
of the NCSMC resonances, which tend to become nar-
rower (in closer agreement with experiment) when this
force is present in the initial Hamiltonian. Overall, the
closest agreement with the observed spectrum is obtained
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(Expt.). Also shown on the left-hand-side are the best
(Nmax = 12) and extrapolated [37] NCSM energy levels. The
zero energy is set to the respective computed (experimental)
d+4He breakup thresholds.

with the NN+3N Hamiltonian working within the NC-
SMC, i.e. by including the continuum degrees of freedom.
Compared to the best (Nmax = 12) NCSM values, all
resonances are shifted to lower energies commensurately
with their distance from the d+4He breakup threshold.
For the 3+, which is a narrow resonance, the effect is
not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2)
asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Indicated
in parenthesis is the Nmax value of the respective calculation.
The error estimates quoted in the extrapolated (∞) NCSM
results include uncertainties due to the SRG evolution of the
Hamiltonian and !Ω dependence [13].

Ground-State Eg.s. C0 C2 C2/C0

Properties [MeV] [fm−1/2] [fm−1/2]

NCSM (10) -30.84 − − −

NCSM (12) -31.52 − − −

NCSM (∞) [37] -32.2(3) − − −

NCSMC (10) -32.01 2.695 -0.074 -0.027

Expt.[1, 39, 40] -31.99 2.91(9) -0.077(18) -0.025(6)(10)

Expt. [38, 41] − 2.93(15) − 0.0003(9)

Unified description of 6Li structure and d+4He dynamics 

6Li vs. (4He+d)+6Li calculation

4He+d

§  Continuum and three-nucleon force effects on d+4He and 6Li 

d+4He Scattering Phase Shifts

-135

-90

-45

0

45

90

135

180

�
[d
eg
]

0 2 4 6

Ekin [MeV]

expt.
N N+3N
N N+3N - ind

3 S1

3D1

d- 4He

D2
3

P 0
3

3D3

NCSM/RGM r

NCSMC r+

H� = EN�

(N� 1
2HN� 1

2 )�̄ = E�̄

✓
HNCSM h̄

h̄ N� 1
2HN� 1

2

◆✓
c
�̄

◆
= E

✓
1 ḡ
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quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 5. (Color online) Computed (lines) 2H(↵, d)4He (a) and 4He(d, d)4He (b) angular di↵erential cross sections at the recoil
and backscattered angles of, respectively, 'd = 30� and ✓d = 164� as a function of the incident ↵ and d energies compared with
data (symbols) from Refs. [23–29].

binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.

Computing support for this work came from the
LLNL institutional Computing Grand Challenge pro-
gram. Prepared in part by LLNL under Contract DE-
AC52-07NA27344. This material is based upon work
supported by the U.S. Department of Energy, O�ce of
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tion through the Canadian National Research Council.
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binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 3. (Color online) S-, 3P0- and D-wave d-4He phase shifts
computed with the NN-only, NN+3N-ind and NN+3N
Hamiltonians (lines) compared to those extracted from R-
matrix analyses of data [27, 28] (symbols). More details in
the text.

convergence for the HO expansions at Nmax = 11. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].

We start by discussing the influence of 3N forces –
those induced by the SRG transformation of the NN po-
tential (NN+3N -ind) as well as those initially present in
the chiral Hamiltonian (NN+3N). In Fig. 3 we compare
our computed d-4He S-, 3P0- and D-wave phase shifts
with those of the R-matrix analyses of Refs. [27, 28]. The
results based on the two-body part of the evolved NN
force (NN -only) resemble those obtained with a softer
potential [14]. Once the SRG unitary equivalence is re-
stored via the induced 3N force, the resonance centroids
are systematically shifted to higher energies. By con-
trast, the agreement with data is much improved in the
NN+3N case and, in particular, the splitting between
the 3D3 and 3D2 partial waves is comparable to the mea-
sured one.

In Fig. 4, the resonance centroids and widths ex-
tracted [36] from the phase shifts of Fig. 3 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths
of the NCSMC resonances, which tend to become nar-
rower (in closer agreement with experiment) when this
force is present in the initial Hamiltonian. Overall, the
closest agreement with the observed spectrum is obtained
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FIG. 4. (Color online) Ground-state energy and low-lying 6Li
positive-parity T = 0 resonance parameters extracted [36]
from the phase shifts of Fig. 3 (NCSMC) compared to the
evaluated centroids and widths (indicated by Γ) of Ref. [1]
(Expt.). Also shown on the left-hand-side are the best
(Nmax = 12) and extrapolated [37] NCSM energy levels. The
zero energy is set to the respective computed (experimental)
d+4He breakup thresholds.

with the NN+3N Hamiltonian working within the NC-
SMC, i.e. by including the continuum degrees of freedom.
Compared to the best (Nmax = 12) NCSM values, all
resonances are shifted to lower energies commensurately
with their distance from the d+4He breakup threshold.
For the 3+, which is a narrow resonance, the effect is
not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2)
asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Indicated
in parenthesis is the Nmax value of the respective calculation.
The error estimates quoted in the extrapolated (∞) NCSM
results include uncertainties due to the SRG evolution of the
Hamiltonian and !Ω dependence [13].

Ground-State Eg.s. C0 C2 C2/C0

Properties [MeV] [fm−1/2] [fm−1/2]

NCSM (10) -30.84 − − −

NCSM (12) -31.52 − − −

NCSM (∞) [37] -32.2(3) − − −

NCSMC (10) -32.01 2.695 -0.074 -0.027

Expt.[1, 39, 40] -31.99 2.91(9) -0.077(18) -0.025(6)(10)

Expt. [38, 41] − 2.93(15) − 0.0003(9)
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d⇥r��(⇥r)Â�J⇡T (A�a,a)

�⇥r

The idea behind the NCSMC

�̄ = N+ 1
2�

|⇥J⇡T
A � =

X

�

c�|A�J⇤T �+
X

⇥

Z
d⇤r

 
X

⇥0

Z
d⇤r 0N� 1

2
⇥⇥0 (⇤r,⇤r 0)⇥̄⇥0(⇤r 0)

!
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FIG. 1. (Color online) Computed d-4He S- and D-wave phase
shifts at Nmax = 9 and !Ω = 20 MeV, obtained fifteen square-
integrable 6Li eigenstates, as a function of the number of 2H
pseudostates (up to seven) in each of the 3S1−

3D1,
3D2 and

3D3−
3G3 channels. The two-body part of the SRG-evolved

N3LO NN potential (NN-only) with Λ = 2.0 fm−1 was used.

quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 5. (Color online) Computed (lines) 2H(↵, d)4He (a) and 4He(d, d)4He (b) angular di↵erential cross sections at the recoil
and backscattered angles of, respectively, 'd = 30� and ✓d = 164� as a function of the incident ↵ and d energies compared with
data (symbols) from Refs. [23–29].

binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.

Computing support for this work came from the
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AC52-07NA27344. This material is based upon work
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binding for the 1+ ground state. This can be under-
stood as stemming from a more e�cient description of
the clusterization of 6Li into a deuteron and an ↵ parti-
cle at long distances, which is harder to describe within
a finite NCSM model space, or – more simply – from
the increased size of the model space. Indeed, as shown
in Table I for the absolute value of the 6Li g.s. energy,
extrapolating to N

max

! 1 brings the NCSM result
in good agreement with the NCSMC. However, while the
extrapolation procedure yields comparable energies, only
the NCSMC wave function presents the correct Whit-
taker asymptotic. This will be very important for the
description of the 2H(↵, �)6Li radiative capture. Con-
versely, the square-integrable |6Li g.s. 1+0i component of
the ansatz (1) for the g.s. allows for the e�cient descrip-
tion of the short-range six-body correlations, and ad-
dresses the polarization of the 4He core. Describing these
correlation exclusively within continuous basis states of
the type of Eq. (2) would require the computationally un-
feasible inclusion of a large number of 4He excited states.

Next, in Fig. 5, we concentrate on di↵erential cross
sections of interest for ion beam analysis in two di↵erent
kinematic settings, i.e. the 2H(↵, d)4He deuteron elastic
recoil [panel (a)], and the 4He(d, d)4He deuteron elastic
backscattering [panel (b)]. We compare our computed
results using the NN+3N Hamiltonian to the data of
Refs. [23–29]. Aside from the position of the 3+ reso-
nance, the calculated cross sections at N

max

= 11 are
in fair agreement with experiment, particularly in the
low-energy region of interest for the 2H(↵, �)6Li radiative
capture, where we reproduce the data of Besenbacher et
al. [23] and those of Quillet et al. [27]. The 500 KeV
region below the resonance is also important for elastic
recoil detection. At higher energies, in the region were
the the 2+ and 1+ resonances overlap, the computed elas-
tic di↵erential cross section at ✓d = 164� reproduces the
data of Galonsky et al. [28] and Mani et al. [29], while
we find disagreement with the data of Ref. [24] in the

same setting but in the elastic recoil configuration. At
even higher energies, the cross section is overestimated
because the computed width of the 1+ state is twice as
large as in experiment. While an N

max

= 13 calculation
(currently out of reach) may change the present picture
somewhat, we expect that the di↵erences with respect to
the present results would not be substantial, particularly
concerning the description of the narrow 3+ resonance.
Indeed, much as in the case of the g.s. energy, here the
NCSMC centroid at N

max

= 11 is in good agreement
with the extrapolated value (0.99 MeV) of the NCSM
excitation energy.

Conclusions. We presented the first application of the
NCSMC formalism for a reaction involving a two-nucleon
projectile. In this ab initio calculation of d-4He elastic
scattering, we illustrated the importance of the coupling
to square-integrable 6Li states and of the three-nucleon
force. We used data for deuterium backscattering and re-
coil cross sections of interests to ion beam spectroscopy
to validate our calculations and found a good agreement
in particular at low energy. The overestimation by about
300 KeV of the position of the 3+ state is an indication
of remaining deficiencies of the nuclear Hamiltonian em-
ployed here. This work sets the stage for the first ab

initio study of the 2H(↵, �)6Li radiative capture as well
as the unified investigation of other bound and continu-
ous properties of the 6Li nucleus.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 5. (Color online) Computed (a) 2H(α, d)4He laboratory-frame and (b) 4He(d, d)4He center-of-mass frame angular
differential cross sections (lines) using the NN+3N Hamiltonian at the deuteron recoil and backscattered angles of, respectively,
ϕd = 30◦ and θd = 164◦ as a function of the laboratory helium (Eα) and deuteron (Ed) incident energies, compared with data
(symbols) from Refs. [7–9, 42–45]. In panel (c), calculated (lines) and measured (symbols) center-of-mass angular distributions
at Ed = 2.93, 6.96, 8.97 [46], and 12 MeV [47] are scaled by a factor of 20, 5, 2, and 1, respectively. All positive- and negative-
parity partial waves up to J = 3 were included in the calculations.

concerning the strength of the spin-orbit interaction.
The inclusion of the d+4He states of Eq. (2) results

also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 4 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
Nmax → ∞ [37] brings the NCSM results in good agree-
ment with the NCSMC, particularly for bound states
and narrow resonances. However, while the extrapolation
procedure yields comparable energies, only the NCSMC
wave functions present the correct asymptotic, which for
the g.s. is a Whittaker function. This is essential for
the extraction of the asymptotic normalization constants
and a future description of the 2H(α, γ)6Li radiative cap-
ture [5]. The obtained asymptotic D- to S-state ratio is
not compatible with the near zero value of Ref. [41], but
rather is in good agreement with the determination of
Ref. [39], stemming from an analysis of 6Li+4He elastic
scattering. Further, based on the extrapolated NCSM
energies, one could erroneously conclude that the mea-
sured splitting between 2+ and 3+ state is reproduced
with the NN+3N Hamiltonian. Conversely, the square-
integrable |6LiλJπT ⟩ components of Eq. (1) are key to
achieving an efficient description of the short-range six-
body correlations, and compensate for computationally
arduous to include 4He excited states.
Next, in Figs. 5(a) and 5(b), respectively, we compare

the 2H(α, d)4He deuteron elastic recoil and 4He(d, d)4He
deuteron elastic scattering differential cross sections com-
puted using the NN+3N Hamiltonian to the measured
energy distributions of Refs. [7–9, 42–45]. Aside from
the position of the 3+ resonance, the calculations are in
fair agreement with experiment, particularly in the low-

energy region of interest for the Big-bang nucleosynthe-
sis of 6Li, where we reproduce the data of Besenbacher
et al. [42] and those of Quillet et al. [8]. The 500 keV
region below the resonance in Fig. 5(a) is also important
for material science, where the elastic recoil of deuterium
knocked by incident α particles is used to analyze the
presence of this element. At higher energies, near the
2+ and 1+ resonances, the computed cross section at the
center-of-mass deuteron scattering angle of θd = 164◦ re-
produces the data of Galonsky et al. [44] and Mani et
al. [45], while we find slight disagreement with the data
of Ref. [9] in the elastic recoil configuration at the labora-
tory angle of ϕd = 30◦. At even higher energies, the mea-
sured cross section of Fig. 5(b) lies below the calculated
one. This is due to the overestimated width of the 1+2
state, which is twice as large as in experiment. The over-
all good agreement with experiment is also corroborated
by Fig. 5(c), presenting 4He(d, d)4He angular distribu-
tions in the 2.93 ≤ Ed ≤ 12.0 MeV interval of incident
energies. In particular, the theoretical curves reproduce
the data at 2.93 and 6.96 MeV, while some deviations
are visible at the two higher energies, in line with our
previous discussion. Nevertheless, in general the present
results with 3N forces provide a much more realistic de-
scription of the scattering process than our earlier study
of Ref. [14]. Finally, we expect that an Nmax = 13 cal-
culation (currently out of reach) would not significantly
change the present picture, particularly concerning the
narrow 3+ resonance. Indeed, much as in the case of the
g.s. energy, here the NCSMC centroid is in good agree-
ment with the NCSM extrapolated value, 0.99(9) MeV.
Conclusions. We presented the first application of

the ab initio NCSMC formalism to the description of
deuteron-nucleus dynamics. We illustrated the role of
the chiral 3N force and continuous degrees of freedom in
determining the bound-state properties of 6Li and d-4He
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quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.
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Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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§  S- and D-wave asymptotic normalization constants 
3

Ground-State Properties NCSM (10) NCSM (12) NCSM (∞) [37] NCSMC (10) Experiment

E6Li [MeV] −30.84 −31.52 −32.19(1) −32.01 −31.994 [1, 40]

C0 [fm−1/2] − − − 2.695 2.91(9) [39] 2.93(15) [38]

C2 [fm−1/2] − − − −0.074 −0.077(18) [39]

C2/C0 − − − −0.027 −0.025(6)(10) [39] 0.0003(9) [41]

Eα+Ed [MeV] −30.52 −30.58 −30.61(4) −30.52 −30.520

TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2) asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα+Ed. Indicated in
parenthesis is the Nmax value of the respective calculation.

of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1, 3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
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thresholds. Absolute g.s. energies can be found in Table I.
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Ground-State Properties NCSM (10) NCSM (12) NCSM (∞) [37] NCSMC (10) Experiment

E6Li [MeV] −30.84 −31.52 −32.19(1) −32.01 −31.994 [1, 40]

C0 [fm−1/2] − − − 2.695 2.91(9) [39] 2.93(15) [38]

C2 [fm−1/2] − − − −0.074 −0.077(18) [39]

C2/C0 − − − −0.027 −0.025(6)(10) [39] 0.0003(9) [41]

Eα+Ed [MeV] −30.52 −30.58 −30.61(4) −30.52 −30.520
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NN + 3N Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα+Ed. Indicated in
parenthesis is the Nmax value of the respective calculation.

of the 6Li system and continuous d-4He(g.s.) states with
up to seven deuteron pseudostates in the 3S1−3D1, 3D2

and 3D3−3G3 channels. Similar to our earlier study per-
formed with a softerNN interaction but in a model space
spanned only by the continuous basis states of Eq. (2)
[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
of the NCSM becomes nearly insensitive to !Ω [13].
In Fig. 2 we compare our computed d-4He S-, 3P0- and

D-wave phase shifts with those of the R-matrix analyses
of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
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TABLE I. Absolute 6Li g.s. energy, S- (C0) and D-wave (C2) asymptotic normalization constants and their ratio using the
NN + 3N Hamiltonian compared to experiment. Also shown is the sum of 4He and 2H g.s. energies, Eα+Ed. Indicated in
parenthesis is the Nmax value of the respective calculation.
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adopt the HO frequency of 20 MeV around which the 6Li
g.s. energy calculated within the square-integrable basis
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In Fig. 2 we compare our computed d-4He S-, 3P0- and
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of Refs. [27, 28]. The results based on the two-body part
of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
is restored via the induced 3N force (NN+3N -ind), the
resonance centroids are systematically shifted to higher
energies. By contrast, the agreement with data is much
improved when the initial chiral 3N force is also included
(NN+3N). In particular, the splitting between the 3D3

and 3D2 partial waves is comparable to experiment.
In Fig. 3, the resonance centroids and widths ex-

tracted [36] from the phase shifts of Fig. 2 (shown on
the right) are compared with experiment as well as with
more traditional approximated energy levels (shown on
the left) obtained within the NCSM by treating the 6Li
excited states as bound states. In terms of excitation en-
ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
the absolute value of the 6Li g.s. energy, extrapolating to
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thresholds. Absolute g.s. energies can be found in Table I.
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[14], we approach convergence for the HO expansions at
Nmax=10(11) for positive (negative) parity channels. We
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of the NCSM becomes nearly insensitive to !Ω [13].
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of the SRG-transformed NN force (NN -only) resemble
those of Ref. [14]. Once the SRG unitary equivalence
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ergies relative to the g.s., in both calculations (i.e., with
or without continuum effects) the chiral 3N force affects
mainly the splitting between the 3+ and 2+ states, and to
a lesser extent the position of the first excited state. Sen-
sitivity to the chiral 3N force is also seen in the widths of
the NCSMC resonances, which tend to become narrower
(in closer agreement with experiment) when this force is
present in the initial Hamiltonian. Overall, the closest
agreement with the observed spectrum is obtained with
the NN+3N Hamiltonian working within the NCSMC,
i.e. by including the continuum degrees of freedom. In-
cidentally, we note that the NN -only Hamiltonian (not
shown in Fig. 3) yields g.s. and 3+ energies (with respect
to the computed d+4He threshold) close to the NN+3N
results, e.g. −1.62 and 1.24 MeV, respectively, within
the NCSMC. However, the splitting between 2+ and 3+

is smaller. Compared to the best (Nmax = 12) NCSM
values, all resonances are shifted to lower energies com-
mensurately with their distance from the breakup thresh-
old. For the 3+, which is a narrow resonance, the effect
is not sufficient to correct for the slight overestimation in
excitation energy already observed in the NCSM calcula-
tion. This and the ensuing underestimation of the split-
ting between the 2+ and 3+ states point to remaining
deficiencies in the adopted 3N force model, particularly
concerning the strength of the spin-orbit interaction.

The inclusion of the d+4He states of Eq. (2) results
also in additional binding for the 1+ ground state. This
stems from a more efficient description of the clusteriza-
tion of 6Li into d+α at long distances, which is harder to
describe within a finite HO model space, or – more sim-
ply – from the increased size of the many-body model
space. Indeed, as shown in Fig. 3 and in Table I for
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to the respective computed (experimental) d+4He breakup
thresholds. Absolute g.s. energies can be found in Table I.
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90, 061601 (2014).

[17] J. Langhammer, P. Navrátil, S. Quaglioni, G. Hupin,
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[30] P. Navrátil, Few-Body Syst. 41, 117 (2007).
[31] D. Gazit, S. Quaglioni, and P. Navrátil, Phys. Rev. Lett.
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[14] P. Navrátil and S. Quaglioni, Phys. Rev. C 83, 044609
(2011) .
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Unified Description of 6Li Structure and Deuterium-4He Dynamics
with Chiral Two- and Three-Nucleon Forces
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We provide a unified ab initio description of the 6Li ground state and elastic scattering of deuterium (d)
on 4He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence
of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying
spectrum of 6Li. The calculation reproduces the empirical binding energy of 6Li, yielding an asymptotic
D- to S-state ratio of the 6Li wave function in the dþ α configuration of −0.027, in agreement with a
determination from 6Li-4He elastic scattering, but overestimates the excitation energy of the 3þ state by
350 keV. The bulk of the computed differential cross section is in good agreement with data. These results
endorse the application of the present approach to the evaluation of the 2Hðα; γÞ6Li radiative capture,
responsible for the big-bang nucleosynthesis of 6Li.

DOI: 10.1103/PhysRevLett.114.212502 PACS numbers: 21.60.De, 24.10.Cn, 25.45.-z, 27.20.+n

Introduction.—Lithium-6 (6Li) is a weakly bound stable
nucleus that breaks into an 4He (or α particle) and a
deuteron (d) at the excitation energy of 1.4743 MeV [1]. A
complete unified treatment of the bound and continuum
properties of this system is desirable to further our under-
standing of the fundamental interactions among nucleons,
but also to inform the evaluation of low-energy cross
sections relevant to applications. Notable examples are
the 2Hðα; γÞ6Li radiative capture (responsible for the big-
bang nucleosynthesis of 6Li [2–6]) and the 2Hðα; dÞ4He
cross section used in the characterization of deuteron
concentrations in thin films [7–9]. Contrary to the lighter
nuclei, the structure of the 6Li ground state (g.s.)—namely,
the amount of the D-state component in its dþ α
configuration—is still uncertain [1]. Well known exper-
imentally, the low-lying resonances of 6Li have been shown
to present significant sensitivity to three-nucleon (3N)
interactions in ab initio calculations that treated them as
bound states [10–13]. However, this approximation is well
justified only for the narrow 3þ first excited state, and no
information about the widths was provided. At the same
time, the only ab initio study of d-4He scattering [14] was
based on a nucleon-nucleon (NN) Hamiltonian and did not
take into account the swelling of the α particle due to the
interaction with the deuteron.
As demonstrated in a study of the unbound 7He nucleus,

the ab initio no-core shell model with continuum
(NCSMC) [15] is an efficient many-body approach to
nuclear bound and scattering states alike. Initially devel-
oped to compute nucleon-nucleus collisions starting from
a two-body Hamiltonian, this technique was later extended
to include 3N forces and successfully applied to make
predictions of elastic scattering and recoil of protons off

4He [16] and to study continuum and 3N-force effects
on the energy levels of 9Be [17]. Recently, we have
developed the NCSMC formalism to describe more chal-
lenging deuterium-nucleus collisions and we present in this
Letter a study of the 6Li ground state and d-4He elastic
scattering using NN þ 3N forces from chiral effective field
theory [18,19].
Approach.—We cast the microscopic ansatz for the

6Li wave function in the form of a generalized cluster
expansion,

jΨJπTi ¼
X

λ

cλj6Li λJπTiþ
XZ

ν

drr2
γνðrÞ
r

AνjΦJπT
νr i; ð1Þ

where J, π, and T are, respectively, total angular
momentum, parity, and isospin, j6Li λJπTi represent
square-integrable energy eigenstates of the 6Li
system, and

jΦJπT
νr i ¼ ½ðj4He λαJ

πα
α Tαij2H λdJ

πd
d TdiÞðsTÞYlðr̂α;dÞ&ðJ

πTÞ

×
δðr − rα;dÞ

rrα;d
ð2Þ

are continuous basis states built from a 4He and a 2H
nuclei whose centers of mass are separated by the relative
coordinate ~rα;d, and that are moving in a 2sþ1lJ partial
wave of relative motion. The translationally invariant
compound, target, and projectile states (with energy labels
λ, λα, and λd, respectively) are all obtained by means of the
no-core shell model (NCSM) [20,21] using a basis of
many-body harmonic oscillator (HO) wave functions with
frequency ℏΩ and up to Nmax HO quanta above the lowest
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FIG. 1. (Color online) Computed d-4He S- and D-wave phase
shifts at Nmax = 9 and !Ω = 20 MeV, obtained fifteen square-
integrable 6Li eigenstates, as a function of the number of 2H
pseudostates (up to seven) in each of the 3S1−

3D1,
3D2 and

3D3−
3G3 channels. The two-body part of the SRG-evolved

N3LO NN potential (NN-only) with Λ = 2.0 fm−1 was used.

quantum numbers {4HeλαJ
πα

α Tα; 2HλdJ
πd

d Td; sℓ} asso-
ciated with the continuous basis states of Eq. (2), and
the operator (with Pi,j exchanging particles i and j)

Aν =
1√
15

(

1−
4

∑

i=1

6
∑

j=5

Pi,j +
4

∑

i<j=1

Pi,5Pj,6

)

,

ensures its full antisymmetrization. Finally, the unknown
discrete coefficients, cλ, and continuous amplitudes of rel-
ative motion, γν(r), are obtained by solving the six-body
Schrödinger equation in the Hilbert space spanned by the
basis states |6LiλJπT ⟩ and Aν |ΦJπT

νr ⟩ [15]. The bound
state and the elements of the scattering matrix are then
obtained from matching the solutions of Eq. (1) with the
known asymptotic behavior of the wave function using
an extension of the microscopic R-matrix theory [22, 23].
The deuteron is only bound by 2.224 MeV. For relative

kinetic energies (Ekin) above this threshold, the d-4He
scattering problem is of a three-body nature (until the
breakup of the tightly bound 4He, that is). Below, the
virtual scattering to the energetically closed 4He+p+n
channels accounts for the distortion of the projectile.
Here we address this by discretizing the continuum of
2H in the 3S1−3D1, 3D2 and 3D3−3G3 channels identi-
fied in our earlier study of Ref. [14]. At the same time,
fifteen (among which two 1+, two 2+, and one 3+) square-
integrable six-body eigenstates of 6Li also contribute to
the description of the deuteron distortion. More impor-
tantly, they address the swelling of the α particle [16],
of which we only include the g.s. in Eq. (2). The typical
convergence behavior of our computed d-4He phase shifts
with respect to the number of deuteron pseudostates (or
d⋆, with Ed⋆>0) included in Eq. (2) is shown in Fig. 1.

FIG. 2. (Color online) Dia-
grammatic representation of
one of the 3N-force matrix el-
ements between basis states
of Eq. (2).

Stable results are found with as little as three deuteron
pseudostates per channel. This is a strong reduction of
the d⋆ influence with respect to the more limited study
of Ref. [14], lacking the coupling of square-integrable 6Li
eigenstates. Nonetheless, above the 2H breakup thresh-
old, our approach is approximated and a rigorous treat-
ment would require the more complicated task of includ-
ing three-cluster basis states [24] in the ansazt of Eq. (1).

The treatment of 3N forces within the NCSMC for-
malism to compute deuteron-nucleus collisions involves
major technical and computational challenges. The first
is the derivation and calculation of the matrix elements
between the continuous basis states of Eq. (2) of seven
independent 3N -force terms, five of which involve the
exchange of one or two nucleons belonging to the pro-
jectile with those of the target. A typical example is
the diagram of Fig. 2, which for the present application
corresponds to ⟨ΦJπT

ν′r′ |P3,5P4,6V
3N
123 |ΦJπT

νr ⟩, with V 3N
123 the

3N interaction among particles 1, 2 and 3. To calculate
this contribution, we need the four-nucleon density ma-
trix of the target. For 4He, this can be precomputed and
stored in a factorized form [14, 25]. An additional dif-
ficulty is represented by the exorbitant number of input
3N -force matrix elements (see Fig. 1 of Ref. [26]), which
we have to limit by specifying a maximum three-nucleon
HO model space size E3max [25]. To minimize the ef-
fects of such truncation we included 3N -force matrix el-
ements up to E3max = 17. The ⟨6LiλJπT |V 3N

346 |ΦJπT
νr ⟩

and ⟨6LiλJπT |V 3N
456 |ΦJπT

νr ⟩ couplings between discrete
and continuous states are comparatively less demanding.
Results. We adopt an Hamiltonian based on the chi-

ral N3LO NN interaction of Ref. [29] and N2LO 3N
force of Ref. [30], constrained to provide an accurate de-
scription of the A=2 and 3 [31] systems. These inter-
actions are additionally softened by means of a unitary
transformation that decouples high- and low-momentum
components of the Hamiltonian, working within the sim-
ilarity renormalization group (SRG) method [26, 32–
35]. To minimize the occurrence of induced four-nucleon
forces, we work with the SRG momentum scale Λ = 2.0
fm−1 [25, 34, 35]. All calculations are carried out using
the ansatz of Eq. (1) with fifteen discrete eigenstates of
the 6Li system and continuous d-4He(g.s.) binary-cluster
states with up to seven deuteron pseudostates in the
3S1−3D1, 3D2 and 3D3−3G3 channels. Similar to our
earlier study of d-4He scattering [14] [performed with a
softer NN interaction but in a model space spanned only
by the continuous basis states of Eq. (2)], we approach
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•  Z=4, N=7 
–  In the shell model picture g.s. expected to be Jπ=1/2-  

•  Z=6, N=7 13C and Z=8, N=7 15O have Jπ=1/2- g.s. 
–  In reality, 11Be g.s. is Jπ=1/2+ - parity inversion 
–  Very weakly bound: Eth=-0.5 MeV 

•  Halo state – dominated by 10Be-n in the S-wave 
–  The 1/2- state also bound – only by 180 keV 
 

•  Can we describe 11Be  
     in ab initio calculations? 

–  Continuum must be included 
–  Does the 3N interaction play  
    a role in the parity inversion?  

    
 

Neutron-rich halo nucleus 11Be 
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Structure of 11Be from chiral NN+3N forces 

32 

•  NCSMC calculations including chiral 3N (N3LO NN+N2LO 3NF400) 
–   n-10Be  +  11Be 

•  10Be: 0+, 2+, 2+ NCSM eigenstates 
•  11Be: ≥6 π = -1 and ≥3 π = +1 NCSM eigenstates 
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9Be: NCSM vs. NCSMC

! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold
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Mirror nuclei:11Be and 11N

0 1 2 3 4 5 6 7 8 9 10
-150

-100

-50

0

50

100

150

.

δ
[d

eg
]

Ekin [MeV]

Nmax = 8,9
2S1/2

2P1/2

2P3/2
2D5/2

2F5/2

3/2+

n+10Be

0 1 2 3 4 5 6 7 8 9 10
Ekin [MeV]

-60

-30

0

30

60

90

120

150

180

δ [
de

g]

2P1/2

2S1/2
4S3/2

2P3/2

6P3/2

6P5/2

5/2+

p+10C Nmax =6,7

standard NN+3N(400)

6P3/2

Robert Roth - TU Darmstadt - February 2015

9Be: NCSM vs. NCSMC

! NCSMC shows much better Nmax convergence 

! NCSM tries to capture continuum effects via large Nmax 

! drastic difference for the 1/2+ state right at threshold

10

6 8 10 12 exp. 12 10 8 6

-2
-1

0
1

2

3
4

5

6

7

8

.

E
th

r.
[M

eV
]

(a)

NCSM NCSMC

7 9 11 exp. 11 9 7
Nmax Nmax

0
1
2
3
4
5
6
7
8
9

10

.

E
th

r.
[M

eV
]

(b)

NCSM NCSMC

6 8 10 12 exp. 12 10 8 6

-2
-1

0
1

2

3
4

5

6

7

8

.
E

th
r.

[M
eV

]

(a)

NCSM NCSMC

7 9 11 exp. 11 9 7
Nmax Nmax

0
1
2
3
4
5
6
7
8
9

10

.

E
th

r.
[M

eV
]

(b)

NCSM NCSMC

NCSM NCSMC NCSM NCSMC
negative parity positive parity

Nmax Nmax Nmax Nmax

NN
+3

N f
ul

l
α 

=
 0

.0
62

5 
fm

4 ,
  
ħΩ

 =
 2

0 
M

eV
, 

 E
3m

ax
 =

 1
4 

Langhammer, Navrátil, Quaglioni, Hupin, Calci, Roth; Phys. Rev. C 91, 021301(R) (2015)

ab initio 
calculation 

predict 3/2+-state preliminary 

preliminary 



Effects of 3N force in 11Be 

34 June 19 2015 Angelo Calci

11Be: 3N effects
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Motivation:pp-chains

• In the stars, the pp-chains are the first reactions which synthesize nuclear
elements since they do not require any catalyst.

p + p ! 2H + e+ + ⌫e

2H + p ! 3He + �

3He + 3He ! ↵+ p + p 3He + ↵ ! 7Be + �

7Be + e� ! 7Li + ⌫e
7Be + p ! 8B + �

7Li + p ! ↵+ ↵ 8B ! ↵+ ↵+ e+ + ⌫e

Branch I Branch II Branch III
⇡ 69% ⇡ 30.9% ⇡ 0.1%

• The relative rates of the 3He(↵, �)7Be and 3He(3He, 2p)4He reactions determines
which percentage of the pp-chain terminations produces neutrinos.

Solar p-p chain 
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NCSMC Expt. NCSMC Expt. 

E3/2
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Figure 4: (Color online) Partial-wave decomposition of the E1 contributions
to the 3He(↵, �)7Be astrophysical S factors with the NCSMC approach (solid
lines) compared with Ne↵’s calculations (dashed lines) [53].

trophysical S factor, about 0.1%. The 1/2+ phase shifts are
not very sensitive to the the energies of the square-integrable
NCSM states, which are the adjusable parameters of our phe-
nomenological model. Even by increasing these energies by
amounts as large as 10 MeV, the 1/2+ phase shift is only re-
duced by 0.5� at 1 MeV, 1.5� at 2 MeV, and 2� at 3 MeV.
The consequent impact on the astrophysical factors is thus also
small with a maximum of few percents. A improvement of the
3He(↵, �)7Be astrophysical S factors would require the inclu-
sion of three-body forces and possibly the increase of the accu-
racy of the basis states, i.e., the increase of Nmax.

In Fig. 3, other theoretical results based on two di↵erent re-
alistic NN interactions [3, 18] are also presented. Nollet’s ap-
proach [3] is not fully microscopic but hybrid, based on both ab
initio variational Monte Carlo wave functions and phenomeno-
logical potential-model wave functions. In contrast, Ne↵’s cal-
culation [18] is fully microscopic. As our approach, it is based
on resonating group method wave functions and the micro-
scopic R-matrix to enforce the proper boundary conditions but
his model space is built from the fermionic molecular dynamics
(FMD) approach, not from the no-core shell model. In addition,
only the E1 transtions are considered in his model. Although
the FMD approach is not fully able to describe the short-range
correlations of the wave function, a good agreement between
his theoretical 3He(↵, �)7Be astrophysical S factors and the ex-
perimental ones was obtained by Ne↵ [18]. Let us stress that
Nollet’s and Ne↵’s appoaches and the present one are based,
for technical reasons, on three di↵erent NN interactions. They
are thus not supposed to give the same results and, in fact, both
absolute values of the astrophysical S factors and their energy-
dependence di↵er significantly. To get some insights on these
di↵erences, the E1 contributions, dominant at low energies, to
the 3He(↵, �)7Be astrophysical S factors obtained in this work
are decomposed into the di↵erent partial waves and compared
with Ne↵’s results [53] in Fig. 4. The E1 transitions are al-
lowed from the 1/2+, 3/2+, and 5/2+ partial waves. Because
of the absence of centrifugal barrier, the transitions from the
1/2+ partial wave (` = 0) are the most important and those are
the ones for which the contributions di↵er between the present
calculation and Ne↵’s one. A better knowledge of the ↵ + 3He
elastic scattering could thus provide a useful test of the accuracy

of the theoretical results.
The 3H(↵, �)7Li ones are overestimated over the full en-

ergy range by our theoretical approach. The phenomenologi-
cal approach improves only slightly the situation. As shown
in Fig. 3, a similar feature is present, but less pronounced, in
Ne↵’s calculations [18] while Nollet’s approach [3] reproduces
the 3H(↵, �)7Li astrophysical S factors but underestimates the
3He(↵, �)7Be ones. This fact suggests a possible underestima-
tion of the experimental systematic uncertainties and still in-
creases the motivation for a more complete approach, including
three-nucleon forces.

4. Conclusion

Theoretical models are essential to determine the
3He(↵, �)7Be and 3H(↵, �)7Li astrophysical S factors at
energies relevant in the Sun. Simple models based on a cluster
approximation and an e↵ective interaction adapted to this
approximation are not able to reproduce the astrophysical S
factors at energies studied in laboratories and thus are not
able to provide reliable S factors at energies of astrophysical
interest. Moreover, the use of an e↵ective interaction reduces
sensibly the predictive power of these models. Therefore, the
development of an ab initio approach, i.e., a microscopic ap-
proach using a realistic inter-nucleon interaction and accurate
wave functions, describing these radiative-capture reactions is
essential. Earlier steps towards this direction include Nollet’s
work based on the variational Monte Carlo [3] and Ne↵’s works
based on the fermionic molecular dynamics [18]. A new step is
achieved in this letter with the desctiption of the 3He(↵, �)7Be
and 3H(↵, �)7Li radiative-capture processes by means of
the no-core shell model approach with continuum [19, 20].
Although the approach is restricted to two-nucleon forces, a
rather good description of 7Be and 7Li nuclei is obtained. The
agreement between theoretical and experimental ↵ + 3He and
↵ + 3H elastic phase shifts is di�cult to characterize because
of the lack of knowledge on the experimental uncertainties.
Nevertheless, at low energies, the theoretical s-wave phase
shifts seem to be overestimated. This has a direct impact on the
energy depence of the astrophysical S factor at low energies,
which is not exactly reproduced by our theoretical approach.

The next step in the development of an ab initio approach of
radiative-capture reactions is the consideration of three-nucleon
forces, which is a particularly challenging task. Some approxi-
mate ways to include their e↵ects are currently under study.
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•  Two-neutron halo nuclei 

 

•  Transfer reactions with three-body continuum final states 
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ν3

∑ Φν3

x

y d

xd

y

ψβ1

(A−a23 )

ψβ2

(a2 )

ψβ3

(a3 )

δ(

x −

r
a2 ,a3
)

δ(

y −

r
A−a23,a23

)

ψα1

(A−a)
ψα2

(a)

δ(

r −

r
A−a,a )

3-body 
channels  plus 

June 6th, 2012

NCSM/RGM-3B

Extension to three-body cluster

+
3H 3H 4He n

n

n

n

9Li

n

n

4He n

n

Bound and resonant states:
2n Halo nuclei

3-body continuum states:
Transfer reactions



4He + n + n 
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mode suggested in Refs. [1,3]. In addition, our results do
not support the presence of a low-lying 0þ monopole
resonance above the 1þ state reported by previous theo-
retical investigations of the 4Heþ nþ n continuum, in
which the 4He was considered as an inert particle with no
structure. These three-body calculations, performed within
the hyperspherical-harmonics basis [8,9,20,27] and with
the complex scaling method [28,29], obtained a similar
sequence of 2þ1 , 2þ2 , 1þ, and 0þ2 levels, but different
resonance positions and widths. (Only the first two 2þ

resonances were shown in Ref. [20].) Microscopic 4Heþ
nþ n calculations based on schematic interactions were
later reported in Refs. [10,11] but showed only results for
the 2þ1 narrow resonance and do not comment on a 0þ

excited state.
In Fig. 2, the energy spectrum of states extracted from

the resonances of Fig. 1 is compared to the one recently
measured at GANIL [4]. Our results are consistent with the
presence of the second low-lying narrow 2þ resonance
observed for the first time in this experiment. A J ¼ 1
resonance was also measured at 4.3 MeV; however, the
parity of such a state is not yet determined, and it is not
possible to univocally identify it with the 1þ resonance
found at 2.77 MeV in the present calculations. At the same
time, the energy dependence of the 1− eigenphase shifts of
Fig. 1(b) does not favor the interpretation of this low-lying
state as a dipole mode. We also predict two broader
negative-parity states not observed.

A thorough study of the convergence of the results with
respect to all parameters defining the size of our model
space was performed. These are the maximum value Kmax
of the hyperangular momentum in the expansion (3), the
size Nmax of the HO basis used to calculate the g.s. of 4He
and the localized parts of Eqs. (5) and (6), and finally, the
size Next ≫ Nmax of the extended HO basis used to
represent a delta function in the core-halo distance entering
the portion of the Hamiltonian kernel that accounts for the
interaction between the halo neutrons (see Eq. (39) of
Ref. [14]). In each case, the number of integration points
and the hyper-radius a used to match internal and asymp-
totic solutions within the R-matrix method on the
Lagrange mesh were chosen large enough to reach stable,
a-independent results. All calculations were performed
with the same ℏΩ ¼ 14 MeV frequency adopted for the
study of the 6He g.s. [14].
We first set the extended HO basis size to the value

(Next ¼ 70) we found to be sufficient for the 0þ g.s. energy
[14] and established that expansion (3) converges at
Kmax ¼ 19=20 for all negative- or positive-parity channels
except the 0þ, requiring Kmax ¼ 28. Examples of the
convergence pattern with respect to the HO basis size
Nmax are shown in Fig. 3. In general, convergence is
satisfactory at Nmax ¼ 13. For the higher-lying resonances,
this value is not quite sufficient but already provides the
qualitative behavior to start discussing the continuum
structure of the system. Next, we study the dependence
on Next, which regulates the range of the potential kernel.
Not unexpectedly, an increase of Next requires at the same
time incrementing the matching hyper-radius a needed to
reach the asymptotic region (we used values of up to 60 fm)
and Kmax, for which we used values as high as 40 in the 0þ
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FIG. 2 (color online). Comparison of the spectrum obtained
within this work using the NCSM/RGM to the experimental
spectrum measured at the SPIRAL facility (GANIL) [4].
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The low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio
framework that encompasses the 4Heþ nþ n three-cluster dynamics characterizing its lowest decay
channel. This is achieved through an extension of the no-core shell model combined with the resonating-
group method, in which energy-independent nonlocal interactions among three nuclear fragments can be
calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio
many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-
body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange
mesh. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the
known Jπ ¼ 2þ resonance as well as a result consistent with a new low-lying second 2þ resonance recently
observed at GANIL at 2.6 MeVabove the 6He ground state. We also find resonances in the 2−, 1þ, and 0−

channels, while no low-lying resonances are present in the 0þ and 1− channels.
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Introduction.—Nuclear systems near the drip lines, the
limits of the nuclear chart beyond which neutrons or
protons start dripping out of nuclei, offer an exciting
opportunity to advance our current understanding of the
interactions among nucleons, so far mostly based on the
study of stable nuclei. This is not a goal devoid of
challenges. Experimentally, the study of these rare nuclei
with atypical neutron-to-proton ratios is challenged by their
short half-lives and minute production cross sections. A
major stumbling block in nuclear theory has to deal with
the low breakup thresholds, which cause bound, resonant,
and scattering states to be strongly coupled. Particularly
arduous, in this respect, are those systems for which the
lowest threshold for particle emission is of the three-body
nature, such as 6He, which breaks into an α particle (4He
nucleus) and two neutrons at the excitation energy of
0.975 MeV. Aside from a narrow resonance characterized
by spin parity Jπ ¼ 2þ, located at 1.8 MeV above the
ground state (g.s.), the positions, spins, and parities of the
excited states of this nucleus are still under discussion.
Experimentally, the picture is not clear. Proton-neutron
exchange reactions between two fast colliding nuclei
produced resonantlike structures around 4 [1] and 5.6
[2] MeV of widths Γ ∼ 4 and 10.9 MeV, respectively, as
well as a broad asymmetric bump at ∼5 MeV [3], but
disagree on the nature of the underlying 6He excited
state(s). While the structures of Refs. [1,3] are explained
as dipole excitations compatible with oscillations of the
positively charged 4He core against the halo neutrons, that
of Ref. [2] is identified as a second 2þ state. More recently,
a much narrower 2þ (Γ ¼ 1.6 MeV) state and a J ¼ 1
resonance (Γ ∼ 2 MeV) of unassigned parity were popu-
lated at 2.6 and 5.3 MeV, respectively, with the two-neutron

transfer reaction 8Heðp; 3HÞ6He% [4]. On the theory side,
several predictions, all incomplete in different ways,
suggest a 2þ1 , 2

þ
2 , 1

þ, 0þ sequence of levels above the
first excited state but disagree on the positions and
widths. Those from six-body calculations with realistic
Hamiltonians [5–7] were obtained within a bound-state
approximation and cannot provide any information about
the widths of the levels. Vice versa, those from three-body
models [8,9], from microscopic three-cluster models
[10,11], or from calculations hinging on a shell-model
picture with an inert 4He core [12,13] can describe the
continuum but were obtained using schematic interactions
and a simplified description of the structure. In this Letter,
we present the first ab initio calculation of the 4Heþ nþ n
continuum starting from a nucleon-nucleon (NN) interaction
that describes two-nucleon properties with high accuracy.
Formalism.—In the no-core shell model combined with

the resonating-group method (NCSM/RGM), A-body
bound and/or scattering states characterized by three-
cluster configurations are described by the wave function

jΨJπTi ¼
X

ν

ZZ
dxdyx2y2ÂνjΦJπT

νxy iGJπT
ν ðx; yÞ; ð1Þ

in terms of a set of unknown continuous amplitudes
GJπT

ν ðx; yÞ and (a1, a2, a3) ternary cluster channels

jΦJπT
νxy i

¼
h
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Table 1. Energy (in MeV) for the 6He ground state using the NCSM/RGM, NCSM and NCSMC approaches at
N

max

=12. For the NCSM we also show the extrapolated value to N

max

! 1.

Nmax NCSM/RGM NCSM NCSMC
8 �28.62 �28.95 �29.69
10 �28.72 �29.45 �29.86
12 �28.70 �29.66 �29.86

Extrapolation — �29.84(4) —

the no-core shell model (NCSM). The latter eigenstates compensate for the missing cluster excita-
tions improving the description of short range correlations.

The NCSMC was first introduced in [7, 8] for binary systems. Its expansion to three-cluster
systems was recently achieved and we show here the first results for the 6He ground state (g.s).

2 Formalism

In the NCSMC, the ansatz for the three-cluster many-body wave function is given by

| J

⇡
T i =

X

�

c�|A�J

⇡
T i +

X

⌫

"

dx dy x

2 y2
G

J

⇡
T

⌫ (x, y) Â⌫ |�J

⇡
T

⌫xy i ,

where c� and G

J

⇡
T

⌫ (x, y) are, respectively, discrete and continuous variational amplitudes, |A�J

⇡
T i

are the NCSM eigenstates labeled by the set of quantum number �, Â⌫ is an appropriate intercluster
antisymmetrizer introduced to exactly preserve the Pauli exclusion principle, and

|�J

⇡
T

⌫xy i =
h⇣
|A � a23 ↵1I

⇡1
1 T1i

⇣
|a2 ↵2I

⇡2
2 T2i|a3 ↵3I

⇡3
3 T3i
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, (1)

are three-body cluster channels of total angular momentum J, parity ⇡ and isospin T where ⌫
represents a set of quantum numbers that describes the channel within the cluster basis, Here,
|A � a23 ↵1I

⇡1
1 T1i, |a2 ↵2I

⇡2
2 T2i and |a3 ↵3I

⇡3
3 T3i denote the microscopic (antisymmetric) wave func-

tions of the three nuclear fragments calculated within the NCSM. The Jacobi coordinates describing
the relative positions of the clusters are denoted by ⌘23 and ⌘1,23.

We calculate the unknowns of the NCSMC wave function [c� and G

J

⇡
T

⌫ (x, y)] by solving the or-
thogonalized coupled equations obtained by projecting the Schrödinger equation on the model space
spanned by NCSM eigenstates and the NCSM/RGM basis. Those equations are solved by means of
the microscopic R-matrix method in a Lagrange mesh [9]. Details on the procedure will be available
on [10].

3 Application to 6He

The lightest Borromean nucleus is 6He [11, 12], formed by an 4He core and two halo neutrons. It is,
therefore, an ideal first candidate to be studied within a three-body formalism. Hence, it was used as
a test case when the NCSM/RGM formalism for three-cluster dynamics was introduced in [5, 6] and
here is studied again in order to perform a benchmark with such results. In this first calculation, we
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4He + n + n 

NCSM/RGM for three-body clusters: Structure of 6He 

6He bound 0+ ground state 
+ 

NCSMC implementation in progress… … and improved matter radius 
convergence 

λ=1.5 fm-1 
 

                     Nmax=6   Nmax=8   Nmax=10   Nmax=12 
 

Matter radius 
NCSM              2.14      2.18     2.22      2.25 
NCSMC             2.40      2.28     2.33      2.34 

 
Binding Energy 

                     NCSM             -28.95   -29.45   -29.66    -29.75    [-29.84(4)] 
NCSMC            -30.02   -29.69   -29.86    -29.86 

 
PP radius 

NCSM                                1.78 
NCSMC                               1.79 



4He + n + n 

NCSM/RGM for three-body clusters: Structure of 6He 

6He bound 0+ ground state 
+ 

NCSMC implementation in progress… …4He core excitations enhance  
the di-neutron configuration 



Conclusions and Outlook 

•  We developed a new unified approach to nuclear bound and unbound states 
–  Merging of the NCSM and the NCSM/RGM = NCSMC  
–  Inclusion of three-nucleon interactions in reaction calculations for A>5 systems 
–  Extension to three-body clusters (6He ~ 4He+n+n): NCSMC in progress 

 

 

•  Ongoing projects: 
–  Transfer reactions 
–  Applications to capture reactions important for astrophysics 
–  Bremsstrahlung 

•  Outlook 
–  Alpha-clustering (4He projectile)  

•  12C and Hoyle state: 8Be+4He 
•  16O: 12C+4He 

•  Ab initio calculations of nuclear structure and reactions is a dynamic field 
with significant advances  



NCSMC and NCSM/RGM collaborators 

Sofia Quaglioni (LLNL)  
 
Francesco Raimondi, Jeremy Dohet-Eraly, Angelo Calci 

(TRIUMF) 
 
Joachim Langhammer, Robert Roth (TU Darmstadt) 
 
Carolina Romero-Redondo (LLNL) 
 
Guillaume Hupin (CNRS) 
 
Wataru Horiuchi (Hokkaido) 
 
 
 
 
 
 
 


