Di-neutron correlation and two-neutron decay of the ²⁶O nucleus

Kouichi Hagino Tohoku University, Sendai, Japan

Hiroyuki Sagawa University of Aizu / RIKEN

Di-neutron correlation: what is it?
 Coulomb breakup
 Two-neutron decay of unbound nucleus ²⁶O
 Summary

Borromean nuclei and Di-neutron correlation

Borromean nuclei: unique three-body systems

Three-body model calculations:

strong di-neutron correlation in ¹¹Li and ⁶He

$$x^2y^2\rho_2(x,y)$$
 for ⁶He

Yu.Ts. Oganessian et al., *PRL82('99)4996* M.V. Zhukov et al., *Phys. Rep. 231('93)151*

cf. earlier works

✓ A.B. Migdal ('73)✓ P.G. Hansen and B. Jonson ('87)

G.F. Bertsch, H. Esbensen, Ann. of Phys., 209('91)327

What is Di-neutron correlation?

Example: ${}^{18}O = {}^{16}O + n + n$

i) Without nn interaction: $|nn\rangle = |(1d_{5/2})^2\rangle$

Distribution of the 2^{nd} neutron when the 1^{st} neutron is at z_1 :

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 z (fm) z (fm) z (fm) z (fm)

✓Two neutrons move independently

✓ No influence of the 2^{nd} neutron from the 1^{st} neutron

need correlations to form a "pair"

Example: ${}^{18}O = {}^{16}O + n + n$ cf. ${}^{17}O : 3$ bound states $(1d_{5/2}, 2s_{1/2}, 1d_{3/2})$ i) even parity only \longrightarrow insufficient $z_1 = 1 \text{ fm}$ $z_1 = 2 \text{ fm}$ $z_1 = 3 \text{ fm}$ $z_1 = 4 \text{ fm}$ \overbrace{g}_{-4}^{6} \overbrace{g}_{-4}^{-6} \overbrace{g}_-^{-6} \overbrace{g}_{-4}^{-6} \overbrace{g}_{-4}^{-6}

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Example: ${}^{18}O = {}^{16}O + n + n$ cf. ${}^{17}O : 3$ bound states $(1d_{5/2}, 2s_{1/2}, 1d_{3/2})$

i) even parity only \longrightarrow insufficient $z_1 = 1 \text{ fm}$ $z_2 = 2 \text{ fm}$ $z_1 = 3 \text{ fm}$

$$z_1 = 1 \text{ fm}$$

$$z_1 = 2 \text{ fm}$$

$$z_1 = 3 \text{ fm}$$

$$z_1 = 4 \text{ fm}$$

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

ii) both even and odd parities (bound + continuum states)

dineutron correlation: caused by the admixture of different parity states

F. Catara, A. Insolia, E. Maglione, and A. Vitturi, PRC29('84)1091

r

R

interference of even and odd partial waves

$$\rho_2(x_1, x_2) = |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{oo}(x_1, x_2)|^2 + |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{oo}(x_1, x_2)|^2$$

Dineutron correlation in the momentum space

$$\Psi(r,r') = \alpha \Psi_{s^2}(r,r') + \beta \Psi_{p^2}(r,r') \longrightarrow \theta_r = 0$$
: enhanced

$$\overline{\Psi}(k,k') = \int e^{ik \cdot r} e^{ik' \cdot r'} \Psi(r,r') dr dr'$$

$$e^{ik \cdot r} = \sum_{l} (2l+1)i^{l} \dots \rightarrow i^{l} \cdot i^{l} = i^{2l} = (-)^{l}$$

$$\overline{\Psi}(k,k') = \alpha \, \overline{\Psi}_{s^{2}}(k,k') - \beta \, \overline{\Psi}_{p^{2}}(k,k') \rightarrow \theta_{k} = \pi: \text{ enhanced}$$

Two-particle density in the *r* space: $8\pi^2 r^4 \sin \theta \cdot \rho(r, r, \theta)$

Two-particle density in the p space: $8\pi^2 k^4 \sin \theta \cdot \rho(k, k, \theta)$

Consequence to a two-nucleon emission decay

2p decay of ⁶Be : time-dependent calculations

 $c_1 = 0$ (1m) 30 0.5250.4 r_{PP} (im) 200.3 15 0210 0.1 5 Ū Π 15 20 25 30 35 40 O 5 10 т_{с-рр} (1m)

<u>T. Oishi</u> (Tohoku → Jyvaskyla), K.H., H. Sagawa, PRC90 ('14) 034303

Di-neutron correlation in neutron-rich nuclei

Strong di-neutron correlation in neutron-rich nuclei

- ✓ Borromean nuclei (3body calc.) Bertsch-Esbensen ('91) Zhukov et al. ('93) Hagino-Sagawa ('05) Kikuchi-Kato-Myo ('10)
- ✓ Heavier nuclei (HFB calc.) Matsuo et al. ('05) Pillet-Sandulescu-Schuck ('07)

How to probe it?

- Coulomb breakup

 T. Nakamura et al.
 cluster sum rule
 (mean value of θ_{nn})

 pair transfer reactions
 two-proton decays

 Coulomb 3-body problem
 - <u>two-neutron decays</u>
 3-body resonance due to a centrifugal barrier
 MoNA (¹⁶Be ¹³Li ²⁶O)
 - MoNA (¹⁶Be, ¹³Li, ²⁶O) SAMURAI (²⁶O) GSI (²⁶O)

Coulomb breakup of 2-neutron halo nuclei

How to probe the dineutron correlation? \longrightarrow Coulomb breakup

Experiments:

T. Nakamura et al., PRL96('06)252502

T. Aumann et al., PRC59('99)1252

3-body model calculations:

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R) cf. Y. Kikuchi et al., PRC87('13)034606 ← structure of the core nucleus (⁹Li)

3-body model calculation for Borromean nuclei

e, (MeV)

H. Esbensen and G.F. Bertsch, NPA542('92)310

g.s. correlation? or correlation in excited states?

 ${}^{6}\text{He}(0^{+}) \rightarrow {}^{6}\text{He}(1^{-}) \rightarrow \alpha + n + n$

✓ Both FSI and dineutron correlations: important role in E1 strength

Geometry of Borromean nuclei

r_{nn} Cluster sum rule	0.8 - 11
$B_{\text{tot}}(E1) = \sum_{f} \langle \Psi_{f} \hat{T}_{\text{E1}} \Psi_{0} \rangle$	$ ^2 \bigoplus_{n=0}^{\infty} 0.6 $ Total Total S=0 component S=1 component
$\sim \frac{3}{\pi} \left(\frac{Z_c e}{A_c + 2} \right)^2 \langle R^2 \rangle$	
reflects the g.s. correlation	$0 \frac{1}{0} \frac{1}{30} \frac{1}{60} \frac{1}{90} \frac{1}{120} \frac{1}{150} \frac{1}{180} \frac{1}{18$
"experimental data" for opening angle	$\langle \theta_{12} \rangle = 65.29$ deq.
$\sqrt{\langle R^2 \rangle}$ - B _{tot} (E1)	
$\sqrt{\langle r_{nn}^2 \rangle}$ — matter radius	$\langle \theta_{12} \rangle$: significantly smaller
or HBT	than 90 deg.
$\langle \theta_{12} \rangle = 65.2 \pm 12.2 \ (^{11}\text{Li})$	
= 74.5 ± 12.1 (⁶ He)	suggests dineutron corr.
K.H. and H. Sagawa, PRC76('07)047302	large angles)

cf. T. Nakamura et al., PRL96('06)252502 C.A. Bertulani and M.S. Hussein, PRC76('07)051602

Energy distribution of emitted neutrons

- ✓ shape of distribution: insensitive to the nn-interaction (except for the absolute value)
- \checkmark strong sensitivity to V_{nC}
- ✓ similar situation in between ¹¹Li and ⁶He

no di-neutron corr. in the g.s. (odd-*l* only)

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R)

2-proton radio activity

B. Blank and M. Ploszajczak, Rep. Prog. Phys. 71('08)046301

- ✓ probing correlations from energy and angle distributions of two emitted protons?
- ✓ Coulomb 3-body system
 - Theoretical treatment: difficult
 - how does FSI disturb the g.s. correlation?

diproton correlation: unclear in many systems (theoretical calculations: not many)

Other data:

¹³Li (Z. Kohley et al., PRC87('13)011304(R)) ¹⁴Be \rightarrow ¹³Li \rightarrow ¹¹Li + 2n ²⁶O (E. Lunderbert et al., PRL108('12)142503) ²⁷F \rightarrow ²⁶O \rightarrow ²⁴O + 2n

3-body model calculation with nn correlation: required

Two-neutron decay of ²⁶O

the simplest among ¹⁶Be, ¹³Li, ²⁶O (MSU)
¹⁶Be: deformation, ¹³Li: treatment of ¹¹Li core

Experiment:

E. Lunderberg et al., PRL108 ('12) 142503 Z. Kohley et al., PRL 110 ('13)152501

 27 F (82 MeV/u) + 9 Be $\rightarrow ^{26}$ O $\rightarrow ^{24}$ O + n + n

K.H. and H. Sagawa, PRC89 ('14) 014331

cf. Expt. : ${}^{27}F(82 \text{ MeV/u}) + {}^{9}Be \rightarrow {}^{26}O \rightarrow {}^{24}O + n + n$

 $FSI \longrightarrow Green's$ function method \leftarrow continuum effects

²⁵O : calibration of the n-²⁴O potential

n-²⁴O Woods-Saxon potential

$$a = 0.72 \text{ fm (fixed)}$$

 $r_0 = 1.25 \text{ fm (fixed)}$
 $V_0 \leftarrow e_{2s1/2} = -4.09 (13) \text{ MeV}$
 $V_{1s} \leftarrow e_{d3/2} = 0.749(10) \text{ MeV}$

Gamow states (outgoing boundary condition)

d_{3/2}: E = 0.749 MeV (input), $\Gamma = 87.2$ keV cf. $\Gamma_{exp} = 86$ (6) keV

f_{7/2}:
$$E = 2.44$$
 MeV, $\Gamma = 0.21$ MeV
p_{3/2}: $E = 0.577$ MeV, $\Gamma = 1.63$ MeV

n-²⁴O decay spectrum

→ apply a similar method to $^{24}O + n + n$

Two-neutron decay of ²⁶O : i) Decay energy spectrum

$$\frac{dP}{dE} = \int dE' |\langle \Psi_{E'} | \Phi_{\text{ref}} \rangle|^2 \,\delta(E - E') = \frac{1}{\pi} \Im \langle \Phi_{\text{ref}} | G(E) | \Phi_{\text{ref}} \rangle$$

correlated Green's function:

$$G(E) = G_0(E) - G_0(E)v(1 + G_0(E)v)^{-1}G_0(E)$$

← continuum effects

uncorrelated Green's function

$$G_{0}(E) = \sum_{j_{1}, l_{1}} \sum_{j_{2}, l_{2}} \int de_{1} de_{2} \frac{|\psi_{1}\psi_{2}\rangle\langle\psi_{1}\psi_{2}|}{e_{1} + e_{2} - E - (i\eta)} \longleftarrow$$
small, finite η

K.H. and H. Sagawa, - PRC89 ('14) 014331

- in preparation

with nn interaction

 $E_{\text{peak}} = 18 \text{ keV} (\text{input})$

Sensitivity to the reference state

Two-particle density in the bound state approximation

cf. Grigorenko et al. (PRC91 ('15) 064617)

 $E = 0.01 \text{ MeV} [(d_{3/2})^2 : 79 \%]$ $E = 1.7 \text{ MeV} [(d_{3/2})^2 : 80 \%]$ $E = 2.6 \text{ MeV} [(d_{3/2})^2 : 86 \%]$ cf. s. p. resonances (MeV) $d_{3/2}$: E = 0.75, $\Gamma = 0.087$ $f_{7/2}$: E = 2.44, $\Gamma = 0.21$ $p_{3/2}$: E = 0.58, $\Gamma = 1.63$

2^+ state in ${}^{26}O$

New RIKEN data : a prominent second peak at $E = 1.28^{+0.11}_{-0.08}$ MeV

cf. sdpf-m: $E_{2+} = 2.62$ MeV (Y. Utsuno) ab-initio calc. with chiral NN+3N: $E_{2+} = 1.6$ MeV (C. Caesar et al., PRC88('13)034313) continuum shell model: $E_{2+} = 1.8$ MeV (A. Volya and V. Zelvinsky, PRC74 ('14) 064314)

a textbook example of pairing interaction!

PRC90('14)027303; in preparation.

	²⁵ O (3/2 ⁺)	²⁶ O (2 ⁺)
Experiment	+ 749 (10) keV	$1.28^{+0.11}_{-0.08}\mathrm{MeV}$
USDA	1301 keV	1.9 MeV
USDB	1303 keV	2.1 MeV
sdpf-m (Utsuno)	?	2.6 MeV
chiral NN+3N	742 keV	1.6 MeV
continuum SM (Volya-Zelevinsky)	1002 keV	1.8 MeV
3-body model (Hagino-Sagawa)	749 keV (input)	1.282 MeV

angular correlations

K.H. and H. Sagawa, PRC89 ('14) 014331; in preparation.

correlation \rightarrow enhancement of back-to-back emissions

cf. Similar conclusion: L.V. Grigorenko, I.G. Mukha, and M.V. Zhukov, PRL 111 (2013) 042501

main contributions: *s*- and *p*-waves in three-body wave function (no or low centrifugal barrier)

*higher *l* components: largely suppressed due to the centrifugal pot. ($E_{decay} \sim 18 \text{ keV}, e_1 \sim e_2 \sim 9 \text{ keV}$) ii) distribution of opening angle for two-emitted neutrons

Recent measurements and simulations at MONA

Y system

Z. Kohley et al., PRC91 ('15) 034323

2n emission decay of ${}^{26}O \leftarrow$ three-body model with density-dependent zero-range interaction: continuum calculations: relatively easy

- ✓ Decay energy spectrum: strong low-energy peak
- ✓ 2^+ energy: excellent agreement with the data
- ✓ Angular distributions: enhanced back-to-back emission

dineutron emission

Dopen problems

- ✓ Analyses for ¹⁶Be and ¹³Li
- ✓ Decay width?
- ✓ Extension to 4n decay c.f. 28 O