

# effects of clustering in dipole and monopole transitions

Y. Kanada-En'yo (Kyoto)

- 1. Introduction
- 2. Monopole excitations in <sup>16</sup>O and <sup>12</sup>C

Y. K-E. PRC89, 024302 (2014)

- 3. Dipole excitations in <sup>9,10</sup>Be
- 4. Summary



# **Cluster excitations and Giant resonances**

### **Cluster states in Ex<~15 MeV**



### Cluster excited states in <sup>16</sup>O



### Isoscalar monopole (IS0) strengths in <sup>16</sup>O



### LE strengths decoupling from GR=Decoupling of Scale



### LE strengths decoupling from GR=Decoupling of Scale



# 2. Formulation of shifted AMD+cluster GCM

### Formulation of AMD

### A approach to study coexistence of cluster and mean-field natures

AMD wave function

$$\Phi = c\Phi_{AMD} + c'\Phi'_{AMD} + c''\Phi''_{AMD} + \cdots$$

$$\Phi_{AMD} = \det\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{A}\}$$
Slater det.
$$Gaussian$$

$$\varphi_{i} = \phi_{Z_{i}}\chi_{i} \begin{cases} spatial \\ \phi_{Z_{i}}(\mathbf{r}_{j}) \propto exp \left[-\nu(\mathbf{r} - \frac{\mathbf{Z}_{i}}{\sqrt{\nu}})^{2}\right] \\ \chi_{i} = \left(\frac{1}{2} + \xi_{i} \\ \frac{1}{2} - \xi_{i}\right) x p \text{ or } n \\ \text{isospin} \end{cases}$$

Variation, projection, super position

$$\delta \frac{\left\langle \Phi \left| H \right| \Phi \right\rangle}{\left\langle \Phi \right| \Phi \right\rangle} = 0$$

VAP:Variation after spin-parity projection GCM: $\beta$ -GCM,  $\alpha$ -cluster GCM( $\alpha$ GCM)

 $\Phi_{AMD}(\mathbf{Z})$ variational parameters  $\mathbf{Z} = \{ \mathbf{Z}_{1}, \mathbf{Z}_{2}, \dots, \mathbf{Z}_{A}, \xi_{1}, \dots, \xi_{A} \}$ det det Gaussianwave
packet

Various cluster configurations are contained in the AMD model space

### sAMD (1p1h excitations)



Linear combination of 1p1h excitations from the g.s. configuration (small amplitude oscillation within shifts of Gaussians)

describes monopole, dipole excitations (applicable to GT, M1, SD etc.)

### $AMD+\alpha GCM$

### **AMD**+ $\alpha$ **GCM**

Core(AMD)+alpha =AMD+ $\alpha$ GCM



Generator coordinate: R

Large amplitude cluster mode

## sAMD+GCM(cluster)

superposing spin-parity projected states SAMD+GCM of all wave functions (shifted AMD, and cluster wave functions.)

- ground state: VAP describes g.s.cluster correlations
- sAMD describes small amplitude oscillation (1p1h)
- GCM describes large amplitude cluster mode
- Parity and angular momentum projections describe coupling of intrinsic modes with the rotation

RPA: only small amplitude oscillation (->higher: SRPA) no projections

QRPA: pairing correlation but no cluster correlation no projections

Time-dependent AMD: large amplitude oscillation but not quantized no projections

### Monopole and dipole exciations

Isoscalar monopole (IS0):  $M(IS0) = \sum_{i} r_i^2 Y_{00}(\hat{\mathbf{r}}_i)$ 

Breathing mode coupling with radial excitation and cluster mode

Isovector dipole (E1):

$$M(E1;\mu) = \sum_{i=proton} r_i Y_{1\mu}(\hat{\mathbf{r}}_i)$$

Translational mode

Isoscalar dipole (ISD):

$$M(ISD;\mu) = \sum_{i} r_i^3 Y_{1\mu}(\hat{\mathbf{r}}_i)$$

Compressive dipole mode coupling with radial excitation and cluster mode



1.<sup>16</sup>O: sAMD+ GCM(<sup>12</sup>C+ $\alpha$ ) for B(IS0) 2.<sup>12</sup>C: sAMD+ GCM(3 $\alpha$ ) for B(IS0) & B(ISD) 3.<sup>9,10</sup>Be:sAMD+GCM(<sup>5,6</sup>He+ $\alpha$ ) for B(E1) & B(ISD) Phenomenological effective two-body and three-body interactions

Central force

Modified Volkov force: finite range two-body +zero-range three-body

Spin-orbit force

finite range two-body

Coulomb

Present parameter set reproduce energy spectra of 12C.



Y. K-E. PRC89, 024302 (2014)

<sup>16</sup>O(sAMD)+GCM(<sup>12</sup>C(AMD)+ $\alpha$ )

$$^{12}C(AMD) = \left| \Phi_{AMD}(^{12}C:0^+_1) \right\rangle, \left| \Phi_{AMD}(^{12}C:0^+_2) \right\rangle, \left| \Phi_{AMD}(^{12}C:1^-_1) \right\rangle$$

Three states with AMD+VAP



#### <sup>12</sup>C(gs)+ $\alpha$ $4\alpha$ gas 140 cal B(IS0) (fm<sup>4</sup> MeV<sup>-1</sup>) exp(e,e') 120 Ж $(c)^{12}C+\alpha$ with 1p-1h<sup>-1</sup> 100 80 Ж 60 Ж 40 20 0 0 5 10 15 20 25 30 35 40 Excitation energy (MeV) GMR $1\alpha$ -cluster excitation



✓ 12C-α mode decouple from
 GMR: low-energy IS0 strength.
 ✓ 4α cluster gas does not decouple
 From GMR, contributes to GMR.
 Isotropic radial excitation coupling
 with collective breathing mode.

 $4\alpha$  gas & breathing mode

### sAMD+ $\alpha$ GCM

# sAMD (only 1p1h)

# **3-2. B(IS0) & B(ISD) in <sup>12</sup>C**

<sup>12</sup>C(sAMD)+GCM(3 $\alpha$ )

### sAMD+ $\alpha$ GCM for <sup>12</sup>C

<sup>12</sup>C(sAMD)+GCM(3 $\alpha$ )



VAP result contains the g.s. cluster correlation

<sup>12</sup>C(sAMD): 1p1h excitations on g.s.



Details of  $3\alpha$  mode are investigated by Y. Yoshida.

## B(IS0) of <sup>12</sup>C



## B(ISD) of <sup>12</sup>C



### general trend of IS0 and ISD



✓ Cluster modes decouple from the collective vibration mode

 $\checkmark$  Low-energy strengths appears decoupling from the GR.



 $sAMD+\alpha GCM$ 

 $rY_{1\mu}$  E1: translational mode

 $r^{3}Y_{1\mu}$  ISD: compressive mode, radial excitation sensitive to coupling with cluster mode

### B(E1) of Be isotopes obtained by sAMD calc.



### B(E1) exp. of 9Be

Photonuclear cross section v.s. sAMD+ $\alpha$ GCM calc.



### B(E1) & B(ISD) of 9Be





A1: ISD enhanced by  $\alpha$ -cluster mode A2: weak ISD, weak coupling with cluster mode

### B(E1) & B(ISD) of 9Be



B(E1) & B(ISD) of 10Be



B1: weak E1, weak coupling with cluster mode

B2: significant E1, ISD enhanced by  $\alpha$ -cluster mode

### B(E1) & B(ISD) of 10Be



B1 weak E1,

weak coupling with cluster mode



B2 significant E1, ISD enhanced by  $\alpha$ -cluster mode





# Summary

- ➤ sAMD+GCM
  - 1p1h+cluster excitations,  $J\pi$ -projections
- Monopole & Dipole excitations
- Monopole excitations in 160
- Monopole and ISD in 12C
- Dipole excitations in Be isotopes
- IS0 & ISD enhanced by coupling with cluster modes
- Low-energy excitations decoupling from GR
  - LE IS0 & ISD in 12C: cluster mode
  - LE E1 in 9,10Be: valence neutron mode
  - LE ISD in 9. 10Be: cluster mode



# Shape of quantum system



### Shape of resonance



# Bound state approximation



# 12C 0+ states (bound state approx.)



Linear chain state

- ✓ localization of amplitude large probability of linear chain cfg.
- ✓ head-on scattering large mixing of s,d,... waves





Localized distribution dominant component:

