Canada's national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

Ab Initio Unified Approach to Nuclear Structure and Reactions

YIPQS Long-term workshop Computational Advances in Nuclear and Hadron Physics (CANHP 2015) Yukawa Institute for Theoretical Physics, Kyoto, Japan **October 13, 2015**

Petr Navratil | TRIUMF

Nurmela et al., 4 Nurmela et al., 15 Kim et al. 20 Nagata et al., 20^c

Pusa et al., 20°

Wang et al., 20°

Outline

- NCSMC approach
- Nucleon-⁴He scattering & ³H(d,n)⁴He
- Deuteron-⁴He scattering and ⁶Li structure
- ¹¹Be as a laboratory for testing of nuclear forces
- ³He-⁴He and ³H-⁴He radiative capture
- ⁶He as ⁴He-n-n system

From QCD to nuclei

Nuclear structure and reactions

Chiral Effective Field Theory

- Inter-nucleon forces from chiral effective field theory
 - Based on the symmetries of QCD
 - Chiral symmetry of QCD $(m_u \approx m_d \approx 0)$, spontaneously broken with pion as the Goldstone boson
 - Degrees of freedom: nucleons + pions
 - Systematic low-momentum expansion to a given order (Q/Λ_x)
 - Hierarchy

RIUMF

- Consistency
- Low energy constants (LEC)
 - Fitted to data
 - Can be calculated by lattice QCD

 Λ_{χ} ~1 GeV : Chiral symmetry breaking scale

From QCD to nuclei

RIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

From QCD to nuclei

Calculations with chiral 3N: SRG softening needed

RIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

Harmonic oscillator basis

WTRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- Bound & scattering states, reactions
- Cluster dynamics, long-range correlations

WTRIUMF Unified approach to bound & continuum states; to nuclear structure & reactions

- Ab initio no-core shell model
 - Short- and medium range correlations
 - Bound-states, narrow resonances

- Bound & scattering states, reactions
- Cluster dynamics, long-range correlations

S. Baroni, P. Navratil, and S. Quaglioni, PRL **110**, 022505 (2013); PRC **87**, 034326 (2013).

NCSMC

Coupled NCSMC equations

Scattering matrix (and observables) from matching solutions to known asymptotic with microscopic *R*-matrix on Lagrange mesh

p-⁴He scattering within NCSMC

p-⁴He scattering phase-shifts for NN+3N potential:

Convergence

Differential p-⁴He cross section with NN+3N potentials

n-⁴He scattering within NCSMC

n-⁴He scattering phase-shifts for chiral NN and NN+3N potential

Total *n*-⁴He cross section with NN and NN+3N potentials

Ab initio many-body calculations of nucleon-⁴He scattering with three-nucleon forces

Guillaume Hupin,^{1,*} Joachim Langhammer,^{2,†} Petr Navrátil,^{3,‡} Sofia Quaglioni,^{1,§} Angelo Calci,^{2,∥} and Robert Roth^{2,¶}

³H(*d*,*n*)⁴He fusion with chiral NN+3N

- Towards first ab initio calculation of ³H(d,n)⁴He fusion with 3N forces
 - N_{max} = 9 model space
 - n+⁴He & d+³H continuum channels
 - Up to 14 ⁵He states
 - Only g.s. of ⁴He and ³H: effect of target excitation described by ⁵He states
 - 3-body dynamics approximated above deuteron breakup

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

week ending 29 MAY 201

Unified Description of ⁶Li Structure and Deuterium-⁴He Dynamics with Chiral Two- and Three-Nucleon Forces

PHYSICAL REVIEW LETTERS

PRL 114, 212502 (2015)

Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,‡

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

week ending 29 MAY 201

Unified Description of ⁶Li Structure and Deuterium-⁴He Dynamics with Chiral Two- and Three-Nucleon Forces

PHYSICAL REVIEW LETTERS

PRL 114, 212502 (2015)

Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,*

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

with Chiral Two- and Three-Nucleon Forces

Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,‡

Unified description of ⁶Li structure and d+⁴He dynamics

Continuum and three-nucleon force effects on d+⁴He and ⁶Li

Unified description of ⁶Li structure and d+⁴He dynamics

S- and D-wave asymptotic normalization constants

week ending 29 MAY 2015

	NCSMC	Experiment			
$C_0 \; [{\rm fm}^{-1/2}]$	2.695	2.91(9)	[39]	2.93(15)	[38]
$C_2 [\mathrm{fm}^{-1/2}]$	-0.074	-0.077(18)	[39]		
C_{2}/C_{0}	-0.027	-0.025(6)(10)	[39]	0.0003(9)	[41]

- [38] L. D. Blokhintsev, V. I. Kukulin, A. A. Sakharuk, D. A. Savin, and E. V. Kuznetsova, Phys. Rev. C 48, 2390 (1993).
- [39] E. A. George and L. D. Knutson, Phys. Rev. C 59, 598 (1999).
- [41] K. D. Veal, C. R. Brune, W. H. Geist, H. J. Karwowski, E. J. Ludwig, A. J. Mendez, E. E. Bartosz, P. D. Cathers, T. L. Drummer, K. W. Kemper, A. M. Eiró, F. D. Santos, B. Kozlowska, H. J. Maier, and I. J. Thompson, Phys. Rev. Lett. 81, 1187 (1998).

Unified Description of ⁶Li Structure and Deuterium-⁴He Dynamics with Chiral Two- and Three-Nucleon Forces

PHYSICAL REVIEW LETTERS

PRL 114, 212502 (2015)

Guillaume Hupin,1,* Sofia Quaglioni,1,† and Petr Navrátil2,\$

Neutron-rich halo nucleus ¹¹Be

• Z=4, N=7

RIUMF

- In the shell model picture g.s. expected to be $J^{\pi}=1/2^{-1}$
- 1s_{1/2} 0p_{1/2} 0p_{3/2} 0s_{1/2}
- Z=6, N=7 ¹³C and Z=8, N=7 ¹⁵O have $J^{\pi}=1/2^{-}$ g.s.
- In reality, ¹¹Be g.s. is $J^{\pi}=1/2^{+}$ parity inversion
- Very weakly bound: E_{th} =-0.5 MeV
 - Halo state dominated by ¹⁰Be-n in the S-wave
- The 1/2⁻ state also bound only by 180 keV
- Can we describe ¹¹Be in *ab initio* calculations?
 - Continuum must be included
 - Does the 3N interaction play a role in the parity inversion?

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>7.3139</u> 9Be+2n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0.32004	<u>0.5016</u> ¹⁰ Be+n
$^{+t-p}$ ¹¹ Be	

Structure of ¹¹Be from chiral NN+3N forces

- NCSMC calculations including chiral 3N (N³LO NN+N²LO 3NF400)
 - n-¹⁰Be + ¹¹Be
 - ¹⁰Be: 0⁺, 2⁺, 2⁺ NCSM eigenstates

• ¹¹Be: $\geq 6 \pi = -1$ and $\geq 3 \pi = +1$ NCSM eigenstates

Mirror nuclei ¹¹Be and ¹¹N

Effects of 3N force in ¹¹Be

Capture reactions important for astrophysics

³He-⁴He and ³H-⁴He scattering

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, hΩ=20 MeV

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

³He-⁴He and ³H-⁴He capture

E1 radiative capture with small E2 contribution at 7/2⁻ resonance

In progress J. Dohet-Eraly, P.N., S. Quaglioni, W. Horiuchi, G. Hupin, F. Raimondi

NCSMC calculations with chiral SRG-N³LO *NN* potential (λ =2.15 fm⁻¹)

³He, ³H, ⁴He ground state, $8(\pi$ -) + $6(\pi$ +) eigenstates of ⁷Be and ⁷Li

Preliminary: N_{max} =12, h Ω =20 MeV

Theoretical calculations suggest that the most recent and precise 7Be and 7Li data are inconsistent

³He-⁴He and ³H-⁴He capture

Comparison of the NCSMC and the FMD results

Differences in the S-wave contributions

NCSMC: $1/2^+$ phase shift underestimated Soft NN potential -> 3N needs to be included Impact of N_{max} truncation

Three-body clusters in ab initio NCSM/RGM

• Starts from:

Transfer reactions with three-body continuum final states

NCSM/RGM for three-body clusters: Structure of ⁶He

NCSMC implementation in progress...

⁵H \approx ⁴He + *n* + *n* in progress

NCSM/RGM for three-body clusters: Structure of ⁶He

⁴He + *n* + *n*

⁶He bound 0⁺ ground state

NCSMC implementation in progress...

N _{max}	NCSM/RGM	NCSM	NCSMC
8	-28.62	-28.95	-29.69
10	-28.72	-29.45	-29.86
12	-28.70	-29.66	-29.86
Extrapolation		-29.84(4)	

C. Romero-Redondo, S. Quaglioni, P. Navratil, G.Hupin

arXiv: 1509.00878

... excellent ground-state energy convergence

8

0.04

0.02

0.00

 $r_{\alpha,nn}(fm)$

NCSM/RGM for three-body clusters: Structure of ⁶He

⁶He bound 0⁺ ground state

 $\ell_x = \ell_y = L = S_{nn} = 0$

... and improved matter radius convergence

NCSMC implementation in progress...

10

 $5r_{nn}(fm)$

NCSM/RGM for three-body clusters: Structure of ⁶He

⁴He + *n* + *n*

⁶He bound 0⁺ ground state

the di-neutron configuration

Conclusions and Outlook

- Ab initio calculations of nuclear structure and reactions is a dynamic field with significant advances
- We developed a new unified approach to nuclear bound and unbound states
 - Merging of the NCSM and the NCSM/RGM = NCSMC
 - Inclusion of three-nucleon interactions in reaction calculations for A>5 systems
 - Extension to three-body clusters (${}^{6}\text{He} \sim {}^{4}\text{He}+n+n$): NCSMC in progress

Ongoing projects:

- Transfer reactions
- Applications to capture reactions important for astrophysics
- Bremsstrahlung

Outlook

TRIUMF

- Alpha-clustering (⁴He projectile)
 - ¹²C and Hoyle state: ⁸Be+⁴He
 - ¹⁶O: ¹²C+⁴He

NCSMC and NCSM/RGM collaborators

- Sofia Quaglioni (LLNL)
- Francesco Raimondi, Jeremy Dohet-Eraly, Angelo Calci (TRIUMF)
- Joachim Langhammer, Robert Roth (TU Darmstadt)
- Carolina Romero-Redondo (LLNL)
- Guillaume Hupin (CNRS)
- Wataru Horiuchi (Hokkaido)