EXISTENCE OF ROTATIONAL STATES IN THE CONTINUUM

NSCL/MSU

October 29, 2015

INTRODUCTION			
•00			
INTERPORT	DION		

INTRODUCTION

Next generation of RIB facilities:

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

J. Okołowicz et al., Prog. Theor. Phys. Supp. 196, 230 (2012)

D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2001)

1565.4*X__(19/2*)

T_{1/2}=6.5 μs

19(6) 502.9(4)

1062.5*X (15/2*)

26(7) 439.3(4) 623.2*X (11/2*)

INTRODUCTION	Formalism	Applications	Conclusion	
INTRODUCT	ION			
Next generation	of RIB facilities:	оно осоор оно мл ча ран	Nuclear	
FRIB	FAIR		molecules	
GANIL	9	W. Von Oertzen, Int. J. Phys. E	° [™] • [™] • [™] Na ° [™] •	L. P. Gaffney <i>et al.</i> , sture 497 , 199 (2013)

RIKEN

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

J. Okołowicz et al., Prog. Theor. Phys. Supp. 196, 230 (2012)

D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2001)

INTRODUCTION	Formalism	Applications	Conclusion	
INTRODUCT	TON		00	0
Next generation	of RIB facilities:	တို့က တို့က တို့က		
FRIB	FAIR		Nuclear molecules	
GANIL	9	w. Von Oertzen, Int. J. Phys. E	L. Nati 20, 765 (2011)	P. Gaffney <i>et al.</i> , ure 497 , 199 (2013)

RIKEN

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

J. Okołowicz et al., Prog. Theor. Phys. Supp. 196, 230 (2012)

D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2001)

1903 502.9(4)

290 439.3(4)

__(15/2*)

_(tl/2*)

345.5(4)

T_{1/2}=6.5 μs

INTRODUCTION •00	Formalism 0000	Applications 000000000000	Conclusion OO	
INTRODUCT	TION			
Next generation	of RIB facilities:		Nuclear	
FRIB	FAIR		molecules	
	6			L. P. Gaffney <i>et al.</i> , ature 497 , 199 (2013)

GAN

K 2

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

J. Okołowicz et al., Prog. Theor. Phys. Supp. 196, 230 (2012)

D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2001)

345.5(4)

T_{1/2}=6.5 μs

1565.4*X__(19/2*)

19(6) 502.9(4)

1062.5*3 __(15/2*)

28(7) 439.3(4) 623.2*X. (11/2*)

7366

2+ 4439

~ (0p)⁸_____0

12C

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

J. Okołowicz et al., Prog. Theor. Phys. Supp. 196, 230 (2012)

D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2001)

T_{1/2}=4.2 ms

68(%)

978.1 (19/2-)

100(14) 478.5(4)

499.6

325

¹¹Li

1062.54 (15/2*)

290 439.3(4) 623.2+ (11/2*

T_{1/2}=6.5 μs

https://people.nscl.msu.edu/~zegers/HRS_draft.pdf

J. Okołowicz et al., Prog. Theor. Phys. Supp. 196, 230 (2012)

D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2001)

345.5/4

T_{1/2}=6.5 μs

1565.4*X__(19/2*)

1903 502.9(4)

1062.5*2 __(15/2*)

290 439.3(4) 623.2+ (11/2*

INTRODUCTION				
•00	0000	00000000000	00	

INTRODUCTION

Prog. Theor. Phys. Supp. 196, 230 (2012)

D. Seweryniak et al., Phys. Rev. Lett. 86, 1458 (2001)

OPEN QUANTUM SYSTEMS (OQSS): WHAT ARE THEY?

→ Quantum systems coupled to the environment of scattering states and decay channels.

- Examples of OQSs in many domains of physics: hadrons, nuclei, atoms, molecules, quantum dots, microwave cavities.
- Exotic phenomena in OQSs: superradiance phenomena, spontaneous two-proton radioactivity, near-threshold clustering phenomena...
- General properties of OQSs (resonances, halos, exceptional points) are common to all mesoscopic systems.

INTRODUCTION				
000	0000	00000000000	00	0
ROTATIONA	AL STATES			

- \rightarrow What "makes" rotational bands?
- Experimental identification: Energy spectrum regularities, large B(E2).
- Theoretical interpretation:

INTRODUCTION				
000	0000	00000000000	00	
ROTATION	AL STATES			

\rightarrow What "makes" rotational bands?

• Experimental identification: Energy spectrum regularities, large B(E2).

• Theoretical interpretation:

"A clue for understanding the deviations in the nuclear coupling scheme from that of the single-particle model was provided by the fact that many nuclei have quadrupole moments that are more than an order of magnitude larger than could be attributed to a single particle. This finding directly implied a sharing of angular momentum with many particles, and might seem to imply a break-down of the one-particle model. However, essential features of the single-particle model could be retained by assuming that the average nuclear field in which a nucleon moves deviates from spherical symmetry. This picture leads to a nuclear model resembling that of a molecule, in which the nuclear core possesses vibrational and rotational degrees of freedom." *Rotational motion in nuclei, Nobel Lecture, December 11, 1975 Aage Bohr*

INTRODUCTION			
000			
ROTATIONA	AL STATES		

- \rightarrow What "makes" rotational bands?
- Experimental identification: Energy spectrum regularities, large B(E2).
- Theoretical interpretation:
 - * Deviation from spherical symmetry.
 - \star Collective motion of nucleons.

- * Single particle properties.
- \star Intrinsic state.

INTRODUCTION			
000			
ROTATIONA	AL STATES		

- → What "makes" rotational bands?
- Experimental identification: Energy spectrum regularities, large B(E2).
- Theoretical interpretation:
 - * Deviation from spherical symmetry.
 - \star Collective motion of nucleons.

- * Single particle properties.
- * Intrinsic state.

- Additional conditions:
 - * A nuclear mean-field: $T_{1/2} > T_{s.p.}$.
 - \star No salient cluster degrees of freedom.
 - * The ⁸Be example: $T_{1/2} \approx T_{s.p.}$.

E. Garrido et al., Phys. Rev. C 88, 024001 (2013)

INTRODUCTION				
000	0000	00000000000	00	
ROTATIONA	L STATES			

- → What "makes" rotational bands?
- Experimental identification: Energy spectrum regularities, large B(E2).
- Theoretical interpretation:
 - * Deviation from spherical symmetry.
 - * Collective motion of nucleons.

- Additional conditions:
 - * A nuclear mean-field: $T_{1/2} > T_{s.p.}$.
 - \star No salient cluster degrees of freedom.
 - * The ⁸Be example: $T_{1/2} \approx T_{s.p.}$.
 - E. Garrido et al., Phys. Rev. C 88, 024001 (2013)

- * Single particle properties.
- * Intrinsic state.

	Formalism			
000	0000	00000000000	00	

- **2** FORMALISM
- **3** APPLICATIONS
- ConclusionOutlook

	Formalism		
	0000		
FORMALISM			

- \rightarrow Quasi-stationary formalism and Rigged Hilbert space.
- Gamow states: discrete solutions of the quasi-stationary Schrödinger equation that are regular at the origin and with outgoing boundary conditions.

G. Gamow, Z. Physik 51, 204 (1928); A. F. J. Siegert, Phys. Rev. 56, 750 (1939)

- Eigenenergies: $E_n = e_n - i\Gamma_n/2.$
- Lifetime: $T_{1/2} = \hbar \ln(2)/\Gamma$

	Formalism			
000	0000	00000000000	00	

Formalism

- \rightarrow Quasi-stationary formalism and Rigged Hilbert space.
- Gamow states: discrete solutions of the quasi-stationary Schrödinger equation that are regular at the origin and with outgoing boundary conditions.

G. Gamow, Z. Physik 51, 204 (1928); A. F. J. Siegert, Phys. Rev. 56, 750 (1939)

- Eigenenergies: $E_n = e_n - i\Gamma_n/2.$
- Lifetime: $T_{1/2} = \hbar \ln(2)/\Gamma$
- RHS: Extension of HS to distribution.

Gel'fand, Vilenkin et al. (1964), Maurin (1968)

Rigorous framework

for quantum mechanics Böhm (1964), Roberts (1966), Antoine (1969) and Melsheimer (1974)

RHS inner product:

$$\langle \tilde{u}_n | u_n \rangle = \int_0^\infty dr \, \tilde{u}_n^*(r) u_n(r).$$

Formalism		
0000		

FORMALISM

- \rightarrow Quasi-stationary formalism and Rigged Hilbert space.
- Gamow states: discrete solutions of the quasi-stationary Schrödinger equation that are regular at the origin and with outgoing boundary conditions.

G. Gamow, Z. Physik 51, 204 (1928); A. F. J. Siegert, Phys. Rev. 56, 750 (1939)

 \rightarrow Berggren completeness relation:

- Eigenenergies: $E_n = e_n - i\Gamma_n/2.$
- Lifetime: $T_{1/2} = \hbar \ln(2)/\Gamma$
- RHS: Extension of HS to distribution.

Gel'fand, Vilenkin et al. (1964), Maurin (1968)

Rigorous framework

for quantum mechanics Böhm (1964), Roberts (1966), Antoine (1969) and Melsheimer (1974)

• RHS inner product:

$$\langle \tilde{u}_n | u_n \rangle = \int_0^\infty dr \, \tilde{u}_n^*(r) u_n(r).$$

Formalism		
0000		

Formalism

- \rightarrow Quasi-stationary formalism and Rigged Hilbert space.
- Gamow states: discrete solutions of the quasi-stationary Schrödinger equation that are regular at the origin and with outgoing boundary conditions.

G. Gamow, Z. Physik 51, 204 (1928); A. F. J. Siegert, Phys. Rev. 56, 750 (1939)

 \rightarrow Berggren completeness relation:

- Eigenenergies: $E_n = e_n - i\Gamma_n/2.$
- Lifetime: $T_{1/2} = \hbar \ln(2)/\Gamma$
- RHS: Extension of HS to distribution.
 Gel'fand, Vilenkin et al. (1964), Maurin (1968)

Gel'fand, Vilenkin et al. (1964), Maurin (196

Rigorous framework

for quantum mechanics Böhm (1964), Roberts (1966), Antoine (1969) and Melsheimer (1974)

RHS inner product:

 $\langle \tilde{u}_n | u_n \rangle = \int_0^\infty dr \, \tilde{u}_n^*(r) u_n(r).$

- In practice:
- → Exterior complex-scaling. $\hat{U}_a(\theta)\chi(r) = \chi(r_a + |r - r_a|e^{i\theta})$ if $|r| > r_a$.

A. M. Dykhne *et al.*, Sov. Phys. JETP **13**, 1002 (1961)
B. Gyarmati, Nucl. Phys. A **160**, 523 (1971)
B. Simon. Phys. Lett. A **71**, 211 (1979)

 \rightarrow Contour discretization.

	Formalism		
	0000		
COUPLED	CHANNEL FOR	MATISM	

- \rightarrow Coupled channel formalism:
- A truncation scheme:

 $\begin{aligned} I_{\text{max}} &= 1 \\ I_{\text{max}} &= 0 \\ |I - s| \leq j \leq I + s \\ |J - j| \leq j_r \leq J + j \end{aligned}$ $\begin{aligned} & \text{Example:} \\ J \text{ fixed,} \\ s &= 1/2, \\ \hat{J} &= \hat{j} + \hat{j}_r, \\ \hat{J} &= \hat{l} + \hat{s}. \end{aligned}$ $\begin{aligned} & |\Psi\rangle &= \sum_{c} |\Psi_c\rangle, \qquad c = (I, j, j_r). \end{aligned}$

• A clear physical interpretation:

$$\sum_{c}(H_{c',c}(r)-E)\frac{u_{c}(r)}{r}=0.$$

• Expansion of the $u_c(r)$ in the Berggren basis, generated by the diagonal part of the potential $V_{cc}(r)$.

• Overlap method to identify resonances.

$$\langle \Psi_n^{(\text{pole})} | \Psi_n^{(\text{full})} \rangle \approx 70\% - 90\%.$$

- Hermitian Hamiltonian but complex-symmetric matrix A = A^T.
- Davidson diagonalization.

Introduction 000	Formalism 0000	Applications 000000000000	Conclusion	
Model				

 \rightarrow System: particle-plus-rotor.

• Just the minimum:

$$\hat{H} = \frac{\hat{\vec{p}}^2}{2m} + \frac{\hat{\vec{J}}_r^2}{2I} + \hat{V}.$$

- Adiabatic limit: $I \to \infty$.
 - \Rightarrow Same intrinsic state.

- How to study the rotational structure?
 - * Density in the rotor frame: $\hat{R}(\Omega) |\Psi\rangle = \sum_{K_J} |\Psi_{K_J}\rangle_{\Omega},$ $\rho_{J,K_J}(\vec{r}) = \int d\Omega_{\Omega} \langle \Psi_{K_J} | \hat{\rho}_{\vec{r}} | \Psi_{K_J} \rangle_{\Omega},$ $\rho_J(\vec{r}) = \sum_{K_J} \rho_{J,K_J}(\vec{r}).$
 - * Weights of K_J components:

$$n_{J,K_J} = \int d^3 \vec{r} \rho_{J,K_J}(\vec{r}),$$

* Test in the adiabatic limit: $I \to \infty$ $E_J, E_{J+1}, E_{J+2}, \dots \to E^{(I \to \infty)}.$ $\rho_J, \rho_{J+1}, \rho_{J+2}, \dots \to \rho^{(I \to \infty)}.$

Introduction 000	Formalism 0000	Applications •000000000000	Conclusion	

- INTRODUCTION
- **2** FORMALISM
- **3** APPLICATIONS
- CONCLUSIONOUTLOOK

\rightarrow Digression: A scary insight from a molecular open quantum system.

- A unique quantum system with few bound states.
- Very limited literature for resonances.
- At large distances: no analytical asymptotic solution for finite I with $V_{cc'} \propto -1/r^2$.
- Effective potential $V(r, \theta)$.
- Realistic case: HCN⁻.
 - W. R. Garrett, J. Chem. Phys. 133, 224103 (2010)
- \rightarrow The worst case scenario for rotational states in the continuum.

 \rightarrow Digression: A scary insight from a molecular open quantum system.

- A unique quantum system with few bound states. Effective potential $V(r, \theta)$.
- Very limited $E_{rot} \approx E_{s.p.} \Rightarrow$ Strong nonadiabatic couplings. • At large dis \rightarrow Competition between threshold effects and rotations. tion for finite I with $V_{cc'} \propto -1/r^2$.
- \rightarrow The worst case scenario for rotational states in the continuum.

		Applications		
000	0000	00000000000	00	
DIPOLAR A	NIONS			

• For a relative angular momentum: * $l = 0 :< r^2 > \text{diverges as } 1/\Delta E$. * $l = 1 :< r^2 > \text{diverges as } 1/\sqrt{\Delta E}$. * $l > 1 :< r^2 > \text{constant.}$

K. Riisager et al., Nucl. Phys. A 548, 393 (1992)
K. Riisager et al., Europhys. Lett. 49, 547 (2000)

		Applications		
000	0000	00000000000	00	
DIPOLAR A	NIONS			

• For a relative angular momentum: * $l = 0 :< r^2 > \text{diverges as } 1/\Delta E$. * $l = 1 :< r^2 > \text{diverges as } 1/\sqrt{\Delta E}$. * $l > 1 :< r^2 > \text{constant.}$

K. Riisager et al., Nucl. Phys. A 548, 393 (1992)
K. Riisager et al., Europhys. Lett. 49, 547 (2000)

INTRODUCTION	Formalism	Applications	Conclusion	
000	0000	000000000000	00	0
DIPOLAR AN	NIONS			

• For a relative angular momentum: * $l = 0 :< r^2 > \text{diverges as } 1/\Delta E.$ * $l = 1 :< r^2 > \text{diverges as } 1/\sqrt{\Delta E}.$ * $l > 1 :< r^2 > \text{constant.}$

K. Riisager et al., Nucl. Phys. A 548, 393 (1992)
K. Riisager et al., Europhys. Lett. 49, 547 (2000)

		Applications		
000	0000	00000000000	00	0
DIPOLAR A	NIONS			

		Applications		
000	0000	00000000000	00	
DIPOLAR A	NIONS			

\rightarrow Rotational states.

$$\rho_J(\vec{r}) = \sum_{K_J} \rho_{J,K_J}(\vec{r}).$$

- Intrinsic density: all *K*_J-components except one vanish.
- No rotational states above the threshold.
- What is happening in the continuum?
 - * Bound states: low- ℓ channels (0,1).
 - * Resonances: high- ℓ channels (6-8).
 - * Groups of resonances in the complex-energy plane.
 - * In each group, same dominant ℓ , but... $j_r = 0, 2, 4, 6, 8, ...$

		Applications		
000	0000	00000000000	00	
DIPOLAR A	NIONS			

\rightarrow Rotational states.

$$\rho_J(\vec{r}) = \sum_{K_J} \rho_{J,K_J}(\vec{r}).$$

- Intrinsic density: all *K*_J-components except one vanish.
- No rotational states above the threshold.
- What is happening in the continuum?
 - * Bound states: low- ℓ channels (0,1).
 - * Resonances: high- ℓ channels (6-8).
 - * Groups of resonances in the complex-energy plane.
 - * In each group, same dominant ℓ , but... $j_r = 0, 2, 4, 6, 8, ...$

		Applications				
		00000000000				
DIDOLAD A	DIDOLAD ANIONG					
DIPOLAR ANIONS						

Collective bands.

• Above the threshold: weak coupling of the rotational motion of the dipole and the valence electron.

INTRODUCTION	Formalism 0000	Applications 000000000000	
Dipolar a	NIONS		

• Deviation to the rigid rotor reference.

• Above the threshold: weak coupling of the rotational motion of the dipole and the valence electron.

INTRODUCTION	Formalism 0000	Applications 000000000000	Conclusion	
Dipolar a	NIONS			

• Deviation to the rigid rotor reference.

• Above the threshold: weak coupling of the rotational motion of the dipole and the valence electron.

INTRODUCTION	Formalism 0000	Applications 000000000000	
Dipolar a	NIONS		

13/23

		Applications		
000	0000	00000000000	00	

FROM MOLECULAR TO NUCLEAR PHYSICS

\rightarrow Competition between threshold effects and rotation.

 In the worst case scenario, sharp transition between two coupling regimes at the threshold.

Feature not observed in nuclear systems.

- On the one hand...
 - P. -A. Söderström et al., Phys. Rev. C 81, 034310 (2010)

On the other hand...

		Applications		
000	0000	0000000000	00	

FROM PROTON- TO NEUTRON-RICH SYSTEMS

→ What about nuclear systems?

 141 Ho (140 Dy + p)

- 828 − 1207 1938 − 82005 2017 − 1207 1030 − 8207 1030 − 8207 1030 − 8207 1030 − 8207 1030 − 8207 1030 − 8207 1030 − 8207 1030 − 8207 104
- Non-adiabatic couplings like in dipolar anions.
- Spin-orbite interaction cannot be neglected.
- Short-range interaction (~ Woods-Saxon potential).
- Coulomb barrier in p-rich nuclei.
- Neutron resonances more intriguing.
- Example: ${}^{11}Be = {}^{10}Be + n$ (halo).

P. Descouvemont, Nucl. Phys. A 699, 463 (2002)

		Applications	
		00000000000	
TUD 11DD AND	141 ILO GAGDO		
THE "DE AND	THE CASES		

→ Nuclear rotational bands: (preliminary)

¹¹Be ($^{10}Be + n$)

- Moment of inertia adjusted to exp. data when available.
- Partial waves: $\ell = 0, 2, 4$ and 6.
- Fit using POUNDerS. (http://www.mcs.anl.gov/tao)

	<i>d</i> (fm)	$R_0(\mathrm{fm})$	β_2	V_0 (MeV)	$V_{\rm so}({\rm MeV})$
¹¹ Be	0.7721	2.548	0.5184	-52.95	12.70

- Yrast and yrare bands.
- Eigenenergies collapse to the same value when $I \rightarrow \infty$.

• A qualitative study, $K_J = 1/2$.

Two tools:

$$\star \ n_{J,K_J} = \int d^3 \vec{r} \, \rho_{J,K_J}(\vec{r}).$$

$$\star \ n_{l,j,j_r} = \int_0^\infty dr \, u_{l,j,j_r}^2(r).$$

		Applications	
		0000000000000	
ROTATION	AL STRUCTURE	1	

→ Rotational structure.

- Similar and dominant $K_J = 1/2$ densities in the favored band $(e^{-i\pi J} = -i)$.
- Same densities when $I \rightarrow \infty$ (100% $K_J = 1/2$).

J^{π}, K_J	1/2	3/2	5/2
$1/2^{+}$	100		
3/2+	82	18	
$5/2^{+}$	39	27	34
$7/2^{+}$	7	36	57
9/2+	48	34	18
$11/2^{+}$	8	43	48
$13/2^{+}$	49	33	14
$15/2^{+}$	9	46	43
$17/2^{+}$	50	33	13

•
$$n_{J,K_J>5/2} < 3\%$$

 K_J mixing in most cases.

• Dominant $K_J = 5/2$ and 3/2 in the $11/2^+$ and $15/2^+$ states, respectively.

How to explain these observations on the rotational structure? \rightarrow Connection with the Coriolis decoupling effect.

-5

-5 0 5

Domina

and $15/2^+$ states, respectively.

0.00

-5 0 5

x(fm)

		Applications		
000	0000	000000000000	00	
THE CODE	OLIG DECOUDI	INC		

- THE CORIOLIS DECOUPLING
 - \rightarrow Dominant channel analysis and Coriolis decoupling.
 - Coriolis effect through non-adiabatic couplings.
 - Channel decomposition:

$$|\Psi\rangle = \sum_{c} |\Psi_{c}\rangle, \qquad c = (I, j, j_{r}).$$

Effect on widths:

J^{π}	$\Gamma(MeV)$
$1/2_{1}^{+}$	0.000
$3/2^{\ddagger}_{1}$	0.095
$5/2^{+}_{1}$	0.009
$7/2^{+}_{1}$	0.587
$9/2^{+}_{1}$	0.009
$11/2^+_1$	0.458
$13/2^{+}_{1}$	0.002
$15/2^{+}_{1}$	0.394
$17/2_{1}^{1}$	0.000

- Greatly reduced widths in the favored band.
- I = 0 channels cannot contribute to decay widths.
- Decay widths dominated by *l* = 2 channels.

• The Coriolis decoupling favors the alignment of $\hat{\vec{j}}$ and $\hat{\vec{j}}_r$.

		Applications	
		000000000000	
THE CODE	ALLA DECOUDI	INC	

- THE CORIOLIS DECOUPLING
 - \rightarrow Dominant channel analysis and Coriolis decoupling.
 - Coriolis effect through non-adiabatic couplings.
 - Channel decomposition:

$$|\Psi\rangle = \sum_{c} |\Psi_{c}\rangle, \qquad c = (I, j, j_{r}).$$

Effect on widths:

J^{π}	Γ(MeV)
$1/2_{1}^{+}$	0.000
$3/2_{1}^{\ddagger}$	0.095
$5/2^{+}_{1}$	0.009
$7/2^{+}_{1}$	0.587
$9/2_{1}^{+}$	0.009
$11/2^+_1$	0.458
$13/2^{+}_{1}$	0.002
$15/2^{+}_{1}$	0.394
$17/2_{1}^{1}$	0.000

- Greatly reduced widths in the favored band.
- I = 0 channels cannot contribute to decay widths.
- Decay widths dominated by *l* = 2 channels.

• The Coriolis decoupling favors the alignment of $\hat{\vec{j}}$ and $\hat{\vec{j}}_r$.

Introduction 000	Formalism 0000	Applications 000000000000	
THE DECAY	CHANNELS		

- \rightarrow Partial wave contributions and channel widths.
- Partial waves contributions:

Example:

$$n_{l,j} = \sum_{j_r} n_{l,j,j_r},$$
$$\sum_{l,j} n_{l,j} = 1.$$

Channel widths:

$$\Gamma_{c}(r) = -\frac{\hbar^{2}}{\mu} \frac{\operatorname{Im}[u_{c}'(r)u_{c}^{*}(r)]}{\sum_{c'} \int_{0}^{r} dr' |u_{c'}(r')|^{2}}$$

with $\Gamma = \sum_{c} \Gamma_{c}(r)$.

J. Humblet *et al.*, Nucl. Phys. **26**, 529 (1961)
B. Barmore *et al.*, Phys. Rev. C **62**, 054315 (2000)

- \rightarrow Partial wave contributions and channel widths.
- Yrast states:
 - * Alignment parttern governed by a transition from $s_{1/2}$ to $d_{5/2}$ partial waves.
 - * Decay via $s_{1/2}$ partial waves is blocked.
 - * Small Q-value of *n*-decay via $d_{5/2}$ waves.
 - * Weak coupling for $J \le 7/2$
 - * Contribution of $g_{9/2}$ for J > 11/2.
 - * Increased centrifugal barrier.
- Yrare states:
 - * Opposite situation.
 - * Width explodes for J > 7/2.

		Applications	
		00000000000	
THE DECAY	Y CHANNELS		

- → Partial wave contributions and channel widths.
- Yrast states:
 - * Alignment parttern governed by a transition from $s_{1/2}$ to $d_{5/2}$ partial waves.
 - * Decay via $s_{1/2}$ partial waves is blocked.
- 1.0* Small Q-value of *n*-decay via $d_{5/2}$ waves. (c) 0.8 S1/2 S1/2 ${\mathop{\rm Re}\limits^{\rm 0.0}}_{2.0}{\mathop{\rm Re}\limits^{\rm 0.0}}_{1.0}{\mathop{\rm Re}}_{1.0}{\mathop{\rm Re}}_$ * Weak coupling for $J \leq 7/2$ * Contribution of $g_{9/2}$ for J > 11/2. 0.2 * Increased centrifugal barrier. 0.0 (b Yrare states: ¹¹Be $\sum_{i=1}^{1.2}$ $\mathbf{S}_{1/2}$ Opposite situation Angular momentum can stabilize collective behavior * Width expl in highly excited states of a neutron drip-line system. 0.0 $17/_{2}$ $5/_{2}$ $3/_{2}$ $7/_{2}$ $1/_{2}$ 9/2

		Conclusion	
		•0	
Cultural	INTERLUDE		

D. Graeber, Debt: The First 5,000 Years, from the Danish writer Peter Freuchen's Book of the Eskimo:

Freuchen tells how one day, after coming home hungry from an unsuccessful walrus-hunting expedition, he found one of the successful hunters dropping off several hundred pounds of meat. He thanked him profusely. The man objected indignantly:

			Conclusion	
000	0000	00000000000	•0	
Cultural	INTERLUDE			

D. Graeber, Debt: The First 5,000 Years, from the Danish writer Peter Freuchen's Book of the Eskimo:

Freuchen tells how one day, after coming home hungry from an unsuccessful walrus-hunting expedition, he found one of the successful hunters dropping off several hundred pounds of meat. He thanked him profusely. The man objected indignantly:

"Up in our country we are human!" said the hunter. "And since we are human we help each other. We don't like to hear anybody say thanks for that. What I get today you may get tomorrow. Up here we say that by gifts one makes slaves and by whips one makes dogs."

			Conclusion	
000	0000	00000000000	•0	
Cultural	INTERLUDE			

D. Graeber, Debt: The First 5,000 Years, from the Danish writer Peter Freuchen's Book of the Eskimo:

Freuchen tells how one day, after coming home hungry from an unsuccessful walrus-hunting expedition, he found one of the successful hunters dropping off several hundred pounds of meat. He thanked him profusely. The man objected indignantly:

"Up in our country we are human!" said the hunter. "And since we are human we help each You have about 5 min before the end of this talk. → Choose carefully if you still want to thank the speaker. row. Up here we say that by gifts one makes slaves and by whips one makes dogs."

		Conclusion	
		00	
Domemory			

ROTATIONAL BANDS IN THE CONTINUUM

\rightarrow Conclusion:

- Coupled-channel formalism and the Berggren basis:
 - 1) The particle continuum is fully accounted for.
 - 2) The Coriolis effect appears naturally.
 - 3) Exact treatment of channel-channel couplings.
 - 4) Dominant channel analysis and clear interpretation.
 - 5) Density in the rotor frame.
 - 6) Test in the adiabatic limit.

Limits:

- 1) Pauli principle partially respected (deformation).
- 2) Core width neglected.
- Results (¹¹Be):
 - 1) Strong Coriolis decoupling that align particle and core angular momenta.
 - 2) Increasing of the centrifugal barrier.
 - 3) Blocking of low-I channels.

			Conclusion	
000	0000	00000000000	00	
ROTATIONAL	L BANDS IN T	HE CONTINUUM		

 \rightarrow Conclusion:

- The Coriolis decoupling and centrifugal forces act in concert to decrease decay widths of excited states.
- Narrow collective states can exist at high excitation energy in weakly bound neutron drip-line nuclei such as ¹¹Be.
- \rightarrow Justifies the geometrical picture in such cases.
- \rightarrow Support the applicability of bound state approaches.
- Open question:
 - \rightarrow Is a broad N-body nuclear resonance (Г \approx 3.5 MeV) a N-body nucleus?

				Outlook
000	0000	0000000000	00	•

Thank you for your attention!

