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Time-Dependent Hartree-Fock Approach to SHE Dynamics
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DFT

Nuclear Mean Field or Energy Density Functional (EDF)

〈Ψ∣H∣Ψ 〉=E
ab-initio Mean-field - EDF

Ψ→ΦSlater

H →H eff

E=〈Φ∣H eff∣Φ〉=∫d 3r  {H(ρ , τ , j , s ,T , J μ ν  ; r)+HCoulomb(ρ p)}

ρq( r )=∑
i=1

A

∑
σ

ϕi
*(r ,σ , q)ϕi(r ,σ , q)

EDF in NP more complicatedSingle-(one-) particle density etc. in terms of s.p. states

v=vNN−eff →DFT (Hartee−Fock )

v≠v NN−eff →DFT (Kohn−Sham)

3-body

2-body

1-body
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δS=δ∫
t1

t2

dt 〈 Φ( t )∣H eff −i ℏ ∂t∣Φ(t ) 〉=0

Structure Oscillations, Fusion, Fission

Neutron Star Crust

Study Structure, Reactions, and Star Matter in Same Framework

Time-dependent generalization TDHF or TDDFT (variational or Runge-Gross)

i ∂
∂ t

ϕα=h(ρ , τ , j , s ,T , J μ ν  ; r)ϕα

self-consistent

TDHF gives the most probable outcome – best if x-section dominated by one process
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(s,j,T) time-odd, vanish for static HF calculations of even-even nuclei
           non-zero for dynamic calculations, odd mass nuclei, cranking etc.

Time-odd terms come in pairs!
Total is TR invariant

Nuclear Energy Density Functional

Unstable- not used

“s” in spin-orbit

“s” in t0 and t3
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λ̄≃
213.08

ϵ
3/2     ϵ=

( Ecm−EB )
μ

Fermi-Gas
Fermi-Liquid

 All or most of Ec.m. can be transformed to internal excitation

Validity of TDDFT in Nuclear Reactions – Beyond Mean Field

 Effective s.p. wavelength should be long
 compared to nuclear size (no hard coll.)

{
Limits E/A for reactions!

 Good for inclusive processes with a dominant channel

 Missing many-body correlations limits widths (Balian-Veneroni, projections)

Pairing Configuration mixing Subbarrier fusion

Pair transfer,
initial structure

qp

Simenel, Avez

Breakup, multiple
exit channels
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R

v

-v

Elastic+ Coulex

Quasi-elastic

Deep-inelastic

Capture
QF, FF, Evap

In
el

as
tic

ity

Large b, distant collision
Elastic and Coulomb 
excitation

Peripheral 
collision
nucleon+ 
exchange
Small TKE loss

Deep-inelastic 
collision
Multi-nucleon 
exchange
Large TKE loss, L 
loss

Composite formed
Multi-nucleon 
exchange
Large TKE loss, L loss
Fusion
Quasi-fission
Fusion-fission
Evaporation residue

Fusion
QF, FF

DI
QE

EL

L, TKE
Contact time, E*, Eloss

Geometric
 s

CE

P
ar

tia
l s

Anatomy of Low-Energy Heavy-Ion Collisions
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 If final stage contains a single fragment – FUSION
 If final stage contains two fragments – DI, QF

TDHF Initial Setup

 Initial approach is determined by Coulomb trajectory
 The initial DFT Slater determinants boosted by velocities at R

R

TDHF

TDHF

initial state final state

Slater determinant
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Modern TDHF Codes

   Basis-Spline discretization for high accuracy
 
   3-D Cartesian lattice – no geometrical simplification
  
   Complete EDF including all terms (time-even, full time-odd)

   Coded in Fortran-95 and OpenMP

 

 

1. Umar, Oberacker, VU-TDHF, Phys. Rev. C 73, 054607 (2006)
2. Maruhn, Reinhard, Stevenson, Umar, Sky3D, Comp. Phys. Comm. 85, 2195 (2014)

VU-TDHF Code
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No practical ab-initio many-body theory for dynamical sub-barrier fusion exists.
Standard approach involves several steps:

a) Calculate heavy-ion potential V(R)
- phenomenological (Woods-Saxon / proximity potential)
  double-folding model with frozen densities
- macroscopic-microscopic
- two-center shell model + liquid drop
- microscopic: Skyrme + extended Thomas-Fermi
  

b) Quantum tunneling (either WKB-HW, or solve Schrödinger equation for relative
    motion R with Incoming Wave Boundary Condition (IWBC))

c) Model inelastic and transfer channels:
- coupled channels approach (Esbensen, Hagino)

Frozen density breaks down
Dynamical rearrangement of density
Excitation of pre-equilibrum states
Dynamical transfer, M(R)

Fusion Phenomenology

d) Corrections to CC: Compression potential, neck modeling

B. B. Back, H. Esbensen, C. L. Jiang, and K. E. Rehm, Rev. Mod. Phys. 86, 317 (2014)
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TDDFT + Density Constraint = Internuclear Potentials

EDC (t)=min
ρ

{E [ρn ,ρp]+∫d 3 r vn(r)[ρn(r)−ρn
tddft (r , t)]+∫ d 3 r v p(r)[ρ p(r)−ρ p

tddft(r , t)]}

V(R)

E*(R(t))

Minimize energy with density constraint during unhindered TDDFT

Goal: find internuclear potential – can calculate subbarrier fusion!

V (R(t))=E DC(t )−E A1
−E A2

DC-TDHF finds underlying microscopic potential V(R)
Parameter-free, only depends on chosen EDF
Dynamical, energy-dependent
Calculate E*(t) and M(R)
Applied to:
- Fusion of neutron-rich heavy systems
- Capture for superheavy formations
- Neutron-rich light systems for astrophysical applications
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Selected Applications of DC-TDHF
To

Fusion and Capture
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Fusion Cross-Sections for  16,24O + 16,24,28O

A.S. Umar, V.E. Oberacker, and C. J. Horowitz, PRC 85, 055801 (2012)
C. Simenel, R. Keser, A.S. Umar, V.E. Oberacker, Phys. Rev. C 88, 024617 (2013)
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Fusion Cross-Sections for 12C+16,24O

P. R. Christensen et al., Nucl. Phys. A280, 189 (1977)
barrier heights (MeV)
7.77
6.64

A.S. Umar, V.E. Oberacker, and C. J. Horowitz, PRC 85, 055801 (2012)
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Fusion for 40Ca + 40Ca, 48Ca + 48Ca, 40Ca + 48Ca 

R. Keser, A. S. Umar, and V. E. Oberacker, Phys. Rev. C 85, 044606 (2012)

 40Ca and 48Ca usually in Skyrme fits (here SLy4) but shell structure not that good
 Small deviations due to small c.m. energy dependence of V(R)
 High E part of 40Ca+48Ca and low E part of 48Ca+48Ca show larger deviations

exp. data: 
G. Montagnoli et al., PRC 85, 024607 (2012)
A. M. Stefanini et al., Phys. Lett. B 679, 95 (2009)
C. L. Jiang et al., PRC 82, 041601(R) (2010)
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Fusion Barrier Distributions 

A. S. Umar, C. Simenel, and V. E. Oberacker, Phys. Rev. C 89, 034611 (2014)
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Fusion for 16O + 208Pb 

?

K. Hagino and Y. Watanabe, PRC 76 (2007)
M(R)

A. S. Umar, C. Simenel, and V. E. Oberacker, Phys. Rev. C 89, 034611 (2014)
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Neutron-Rich Systems 132,124Sn+40,48Ca

Anomaly in sub-barrier fusion enhancement of 132Sn+40Ca versus 132Sn+48Ca

132Sn+40Ca versus 132Sn+48Ca Potentials

V.E. Oberacker, A.S. Umar, J.A. Maruhn, and P.-G. Reinhard, PRC 85, 034609 (2012)
V.E. Oberacker and A.S. Umar, PRC 87, 034611 (2013)

Fusion enhancement not proportional to neutron pick-up Q-values

J.J. Kolata et al., PRC 85, 054603 (2012) 

Barriers for both systems have similar
 heights
132Sn+40Ca barrier is narrower
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70Zn+208Pb 48Ca+238U (=45o)

Heavy nuclei exhibit a very different behavior in forming a composite system

Cold and Hot Fusion of Heavy Systems

- Fission and quasi-fission negligible
- Simple V(R) for composite system
- Small energy dependence

Light-Medium Mass Systems 
σ capture≈σ ER≈σ fusion

           Heavy Systems 
σ capture=σQF+σFF+σER

- Quasi-fission dominant
- Di-nuclear composites common
- A multi-stage V(R)
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Capture for 48Ca+238U

σ f (Ec .m .)=∫
0

1

dβsin (β)P (β)σ(Ec .m . ,β)

Experimental data:
1. M. G. Itkis et al., J. Nucl. Radiochem. Sci. 3, 57 (2002)
2. M. G. Itkis et al., Nucl. Phys. A 734 , 136 (2004)

A.S. Umar, V.E. Oberacker, J.A. Maruhn, and P.-G. Reinhard, PRC 81, 064607 (2010)

Angle average 238U alignment 

 - x-section falls rapidly for β>10o

 - sin(β) multiply small angles
 - P(β) is in the range 0.4-0.6
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Study of Quasifission with TDHF

Di-nuclear

Quasi-FissionFusion-
Fission

Fusion 
Evaporation

Compound
T
 I
M
E
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Quasifission in – 40,48Ca + 238U

           Heavy Systems 
σcapture=σQF+σ fusion− fission+σER

Final masses:
AL = 101, AR = 177
ZL = 41, ZR = 71 

Ecm = 209 MeV
b=1.103fm (L=20)

- QF dominant part
- Important for studying SHE dynamics

40Ca + 238U

V.E. Oberacker, A.S. Umar, C. Simenel, PRC 90, 054605 (2014)
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Quasifission – 40,48Ca+238U
- Compare 40,48Ca+238U (b=0)
- fusion implies contact-time > 35 zs
  (plus density shows no indication of QF)
- 40Ca+238U wider energy range for QF
- E* sharing seems different
  (calculated dynamically using DC-TDHF)

Each point takes about a week
on a 16 processor workstation

The =0o orientation of 238U results in much
smaller contact-times and mass transfer

48Ca+238U
Ecm=203 MeV

V.E. Oberacker, A.S. Umar, C. Simenel, PRC 90, 054605 (2014)
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Impact Parameter Dependence – Viola Systematics

Narrow range of impact parameters 
at low energies 

Final fragment TKE's well described by Viola systematics 

Wakhle et al., PRL 113, 182502 (2014)

40Ca + 238U

V.E. Oberacker, A.S. Umar, C. Simenel, PRC 90, 054605 (2014)
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Quasifission in 48Ca+249Bk (to be published)
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Quasifission in 48Ca+249Bk (Ec.m. = 218 MeV)
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Quasifission in 50,54Cr+180,186W (Ec.m./VB=1.13)

K. Hammerton, Z. Kohley, D. J. Hinde, M. Dasgupta, A. Wakhle, E. Williams,V. E. Oberacker, A. S. Umar, 
I. P. Carter, K. J. Cook, J. Greene, D. Y. Jeung, D. H. Luong, S. D. McNeil, C. S. Palshetkar, D. C. Rafferty, 
C. Simenel, and K. Stiefel, PRC 91, 041601(R) (2015)

tip-side tip-tip

Two deformed nuclei with smaller mass/charge asymmetry than Ca+U 
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Mass Angle Distributions (MAD's)

TIP-SIDE
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Contact Time versus Mass/Charge Transfer and Rotation Angle 

Larger contact time → larger mass transfer Larger contact time → larger rotation angle
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QF angular distribution

Need parallel/perpendicular moment of inertia

Parameter K0 involves shape and temperature

Temperature at the saddle point

Can obtain from dynamical E* using DC-TDHF

?

Fission Fragment Angular Distributions - PCN 

Angular distribution based on TSM (see Yanez et al. PRC 88, 014606 (2013))

Assumption!
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Moment of Inertia from TDHF

Diagonalize the moment of inertia tensor

Eigenvalues give the parallel/perpendicular
moment of inertia

Ratio              
Equivalent
sphere

 A.S. Umar, V.E. Oberacker, and C. Simenel, Phys. Rev. C 92, 024601 (2015)
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Collective Dynamics with DC-TDHF

40Ca + 238U 48Ca + 238U

Obtain collective surface seen by TDHF using dynamical density as a constraint

Incoming valley Incoming valley

Outgoing valley

Outgoing valley

2 months of 
computing time!
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PCN from TDHF Angular Distributions

Z. Kohley, private communication

Comparison with different
 models
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238U+238U (b=0, preliminary results)
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238U+238U at Ecm = 900 MeV

tip-tip tip-side

Light fragment C, N, Ne
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238U+238U Ecm = 1300 MeV

tip-tip tip-side

Z=120, N=196, TKE=0?
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Scission Dynamics
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Scission Dynamics Using TDHF – Fragment Pre-Formation

  Transition from adiabatic motion to non-adiabatic motion of scission
  
  Follow the single-particle states as a function of deformation, look for

the last level crossing.

 

C. Simenel and A.S. Umar, PRC 89 (R), 031601 (2014)

J. Sadhukhan, K. Mazurek, A. Baran, J. Dobaczewski, W. Nazarewicz, 
and J. A. Sheikh, PRC 88, 064314 (2013).
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Scission Dynamics Using TDHF - Dynamics

  Start TDHF evolution at the point of fragment formation
  
  Compare results to adiabatic scission, can calculate TKE, E* etc.

- Asymptotic TKE is around 241 MeV
- Adiabatic E* is about 12 MeV
- Dynamic TDHF E* is about 22 MeV leading to a total of 34 MeV excitation
- Also done 258Fm, TKE is 238-241 MeV (exp. Value 235 MeV).

  E.K. Hulet et al. PRL 56, 313 (1986)
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Deep-Inelastic Collisions
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Deep-Inelastic Collisions – Isospin Transport

- SPIRAL2 experiment proposed for 78,92Kr+238U at E/A=8.5 MeV
- Transport properties with isospin asymmetric matter
- we have done calculations for 78,92Kr+208Pb at E/A=8.5 MeV
- Hollow points for β=90o orientation of 78,92Kr
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N
PLF

, Z
PLF

 versus E
LOSS
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Sharing of Excitation Energy
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Angular Properties of PLF
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Summary

TDDFT have a strong place among the theories needed for future
challenges of low-energy nuclear physics

We now have a reasonable handle on above- and sub-barrier fusion 
employing the DC-TDHF approach

One major and difficult area that needs attention is the dynamics of fission

Quasifission and deep-inelastic reactions are well suited for TDDFT

Numerical issues are resolved – limitations only due to theoretical
approximations (effective interactions, mean-field theory, etc.)
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