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Density functional theory (DFT) for manybody quantum systems

The manybody problem is mapped onto a one-body problem:

Density functional theory starts from the   

Hohenberg-Kohn theorem:

„The exact ground state energy E[ρ] is a

universal functional for the local density ρ(r)“

:

Kohn-Sham theory starts

with a density dependent self-energy:       

and the single particle equation:

with the exact density:

In Coulombic systems the functional is derived ab initio
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● more degrees of freedom: spin,isospin,pairing,relativistic  

● Nuclei are selfbound systems

● Symmetry breaking is important:

Advantage: Problems: 

Correlations can be                                          no good quantum numbers 

taken into account                                            no spectroscopy

in simple wave functions                                  projection required 

translational,         rotational,       gauge symmetry,            …….

momentum P        spin J              particle number N

● Shape coexistence: transitional nuclei, shape transitions

● Energy dependence of the self energy

● at present all successful functionals are phenomenological

Janus

Density functional theory in nuclei:
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Mean Field Level:  static DFT:

Beyond Mean Field: 

Density Functional Theory: mean field and beyond

Static DFT:       ground state properties

constraint mean field:   fission landscapes

rotating mean field:       rotational spectra

adiabatic DFT:  h[ρt(r)] time-dependent mean field:   RPA, QRPA

time-dep.  DFT

h[ρ(r,t)] → h(ω)

Small amplitudes: coupling to vibrations PVC   (model) 

Energy dependent self energy

Beyond Mean Field: Configuration Mixing:

qqfdq  )(  Large amplitudes: Generator coordinate (GCM)

Collective Hamiltonian             

h[ρ(r)] = 
δE

δρ
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• Generator-Coordinate Method (GCM)

• Applications:

Quantum Phase Transitions in finite systems (QPT)

Importance of single particle structure  N=28 isotones

α-clustering in light nuclei 

• Derivation of a Collective Hamiltonian (5DCH)

• Benchmark calculations (full GCM ↔ 5DCH) 

• Nuclear matrix elements for 0v-ßß decay

• Outlook

Content:
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0ˆˆ  QqH

Constraint Hartree Fock produces 

wave functions depending on a generator coordinate q

 qq   

qqfdq  )(  

GCM wave function is a

superposition of Slater determinants   0)'( '' '  qfqqEqHqdq

Hill-Wheeler equation:

with projection:

qPPqfdq IN  ˆˆ)(  

DFT beyond mean field:   GCM-method 
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GCM:
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Mg-24 

spectrum

Spectra in 24Mg
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Mg-24 

spectrum

Spectra in 24Mg
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• Generator-Coordinate Method (GCM)

• Applications:

Quantum Phase Transitions in finite systems (QPT)

Importance of single particle structure  N=28 isotones

α-clustering in light nuclei 

• Derivation of a Collective Hamiltonian (5DCH)

• Benchmark calculations (full GCM ↔ 5DCH) 

• Nuclear matrix elements for 0v-ßß decay

• Outlook

Content:
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E(5): F. Iachello, PRL 85, 3580  (2000)

X(5): F. Iachello, PRL 87, 52502 (2001)

R.F. Casten, V. Zamfir, PRL 85 3584, (2000)

X(5) 152Sm

Casten Triangle

Interacting Boson Model

Quantum  phase transitions and critical symmetries
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R. Krücken et al, PRL 88, 232501  (2002)

Transition U(5) → SU(3) in Ne-isotopes

R = BE2(J→J-2) / BE2(2→0)
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E(5): F. Iachello, PRL 85, 3580  (2000)

X(5): F. Iachello, PRL 87, 52502 (2001)

X(5)

E(5)

Quantum phase transitions in the interacting boson model:
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Spherical

Deformed

E
Critical

β

PES

Spectrum

First and second order QPT can 

occur between systems 

characterized

by different ground-state shapes.

Control Parameter:  Number of 

nucleons

Courtesy: Zhipan Li
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Spherical

Deformed

E
Critical

β

PES

Spectrum

First and second order QPT can 

occur between systems 

characterized

by different ground-state shapes.

Control Parameter:  Number of 

nucleons

Can we descibe such phenomena 

in a microscopic picture, 

with nucleonic degrees of freedom,

free of phenomenological parameters?
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Niksic et al PRL 99, 92502 (2007)

GCM: only one scale parameter: E(21)

X(5): two scale parameters: E(21),    BE2(22→01)

Problem of GCM at this level: restricted to γ=0

F. Iachello, PRL 87, 52502 (2001)

R. Krücken et al, PRL 88, 232501  (2002)
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• Generator-Coordinate Method (GCM)
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Quantum Phase Transitions in finite systems (QPT)

Importance of single particle structure:  N=28 isotones

α-clustering in light nuclei 

• Derivation of a Collective Hamiltonian (5DCH)

• Benchmark calculations (full GCM ↔ 5DCH) 
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Content:
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T.Niksic (2011)
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T.Niksic (2011)
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T.Niksic (2011)
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T.Niksic (2011)



CANHP2015, Sept 21- Oct.30, 2015, Yukawa-Institute, Kyoto

T.Niksic (2011)
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Content:
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• α-clustering happens mostly in excited states

v. Oertzen et al, Phys.Rep (2006), Freer Rep.P.Phys. (2997), Kanada-En‘yo et al (2012)

• light α-conjugate nuclei have duality structure

(mean-field is mixed with α-configurations)

Wiringa et al, PRC (2000), Chernykh et al, PRC (2011)

• 20Ne: mixture between def. mean field and α+16O

with increasing spin α+16O structure becomes weaker

AMD-calculations: Kanada-En‘yo et al PTP (1995)

• Relativistic mean fields are deeper and favor cluster structure

Ebran et al, Nature 2012

• Relativistic GCM provides tool for a quantitative assessment 

alpha-clustering in nuclei:
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• α-clustering happens mostly in excited states

v. Oertzen et al, Phys.Rep (2006), Freer Rep.P.Phys. (2997), Kanada-En‘yo et al (2012)

• light α-conjugate nuclei have duality structure

(mean-field is mixed with α-configurations)

Wiringa et al, PRC (2000), Chernykh et al, PRC (2011)

• 20Ne: mixture between def. mean field and α+16O

with increasing spin α+16O structure becomes weaker

AMD-calculations: Kanada-En‘yo et al PTP (1995)

• Relativistic mean fields are deeper and favor cluster structure

Ebran et al, Nature 2012

• Relativistic GCM provides tool for a quantitative assessment 

alpha-clustering in nuclei: ?or20Ne:
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E.F. Zhou, J.M. Yao, Z.P. Li, J. Meng, P.R.   arXiv:1510.05232

q =

Mean field energy surface:

PC-PK1

Nf=10

NGCM=54
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Projected energy surfaces:
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Projected energy surfaces:

Enfu Zhou et al.   2015

mean field
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Projected energy surfaces:

Moment of inertia J
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Low-lying spectra:

B(E2)

B(E3)
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Enfu Zhou et al.   2015

Wave functions: projected energy:
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Enfu Zhou et al.   2015

Intrinsic density of the

dominand configuration

for each Jπ-value
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• Generator-Coordinate Method (GCM)

• Applications:

Quantum Phase Transitions in finite systems (QPT)

Importance of single particle structure  N=28 isotones

α-clustering in light nuclei 

• Derivation of a Collective Hamiltonian (5DCH)

• Benchmark calculations (full GCM ↔ 5DCH) 

• Nuclear matrix elements for 0v-ßß decay

• Outlook

Content:
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triaxial GCM in q=(β,γ) is approximated  by the 

diagonalization of a 5-dimensional Bohr Hamiltonian:

the potential and the inertia functions 

are calculated microscopically from rel. density functional

Theory:      Giraud and Grammaticos (1975)   (from GCM)

Baranger and Veneroni (1978)      (from ATDHF)

Skyrme:     J. Libert,M.Girod, and J.-P. Delaroche (1999)

RMF:         L. Prochniak and P. R. (2004)

Niksic, Li, et al  (2009)



CANHP2015, Sept 21- Oct.30, 2015, Yukawa-Institute, Kyoto

Moment of inertia
1.32

B

Zhipan Li et al PRC 86 (2012)

Inertia of Thouless Valatin:
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Potential energy surfaces:
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Microscopic analysis of nuclear QPT:

 Spectum

GCM: only one scale parameter: E(21)

X(5): two scale parameters: E(21),    BE2(22→01)

No restriction to axial shapes
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• Generator-Coordinate Method (GCM)

• Applications:

Quantum Phase Transitions in finite systems (QPT)

Importance of single particle structure  N=28 isotones

α-clustering in light nuclei 

• Derivation of a Collective Hamiltonian (5DCH)

• Benchmark calculations (full GCM ↔ 5DCH):   76Kr

• Nuclear matrix elements for 0v-ßß decay

• Outlook

Content:
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Transitional nuclei:   DFT beyond mean field: 

Generator-Coordinates:   q = (β,γ)

Projection on J and N: (5 angles)

J.M. Yao, K. Hagino, Z.P. Li, P.R. , J. Meng  PRC (2014)
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Spectra:   GCM (7D)    

Bohr Hamiltonian (5DCH) 

J.M. Yao et al,  PRC (2014)

PC-PK1
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ground state band

quasi-β band

quasi-γ band
wave functions

J.M. Yao et al,  PRC (2014)
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Fission barrier and

super-deformed bands

in 240Pu

Zhipan Li et al,  PRC (2010)
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Content:
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In ββ-decay the nucleus (A,Z)  decays:

(A , Z) → (A , Z ± 2) + 2e∓ + light particles

emitting 2 electrons (positrons) and,

usually, additional light particles. 

It can be observed in some even–even 
nuclei, where single beta-decay is 
energetically forbidden, as for instance

in the nucleus 150Nd.  

Introduction

for β-β- we have:

2ν-ββ: (A,Z) → (A,Z+2) + 2e- + 2ν

0ν-ββ: (A,Z) → (A,Z+2) + 2e-

others exotic modes

-_

Neutrino-less double beta-decay is not observed yet in experiment

Lepton number is violated. 

Its observation would prove that the neutrino is a Majorana particle
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Assuming the light neutrino decay mechanism, we find the decay rate:

Half live of 0νββ decay

The observation of 0νββ-decay 

would teach  us the nature of the neutrino.

and the neutrino mass (provided that the NME is known)

W

W

e-

e-

ν
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Nuclear matrix element NME:

Various non-relativistic models have been used in the literature: 

W

W

e-

e-

ν

p‘

pn

n‘
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Present status for the Nuclear matrix element NME:
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• We use:

Beyond mean field covariant density functional theory

• It is based on a unified density functional  

no parameters,

full space

• Correlations are taken into account

by  deformed and superfluid intrinsic wave functions, 

by superposition of deformed wave functions (GCM),

by projection and the restoration of the broken symmetries 

• Systematic investigations over a large number of nuclei

• We study:

Influence of relativistic effects 

Influence of deformations    

Influence of pairing correlations

Present work:
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0vßß - matrix elements:

weak interaction:

leptonic current (V-A):

hadronic current:

p‘

e-

p

n‘

e-

ν

n

Second order perturbation theory and integration over leptonic sector:
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Decay operator in Fermion space:

The operator is decomposed into five terms with different coupling properties: 

with 

and
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• Closure approximation

• Higher order currents are fully incorporated

• The tensorial part is included automatically

• Finite nuclear size corrections are taken into accout by 

form factors g(q2) (from Simkovic et al, PRC 2008)

• Short range correlations are neglected 

• gA(0) = 1.254 (no renormalization)

Basic assumptions:
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Nuclear wave functions:

• Intrinsic state:

self-consistent constained RMF+BCS calculations:

• Projected state:

• Generator coordinate method (GCM): shape mixing

• Transition matrix element:
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Results for the transition  150Nd  → 150Sm:

Energy surfaces

probabilities for deformation:
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Low-lying spectra in 150Nd  and 150Sm:
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NME at fixed deformationsContributions to NME
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NME at fixed deformations

probability distributions

Contributions to NME

pairing energies
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Transition 150Nd  → 150Sm:

Matrix element of 0νββ decay and its contributions:
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Systematic investigations: ground state properties
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• The matrix elements differ by a factor 2 to 3

• Density functionals are at the upper end

• Not much sensitivity to the EDF (except for 150Nd)

• Relativistic effects and tensor terms are with 10 %

l J.M. Yao, L.S. Song, K.Hagino, P.R., J.Meng, PRC 91, 24316 (2015)
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Upper limits for 

neutrino masses:

(eV)
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• Static DFT in nuclei has is limits:

no energy dependence in self energy   (level density, width of GR)

no good quantum numbers                   (spectroscopic data)

no fluctuations                                       (shape coexistens, transitions)

• Generator-Coordinate Method 

succesful, but complicated ,

problem with moment of inertia

• Derivation of a collective Hamiltian (from GCM, from ATDHF)

benchmark calculations show excellent agreement 

• Application for Quantum Phase Transitions (QPT)

parameterfree, microscopic description

• Application to α-clustering in light nuclei

dissolution of the α+16O molecular structure with increasing spin  

• Application for neutrinoless double-beta decay

Influence of relativistic effects, pairing, deformation 

Conclusions
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• Present methods of DFT beyond MF are very successful

but there exists no clear derivation (Intelligent Cooking)

completely different concepts are mixed

• For small amplitudes: energy dependent self-energy in PVC  

mixes the DFT self-energy with perturbation theory

problems of overcounting

problems of divergencies (non-renormalizable)

• For large amplitudes: GCM is based on DFT-Slater-determinats

mixes the concept of „local density“ with global wave functions picture

extremely complicated: derivation of a Bohr-Hamiltonian may help

Egido-poles: maybe technical

limitation to very few collective coordinates (intelligent guess)

General remarks to DFT beyond mean field:
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• Improved (more universal) density functionals

• Ab initio derivation of the density functional

may help to determine the relevant terms (e.g. tensor)

and to reduce the number of free parameters essentially

only fine-tuning with very few parameters has to be done

• The Projected Shell model

will allow a general configuration-mixing for heavy nuclei

• Search for methods of a consistent treatment of DFT and beyond MF 

Problems for the future:
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Half lives of 0νββ decay  

Rel. full      only AMP            NR-Gogny

,           

Rodriguez et al

Tübingen, Engel

QRPA IBM-2 PHFB

Iachello Rath
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GT-part, relativistic effects, and tensor contributions:
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• axially symmetric calculation:    |q> = |β>

• interaction:  density dependent point coupling PC-PK1

• pairing:  zero range interaction (adjusted to Gogny):

• number of oscillator shells:   N = 12 

• number of meshpoints in Euler angle (1DAMP): n = 14

• mesh points in q-space:  -0.4 ≤ β ≤ 0.6,  Δβ = 0.05

• energy denominator:   Ed = 1.12 A1/2 (Haxton PPNP 1984)

Numerical details:
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Derivation of a collective Hamiltonian from GCM:

Gaussian overlap approach:
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Adiabatic TDHF:
time-odd

time-even
Baranger+Veneroni  (1978)


