
Introduction Formalism Applications Conclusion Outlook

Existence of rotational states in the
continuum

Kévin FOSSEZ

NSCL/MSU

October 29, 2015 M. Płoszajczak
W. Nazarewicz

N. Michel
R. Id Betan

Y.
Jaganathen

K. Fossez

G. Dong

A. Mercenne

J. Rotureau
G.

Papadimitriou

1/23



Introduction Formalism Applications Conclusion Outlook

Introduction
Next generation of RIB facilities:

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

W. Von Oertzen, Int. J. Phys. E 20, 765 (2011)

J. -P. Ebran et al., Nature 487, 341 (2012)

J. Okołowicz et al.,
Prog. Theor. Phys. Supp. 196, 230 (2012)

L. P. Gaffney et al.,
Nature 497, 199 (2013)

D. Seweryniak et al.,
Phys. Rev. Lett. 86, 1458 (2001)

2/23

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf


Introduction Formalism Applications Conclusion Outlook

Introduction
Next generation of RIB facilities:

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

W. Von Oertzen, Int. J. Phys. E 20, 765 (2011)

Nuclear
molecules

J. -P. Ebran et al., Nature 487, 341 (2012)

J. Okołowicz et al.,
Prog. Theor. Phys. Supp. 196, 230 (2012)

L. P. Gaffney et al.,
Nature 497, 199 (2013)

D. Seweryniak et al.,
Phys. Rev. Lett. 86, 1458 (2001)

2/23

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf


Introduction Formalism Applications Conclusion Outlook

Introduction
Next generation of RIB facilities:

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

W. Von Oertzen, Int. J. Phys. E 20, 765 (2011)

Nuclear
molecules

J. -P. Ebran et al., Nature 487, 341 (2012)

Clusters

J. Okołowicz et al.,
Prog. Theor. Phys. Supp. 196, 230 (2012)

L. P. Gaffney et al.,
Nature 497, 199 (2013)

D. Seweryniak et al.,
Phys. Rev. Lett. 86, 1458 (2001)

2/23

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf


Introduction Formalism Applications Conclusion Outlook

Introduction
Next generation of RIB facilities:

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

W. Von Oertzen, Int. J. Phys. E 20, 765 (2011)

Nuclear
molecules

J. -P. Ebran et al., Nature 487, 341 (2012)

Clusters

J. Okołowicz et al.,
Prog. Theor. Phys. Supp. 196, 230 (2012)

Halos

L. P. Gaffney et al.,
Nature 497, 199 (2013)

D. Seweryniak et al.,
Phys. Rev. Lett. 86, 1458 (2001)

2/23

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf


Introduction Formalism Applications Conclusion Outlook

Introduction
Next generation of RIB facilities:

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

W. Von Oertzen, Int. J. Phys. E 20, 765 (2011)

Nuclear
molecules

J. -P. Ebran et al., Nature 487, 341 (2012)

Clusters

J. Okołowicz et al.,
Prog. Theor. Phys. Supp. 196, 230 (2012)

Halos

L. P. Gaffney et al.,
Nature 497, 199 (2013)

Deformations

D. Seweryniak et al.,
Phys. Rev. Lett. 86, 1458 (2001)

2/23

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf


Introduction Formalism Applications Conclusion Outlook

Introduction
Next generation of RIB facilities:

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

W. Von Oertzen, Int. J. Phys. E 20, 765 (2011)

Nuclear
molecules

J. -P. Ebran et al., Nature 487, 341 (2012)

Clusters

J. Okołowicz et al.,
Prog. Theor. Phys. Supp. 196, 230 (2012)

Halos

L. P. Gaffney et al.,
Nature 497, 199 (2013)

Deformations

D. Seweryniak et al.,
Phys. Rev. Lett. 86, 1458 (2001)

Rotational
bands

extending
far in the
continuum

2/23

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf


Introduction Formalism Applications Conclusion Outlook

Introduction
Next generation of RIB facilities:

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

W. Von Oertzen, Int. J. Phys. E 20, 765 (2011)

Nuclear
molecules

J. -P. Ebran et al., Nature 487, 341 (2012)

Clusters

J. Okołowicz et al.,
Prog. Theor. Phys. Supp. 196, 230 (2012)

Halos

L. P. Gaffney et al.,
Nature 497, 199 (2013)

Deformations

D. Seweryniak et al.,
Phys. Rev. Lett. 86, 1458 (2001)

Rotational
bands

extending
far in the
continuum

How the geometrical picture of nuclear rotational states
survives in the continuum?

2/23

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf


Introduction Formalism Applications Conclusion Outlook

Open quantum systems (OQSs): What are they?

→ Quantum systems coupled to the environment of scattering states
and decay channels.

Closed quantum
system

Bound states

Examples of OQSs in many
domains of physics: hadrons,
nuclei, atoms, molecules, quantum
dots, microwave cavities.
Exotic phenomena in OQSs:
superradiance phenomena,
spontaneous two-proton
radioactivity, near-threshold
clustering phenomena...
General properties of OQSs
(resonances, halos, exceptional
points) are common to all
mesoscopic systems.

Threshold

Bound states

Resonances

Scattering continuum

Open quantum
system
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Rotational states

→ What “makes” rotational bands?
•Experimental identification: Energy spectrum regularities, large B(E2).
•Theoretical interpretation:
“A clue for understanding the deviations in the nuclear coupling scheme from

that of the single-particle model was provided by the fact that many nuclei have
quadrupole moments that are more than an order of magnitude larger than could
be attributed to a single particle. This finding directly implied a sharing of angular
momentum with many particles, and might seem to imply a break-down of the
one-particle model. However, essential features of the single-particle model could
be retained by assuming that the average nuclear field in which a nucleon moves
deviates from spherical symmetry. This picture leads to a nuclear model resembling
that of a molecule, in which the nuclear core possesses vibrational and rotational
degrees of freedom.” Rotational motion in nuclei, Nobel Lecture, December 11, 1975
Aage Bohr
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⋆ The 8Be example: T1/2 ≈ Ts.p..
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MeV

8Be(0+) 0.0 (5.5 eV)

8Be(2+) 3.0 (1.5 MeV)

α − α?(4+) 11.7 (3.5 MeV)
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Formalism

→ Quasi-stationary formalism and Rigged Hilbert space.
•Gamow states: discrete solutions of the quasi-stationary
Schrödinger equation that are regular at the origin and
with outgoing boundary conditions.
G. Gamow, Z. Physik 51, 204 (1928); A. F. J. Siegert, Phys. Rev. 56, 750 (1939)

•Eigenenergies:
En = en − iΓn/2.

•Lifetime:
T1/2 = h̵ ln(2)/Γ

A. M. Dykhne et al., Sov. Phys. JETP 13, 1002 (1961)
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•RHS: Extension of HS to
distribution.
Gel’fand, Vilenkin et al. (1964), Maurin (1968)

•Rigorous framework
for quantum mechanics
Böhm (1964), Roberts (1966),
Antoine (1969) and Melsheimer (1974)

•RHS inner product:
⟨ũn ∣un⟩ = ∫

∞

0
dr ũ∗n (r)un(r).

•In practice:
→ Exterior complex-scaling.

Ûa(θ)χ(r) = χ(ra + ∣r − ra ∣eiθ)
if ∣r ∣ > ra.
A. M. Dykhne et al., Sov. Phys. JETP 13, 1002 (1961)A. M. Dykhne et al., Sov. Phys. JETP 13, 1002 (1961)
B. Gyarmati, Nucl. Phys. A 160, 523 (1971)
B. Simon, Phys. Lett. A 71, 211 (1979)

→ Contour discretization.
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Coupled channel formalism

Pole space Full space

•Overlap method to identify
resonances.

⟨Ψ(pole)n ∣Ψ(full)n ⟩ ≈ 70% − 90%.

•Hermitian Hamiltonian but
complex-symmetric matrix
A = AT.

•Davidson diagonalization.

→ Coupled channel formalism:
•A truncation scheme:

∣l − s ∣ ≤ j ≤ l + s
∣J − j ∣ ≤ jr ≤ J + j

lmax = 0

lmax = 1
Example:

J fixed,
s = 1/2,
ˆ⃗J = ˆ⃗j + ˆ⃗jr ,
ˆ⃗j = ˆ⃗l + ˆ⃗s.

c = (l , j, jr).∣Ψ⟩ =∑
c

∣Ψc⟩,

•A clear physical interpretation:

∑
c
(Hc′,c(r) − E)uc(r)

r
= 0.

•Expansion of the uc(r) in the Berggren basis,
generated by the diagonal part of the potential
Vcc(r).
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Model

r

z
ˆ⃗j = ˆ⃗l + ˆ⃗s

Kj = KJ

ˆ⃗jr ,Kjr = 0

ˆ⃗J = ˆ⃗j + ˆ⃗jr

→ System: particle-plus-rotor.

•Just the minimum:

Ĥ =
ˆ⃗p2

2m
+

ˆ⃗j2r
2I
+ V̂ .

•Adiabatic limit: I →∞.
⇒ Same intrinsic state.

•How to study the rotational structure?

⋆ Density in the rotor frame:
R̂(Ω) ∣Ψ⟩ =∑

KJ

∣ΨKJ ⟩Ω,

ρJ,KJ (r⃗) = ∫ dΩ Ω ⟨ΨKJ ∣ρ̂r⃗ ∣ΨKJ ⟩Ω,

ρJ(r⃗) =∑
KJ

ρJ,KJ (r⃗).

⋆ Weights of KJ components:

nJ,KJ = ∫ d3 r⃗ ρJ,KJ (r⃗),

⋆ Test in the adiabatic limit: I →∞
EJ ,EJ+1,EJ+2,⋯→ E (I→∞).
ρJ , ρJ+1, ρJ+2,⋯→ ρ(I→∞).
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Rotational degrees of freedom and continuum

weakly bound
nucleon

prolate core
β2 > 0

nucleus
weakly bound

electron
(no spin)

dipole
core

dipolar anion+

−
(a0,Ry)↔ (fm, MeV)

→ Digression: A scary insight from a molecular open quantum system.

•A unique quantum system with few bound states.

•Very limited literature for resonances.

•At large distances: no analytical asymptotic solu-
tion for finite I with Vcc′ ∝ −1/r 2.

•Effective potential V (r , θ).

•Realistic case: HCN−.
W. R. Garrett, J. Chem. Phys. 133, 224103 (2010)

→ The worst case scenario for rotational states in the continuum.
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•Very limited literature for resonances.

•At large distances: no analytical asymptotic solu-
tion for finite I with Vcc′ ∝ −1/r 2.

•Effective potential V (r , θ).

•Realistic case: HCN−.
W. R. Garrett, J. Chem. Phys. 133, 224103 (2010)

→ The worst case scenario for rotational states in the continuum.

Erot ≈ Es.p. ⇒ Strong nonadiabatic couplings.
→ Competition between threshold effects and rotations.
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Dipolar anions

→ An extreme halo system.

10−1010−910−810−710−610−510−410−310−210−1 100

∆E

100

101

102

103

104

105

106

107

108

<
r2

>

LiI−

LiCl−

LiF−

LiH−

< r2 >∝ 1/(∆E)0.9172

•Scaling properties of two-body systems (bound states).

•For a relative angular momentum:
⋆ l = 0 ∶< r 2 > diverges as 1/∆E .
⋆ l = 1 ∶< r 2 > diverges as 1/

√
∆E .

⋆ l > 1 ∶< r 2 >= constant.
K. Riisager et al., Nucl. Phys. A 548, 393 (1992)
K. Riisager et al., Europhys. Lett. 49, 547 (2000)
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Dipolar anions

→ Rotational states.

0 5 10 15 20 25 30
J(J + 1)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

E
J
(R

y
)

×10−3

threshold

HCN−

KJ-mixed

KJ = 0

KJ = 1

KJ = 2

KJ = 3

ρJ(r⃗) =∑
KJ

ρJ,KJ (r⃗).

•Intrinsic density: all KJ -components
except one vanish.

•No rotational states above the
threshold.

•What is happening in the continuum?
⋆ Bound states: low-` channels (0,1).
⋆ Resonances: high-` channels (6-8).

⋆ Groups of resonances in the
complex-energy plane.

⋆ In each group, same dominant `,
but... jr = 0,2,4,6,8,...

12/23



Introduction Formalism Applications Conclusion Outlook

Dipolar anions

→ Rotational states.

0 5 10 15 20 25 30
J(J + 1)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

E
J
(R

y
)

×10−3

threshold

HCN−

KJ-mixed

KJ = 0

KJ = 1

KJ = 2

KJ = 3

?

ρJ(r⃗) =∑
KJ

ρJ,KJ (r⃗).

•Intrinsic density: all KJ -components
except one vanish.

•No rotational states above the
threshold.

•What is happening in the continuum?
⋆ Bound states: low-` channels (0,1).
⋆ Resonances: high-` channels (6-8).

⋆ Groups of resonances in the
complex-energy plane.

⋆ In each group, same dominant `,
but... jr = 0,2,4,6,8,...

12/23



Introduction Formalism Applications Conclusion Outlook

Dipolar anions

→ Competition between threshold effects and rotation.
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0 50 100 150
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•Collective bands.

•Above the threshold: weak coupling of
the rotational motion of the dipole and
the valence electron.

(Decoupled motions)
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Dipolar anions
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•Deviation to the rigid rotor reference.
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•Deviation to the rigid rotor reference.

•Above the threshold: weak coupling of
the rotational motion of the dipole and
the valence electron.

Who said I
was deviant?

(Decoupled motions)
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•Deviation to the rigid rotor reference.

•Above the threshold: weak coupling of
the rotational motion of the dipole and
the valence electron.

(Decoupled motions)

Decoupling of the particle and core rotational motions:
→ Starting point to investigate qualitatively the existence of

nuclear rotational states in the continuum.
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From molecular to nuclear physics

→ Competition between threshold effects and rotation.

•In the worst case scenario, sharp
transition between two coupling
regimes at the threshold.

J(J + 1)

E

0

Weakly bound
rotational states.

Resonances but
no rotational states.

•Feature not observed in nuclear
systems.

•On the one hand...
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P. -A. Söderström et al., Phys. Rev. C 81, 034310 (2010)

•On the other hand...
D. J. Marín-Lámbarri et al.,

Phys. Rev. Lett. 113, 012502 (2014)
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From proton- to neutron-rich systems

→ What about nuclear systems?

141Ho (140Dy + p)

Competition between
p and γ emissions

•Non-adiabatic couplings like in dipolar anions.
•Spin-orbite interaction cannot be neglected.
•Short-range interaction (∼ Woods-Saxon potential).

•Coulomb barrier in p-rich nuclei.
•Neutron resonances more intriguing.
•Example: 11Be = 10Be + n (halo).

P. Descouvemont, Nucl. Phys. A 699, 463 (2002)
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The 11Be and 141Ho cases

→ Nuclear rotational bands: (preliminary)
11Be (10Be + n)

•Moment of inertia adjusted to exp.
data when available.

•Partial waves: ` = 0,2,4 and 6.

•Fit using POUNDerS. (http://www.mcs.anl.gov/tao)

d (fm) R0 (fm) β2 V0 (MeV) Vso (MeV)
11Be 0.7721 2.548 0.5184 -52.95 12.70

•Yrast and yrare bands.

•Eigenenergies collapse to the same
value when I →∞.

•A qualitative study, KJ = 1/2.
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•Two tools:

⋆ nJ,KJ = ∫ d3 r⃗ ρJ,KJ (r⃗).

⋆ nl,j,jr = ∫
∞

0
dr u2

l,j,jr (r).
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Rotational structure

→ Rotational structure.

•Similar and dominant KJ = 1/2 densities
in the favored band (e−iπJ = −i).

•Same densities when I →∞ (100% KJ = 1/2).

Jπ,KJ 1/2 3/2 5/2
1/2+ 100
3/2+ 82 18
5/2+ 39 27 34
7/2+ 7 36 57
9/2+ 48 34 18
11/2+ 8 43 48
13/2+ 49 33 14
15/2+ 9 46 43
17/2+ 50 33 13

•nJ,KJ>5/2 < 3%

•KJ mixing
in most cases.

•Dominant KJ = 5/2 and 3/2 in the 11/2+
and 15/2+ states, respectively.
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How to explain these observations on the rotational structure?
→ Connection with the Coriolis decoupling effect.
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The Coriolis decoupling

→ Dominant channel analysis and Coriolis decoupling. ˆ⃗jr
ˆ⃗j

•Coriolis effect through non-adiabatic couplings.
•Channel decomposition:

∣Ψ⟩ =∑
c

∣Ψc⟩ , c = (l , j, jr).

•Effect on widths:
Jπ Γ (MeV)

1/2+1 0.000
3/2+1 0.095
5/2+1 0.009
7/2+1 0.587
9/2+1 0.009
11/2+1 0.458
13/2+1 0.002
15/2+1 0.394
17/2+1 0.000

•Greatly reduced
widths in the
favored band.

•l = 0 channels
cannot contribute
to decay widths.

•Decay widths dominated by l = 2
channels.

•The Coriolis decoupling favors the
alignment of ˆ⃗j and ˆ⃗jr .
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Angular momentum couplings are “locked”.
→ Affect the rotational structure.
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Consequence: small Q-values for the n-decay
in the l = 2 channels.
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How to show the prefered decay channels?
→ Channel widths.
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The decay channels

→ Partial wave contributions and channel widths.

•Partial waves contributions:

nl,j =∑
jr

nl,j,jr ,

∑
l,j

nl,j = 1.

•Channel widths:

Γc(r) = −
h̵2

µ

Im[u′c(r)u∗c (r)]
∑c′ ∫

r
0 dr ′ ∣uc′(r ′)∣2

with Γ =∑
c

Γc(r).
J. Humblet et al., Nucl. Phys. 26, 529 (1961)
B. Barmore et al., Phys. Rev. C 62, 054315 (2000)

•Example:
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Γ = 0.587MeV
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The decay channels

→ Partial wave contributions and channel widths.

•Yrast states:
⋆ Alignment parttern governed by a transition from s1/2 to d5/2 partial waves.
⋆ Decay via s1/2 partial waves is blocked.
⋆ Small Q-value of n-decay via d5/2 waves.

⋆ Weak coupling for J ≤ 7/2
⋆ Contribution of g9/2 for J > 11/2.
⋆ Increased centrifugal barrier.

•Yrare states:
⋆ Opposite situation.
⋆ Width explodes for J > 7/2.
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The decay channels

→ Partial wave contributions and channel widths.

•Yrast states:
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Angular momentum can stabilize collective behavior
in highly excited states of a neutron drip-line system.
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Cultural interlude

D. Graeber, Debt: The First 5,000 Years,
from the Danish writer Peter Freuchen’s Book of the Eskimo:

Freuchen tells how one day, after coming home
hungry from an unsuccessful walrus-hunting expedi-
tion, he found one of the successful hunters dropping
off several hundred pounds of meat. He thanked him
profusely. The man objected indignantly:
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Cultural interlude

D. Graeber, Debt: The First 5,000 Years,
from the Danish writer Peter Freuchen’s Book of the Eskimo:

Freuchen tells how one day, after coming home
hungry from an unsuccessful walrus-hunting expedi-
tion, he found one of the successful hunters dropping
off several hundred pounds of meat. He thanked him
profusely. The man objected indignantly:

“Up in our country we are human!” said the
hunter. “And since we are human we help each
other. We don’t like to hear anybody say thanks
for that. What I get today you may get tomorrow.
Up here we say that by gifts one makes slaves and
by whips one makes dogs.”
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D. Graeber, Debt: The First 5,000 Years,
from the Danish writer Peter Freuchen’s Book of the Eskimo:

Freuchen tells how one day, after coming home
hungry from an unsuccessful walrus-hunting expedi-
tion, he found one of the successful hunters dropping
off several hundred pounds of meat. He thanked him
profusely. The man objected indignantly:

“Up in our country we are human!” said the
hunter. “And since we are human we help each
other. We don’t like to hear anybody say thanks
for that. What I get today you may get tomorrow.
Up here we say that by gifts one makes slaves and
by whips one makes dogs.”

You have about 5 min before the end of this talk.
→ Choose carefully if you still want to thank the speaker.
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Rotational bands in the continuum

→ Conclusion:
•Coupled-channel formalism and the Berggren basis:
1) The particle continuum is fully accounted for.
2) The Coriolis effect appears naturally.
3) Exact treatment of channel-channel couplings.
4) Dominant channel analysis and clear interpretation.
5) Density in the rotor frame.
6) Test in the adiabatic limit.

•Limits:
1) Pauli principle partially respected (deformation).
2) Core width neglected.

•Results (11Be):
1) Strong Coriolis decoupling that align particle and core angular momenta.
2) Increasing of the centrifugal barrier.
3) Blocking of low-l channels.
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Rotational bands in the continuum

→ Conclusion:

•The Coriolis decoupling and centrifugal forces act in concert
to decrease decay widths of excited states.

•Narrow collective states can exist at high excitation energy
in weakly bound neutron drip-line nuclei such as 11Be.

→ Justifies the geometrical picture in such cases.
→ Support the applicability of bound state approaches.

•Open question:
→ Is a broad N-body nuclear resonance (Γ ≈ 3.5MeV) a N-body nucleus?
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Thank you for your attention!

M. Płoszajczak
W. Nazarewicz

N. Michel
R. Id Betan

Y.
Jaganathen

K. Fossez

G. Dong

A. Mercenne

J. Rotureau
G.

Papadimitriou
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