²⁶Ne PDR Problem and Nature of PDR

M. KIMURA

Electric dipole (E1) excitation of atomic nuclei

 $\ensuremath{\textcircled{O}}$ Operator: Electric transition with $\ensuremath{\Delta}\ell=1$

$$\mathcal{M}_{\mu}(E1) = \sum_{i \in proton} r'_i Y_{1\mu}(\hat{r}'_i)$$

E1 excitation from 0+ state populates 1⁻ states

O The (reduced) probability for the population of the nth 1- state is given as

$$B(E1) = \sum_{\mu} |\langle J^{\pi} = 1_n^{-}, \mu | \mathcal{M}_{\mu}(E1) | J^{\pi} = 0^+ \rangle|^2$$

Giant Dipole Resonance (GDR)

◎ An ordinary and famous vibrational mode of atomic nuclei ◎ Protons and neutrons oscillates in the opposite phase $|\text{GDR}\rangle \propto M_{\mu}(E1)|J^{\pi} = 0^{+}\rangle = e \sum_{i \in proton} r'_{i}Y_{1\mu}(\hat{r}'_{i})|J^{\pi} = 0^{+}\rangle$ $= e \left(\frac{N}{A} \sum_{i \in proton} r_{i}Y_{1\mu}(\hat{r}_{i}) - \frac{Z}{A} \sum_{i \in neutron} r_{i}Y_{1\mu}(\hat{r}_{i})\right)|J^{\pi} = 0^{+}\rangle$

Pygmy Dipole Resonance (PDR)

A small fraction of the B(E1) strength appears at small excitation energy
 A novel type of vibration mode different from GDR

- Tightly bound inert core oscillates against the weakly bound neutrons

A.M. Lane, Ann. Phys. 63, 171 (1971) K. Ikeda, INS Report JHP-7 (1988)

© Enhancement in unstable nuclei is expected

<u>Pygmy Dipole Resonance (PDR)</u> PDR attracts much interest today.

Nuclear Physics

 \bigcirc neutron skin thickness, nuclear symmetry energy

Astrophysics

 \odot neutron star properties, supernova explosion mechanism

 \bigcirc impact on production of r-process elements

Recent researches of PDR

[©] PDR of ²⁶Ne have been studied experimentally and theoretically

© Reasonable agreement between theory and experiment for the energy and B(E1) of ²⁶Ne PDR.

Theory: QRPA calculations

Theoretical studies predict ²⁶Ne PDR at $E_x = 6 \sim 10 \text{ MeV}$ whose strength exhausts about 5~10 % of energy weighted sum

[©] PDR of ²⁶Ne have been studied experimentally and theoretically

© Reasonable agreement between theory and experiment for the energy and B(E1) of ²⁶Ne PDR.

Experiment@RIKEN

PDR of ²⁶Ne is observed at $E_x = 9$ MeV with the strength of B(E1)=0.49 [e²fm²] which exhausts 5 % of energy weighted sum

Experiment

Pb (L = 1)

 $5^{+32}_{-5}\%$

 $42\% \pm 30\%$

 $60\% \pm 17\%$

© Theory cannot explains the observed decay scheme <u>Experiment@RIKEN</u> J. Gibelin et al., PRL101, 212503 (2008).

²⁶Ne PDR does not decay to the ground state of ²⁵Ne, but decays to the excited states.

 J^{π}

 $1/2^{+}$

 $5/2^+ + 3/2^+$

 $(3/2^{-})$

Observed decay pattern of PDR

Final ²⁵Ne state

Energy (MeV)

0.0

3.3

1.7 & 2.0

Why this is a problem?

^O Theory cannot explains the observed decay scheme

QRPA calculations suggest that the $(s_{1/2})^{-1}(p_{3/2})^{1}$ is the leading configuration of PDR

 \Rightarrow PDR should dominantly decay to the g.s. of ²⁵Ne

PDR Problem

© Energy and strength of PDR are reasonably described by QRPA

O Decay pattern cannot be explained by QRPA

How the PDR problem can be solved ?

OPDR is a superposition of many configurations (collective state). Therefore, its decay pattern cannot be naively discussed by only the leading configuration of PDR.

O Decay pattern should be estimated

- $\Rightarrow Structure of PDR must be understood based on spectroscopic observables such as S-factors$
- \Rightarrow Reason for the decay to the excited states should be explained.

Research by Antisymmetrized Molecular Dynamics

Theoretical Framework

O Microscopic Hamiltonian: Gogny D1S, D1M, D1N interactions $H = \sum_{i=1}^{A} t_i - t_{c.m.} + \sum_{i<j}^{A} v_{NN}(r_{ij}) + \sum_{i<j}^{Z} v_{Coul}(r_{ij})$

O Variational wave function: Gaussian wave packets

$$\Phi^{\pi} = \frac{1 + \pi P_r}{2} \mathcal{A} \left\{ \varphi_1 \varphi_2 \dots \varphi_A \right\}$$
$$\varphi_i(\boldsymbol{r}) = \exp \left\{ -\nu_x \left(x - \boldsymbol{Z}_{ix} \right)^2 - \nu_y \left(y - \boldsymbol{Z}_{iy} \right)^2 - \nu_z \left(z - \boldsymbol{Z}_{iz} \right)^2 \right\}$$
$$\otimes \left\{ \boldsymbol{a}_i |\uparrow\rangle + \boldsymbol{b}_i |\downarrow\rangle \right\} \otimes \left\{ |n\rangle \text{ or } |p\rangle \right\}$$

Variational parameters: $\boldsymbol{Z}_1, ..., \boldsymbol{Z}_A, a_1, ..., a_A, b_1, ..., b_A, \nu_x, \nu_y, \nu_z$

Ganssian centroids spin orientation size and shape of wave packets

Theoretical Framework

^O Angular momentum projection and Superposition of the wave functions

O variational wave functions Φ^{π} are projected to the eigenstates of J and superposed to describe the ground and excited states

 P_{MK}^{J} : angular momentum projector

- $\Psi_{\alpha}^{J\pi} = \sum_{i} c_{\alpha i} P_{MK}^{J} \Phi_{i}^{\pi} \qquad \Phi_{i}^{\pi} : \text{variational wave functions with}$ different structure, configurations etc...
- O Coefficients $c_{\alpha i}$ of the wave function is determined by the diagonalization of the Hamiltonian

$$\sum_{j} (H_{ij} - E_{\alpha} N_{ij}) c_{j\alpha} = 0 \qquad \qquad H_{ij} = \langle P_{MK}^{J} \Phi_{i} | H | P_{MK'}^{J} \Phi_{j} \rangle$$
$$N_{ij} = \langle P_{MK}^{J} \Phi_{i} | P_{MK'}^{J} \Phi_{j} \rangle$$

It is essential to prepare basis wave functions Φ_i in an efficient way for the description of dipole response

OHow to prepare Φ_i ?

① Energy variation with constraint on nuclear deformation

- Minimize the energy for each given value of nuclear deformation
- Wave functions with different deformation are generated
- Efficient for the description of the low-lying states

$$E' = \frac{\langle \Phi^{\pi} | H | \Phi^{\pi} \rangle}{\langle \Phi^{\pi} | \Phi^{\pi} \rangle} + v_{\beta} \left(\frac{\langle \Phi^{\pi} | \beta | \Phi^{\pi} \rangle}{\langle \Phi^{\pi} | \Phi^{\pi} \rangle} - \beta_0 \right)^2, \quad v_{\beta} \gg 1$$

energy constraint on nuclear deformation

Imaginary time development e.q.

$$\frac{d}{d\tau}X_i = \mu \frac{\partial E'}{\partial X_i^*}, \qquad X_i \in \mathbf{Z}_1, \dots, \mathbf{Z}_A, a_1, \dots, a_A, b_1, \dots, b_A, \nu_x, \nu_y, \nu_z$$

OHow to prepare Φ_i ?

① Energy variation with constraint on nuclear deformation

OHow to prepare Φ_i ?

① Energy variation with constraint on nuclear deformation

neutron ex. (sd)⁻¹(pf)¹

Discussions: S-factor of ²⁶Ne G.S.

© Reasonable reproduction of the low-lying spectrum

© Configuration of the ground state looks OK.

Spectroscopic Factor of the ²⁶Ne g.s. $(^{25}Ne(J)|^{26}Ne(0^+))$

	$\frac{^{25}\text{Ne}(1/2^+)}{\otimes s_{1/2}}$	$\frac{^{25}\mathrm{Ne}(3/2^+)}{\otimes d_{3/2}}$	$\frac{^{25}\text{Ne}(5/2^+)}{\otimes d_{5/2}}$
Exp.	1.4	0.5	1.3
Calc.	1.1	0.5	1.4

d 5/2

OHow to prepare Φ_i ?

① Energy variation with constraint on nuclear deformation

OHow to prepare Φ_i ?

(2) Multiply dipole operator on Φ_{β} obtained by the method (1)

– Method 1 works fine for g.s. of ²⁶Ne

$$-|\mathrm{GDR}\rangle \propto M_{\mu}(E1)|J^{\pi}=0^{+}\rangle = e \sum_{i \in proton} r_{i}'Y_{1\mu}(\hat{r}_{i}')|J^{\pi}=0^{+}\rangle$$

New basis wave functions are generated $\Phi_{\Lambda,Z} = (e^{\alpha \mathcal{M}_{\mu}(E1)} - 1)\Phi_{\beta}$

$$\Delta Z = (e^{-\mu \alpha} - 1) \Psi_{\beta}$$
$$\simeq \alpha \mathcal{M}_{\mu}(E1) \Phi_{\beta} \quad \text{for } \alpha \ll 1$$

$$e^{\alpha \mathcal{M}_{\mu}(E1)} \Phi_{\beta}(\boldsymbol{Z}_{1},...,\boldsymbol{Z}_{A})$$

= $\sum_{i}^{A} \Phi_{\beta}(\boldsymbol{Z}_{1},...,\boldsymbol{Z}_{i} + \Delta Z_{i},...,\boldsymbol{Z}_{A})$
 $\Delta Z_{i} = \alpha(\tau_{z})_{i} \frac{e_{\mu}}{\nu_{\mu}}$

OHow to prepare Φ_i ?

(2) Multiply dipole operator on $\, \Phi_{\beta} \, {\rm obtained} \, {\rm by} \, {\rm the} \, {\rm method} \, (1)$

OHow to prepare Φ_i ?

Combine both methods 1 and 2

(1) Energy variation with constraint on nuclear deformation Φ_{β} (2) Multiply dipole operator on Φ_i^{π} obtained by the method $\Phi_{\Delta Z}$

K. Yoshida et al., PRC78, 014305 (2008).

1.0

Results: Sum rules

Discussions: Structure of ²⁶Ne PDR

PDR properties

- © Neutron and proton single-particle excited states exist around 5 and 10 MeV
- © Those single particle excitations are coupled with many other excited states and gain collectivity.

	Ex (MeV)	B(E1) e ² fm ²	1	A	smeared with
3 rd 1-	$7.6 { m MeV}$	0.09	0.4	$- \Phi_{\beta}$	1MeV Lorenzian
4 th 1-	8.4 MeV	0.19		$-\Delta z$ $-\Delta z$	
5^{th} 1-	8.9	0.02		neutron ex.	proton ex.
6 th 1-	$9.4 { m MeV}$	0.07	0.2	$(sd)^{1}(pf)^{-1}$	$(p)^{1}(sd)^{-1}$
B(E1)=	$=0.49\pm0.16$ [e ² fm ²	2]			
© PDR	energy is 8.5 M	eV (EXP: 9 MeV	V)		
© PDR	exhausts about 4	4% of TRK	0.0 0	5	10 15
(EX	P: 5%)			energy	[MeV]

Discussions: S-factor of ²⁶Ne PDR

		25 Ne $(g.s.)$ $\otimes p_{3/2}$	${}^{25}\mathrm{Ne}(3/2^+) \ \otimes p_{3/2}$	$\overset{25}{\otimes} p_{3/2}^{+)}$	$\frac{^{25}\text{Ne}(3/2^-)}{\otimes s_{1/2}}$	
	3 rd 1-	0.1	0.4	1.2	0.3	
	4 th 1-	0.3	0.3	1.1	0.3	
	5 th 1-	0.2	0.2	0.3	0.7	
	6 th 1-	0.1	1.1	0.2	0.5	
$\begin{bmatrix} 4 \\ 7/2^{-} \\ 3/2^{-} \\ 40\% \end{bmatrix}$			0.4	$- \Phi_{\beta}$ $- \Phi_{\Delta Z}$ $- \Phi_{\beta} + \Phi$ neutron ex	$smeared with 1MeV Lorenz \Delta z$	zian X.
excitation er	$2 \begin{vmatrix} \frac{3}{5} \\ \frac{3}{5} \end{vmatrix}$	^{/2+} /5%	0.2	(sd) ¹ (pf) ⁻¹	(p) ¹ (sd))-1
($0 \left \begin{array}{c} \frac{1}{25} \\ 25 \end{array} \right $	<u>√2+</u> ¥ ≥	0.0	0 5 en	10 ergy [MeV]	15

Discussions: Why PDR is dominated by $^{25}\mathrm{Ne}^{*}$

O PDR is a linear combination of M(E1) and M(IS1) $|GDR\rangle \simeq M(E1)|0^{+}\rangle \qquad PDR$ $|PDR\rangle \simeq \alpha M(E1)|0^{+}\rangle + \beta M(IS1)0^{+}\rangle \qquad M(IS1) = \sum_{i} r_{i}^{\prime 3} Y_{1\mu}(\hat{r}_{i})$

 \bigcirc M(IS1) involves $\Delta \ell = 2^+$ excitation of core nuclei

$$M(IS1) = \sum_{i} r_{i}^{\prime 3} Y_{1\mu}(\hat{r}_{i}^{\prime}) = \sum_{\substack{i \in ^{25}\text{Ne} \\ \hline 25}\text{Ne}} r_{i}^{3} Y_{1\mu}(\hat{r}_{i}) + \frac{5}{3A} \left(\sum_{\substack{i \in ^{25}\text{Ne} \\ \hline 25}\text{Ne}} r_{i}^{2}\right) r_{n} Y_{1\mu}(\hat{r}_{n})$$

$$\xrightarrow{r_{i}} r_{i}^{r_{2}} r_{i}^$$

Discussions: Why PDR is dominated by $^{25}\mathrm{Ne}^{*}$

◎ PDR is a linear combination of M(E1) and M(IS1) $|PDR\rangle \simeq \alpha M(E1)|0^+\rangle + \beta M(IS1)0^+\rangle$ PDR

 $\Delta \ell = 2$

 $\ensuremath{\boxtimes}$ M(IS1) involves $\Delta\ell=2^+$ excitation of core nuclei

$$M(IS1) = -\frac{4\sqrt{2\pi}}{3A} \left[\left(\sum_{i \in {}^{25}\text{Ne}} r_i^2 Y_2(\hat{r}_i) \right) \otimes r_n Y_1(\hat{r}_n) \right]_{2\mu} + \dots \right]_{2\mu}$$

$$^{25}\text{Ne quadrupole } \otimes {}^{25}\text{Ne - }n \text{ dipole}$$

$$|J^{\pi} = 0^+\rangle \qquad \qquad M(IS1)|J^{\pi} = 0^+\rangle$$

$$^{25}\text{Ne} \qquad \qquad n \text{ for }n \text{ for }n$$

 \Rightarrow [Conjecture] If PDR has IS component and the core nucleus has low-lying large B(E2), the core excitation with $\Delta \ell = 2^+$ occurs

$$\begin{bmatrix} (b) ^{25} Ne & 7/2^{+} \\ \hline 7/2^{-} & 3/2^{-} \\ \hline 7/2^{-} & 7/2^{+} \\ \hline 3/2^{-} & 7/2^{+} \\ \hline 3/2^{-} & 7/2^{+} \\ \hline 3/2^{+} & 7/2^{+} \\ \hline 7/2^{-} & 7/2^{-} \\ \hline 7/2^{-} & 7/2$$

Core excitation in ²⁶Ne PDF

Summary & Perspective

Summary

- © Campaign on monopole strengths and clusters is in progress AMD looks working well and promising
 - O Monopole strength and Clusters in ²⁴Mg, ²⁸Si
 - O IV dipole strength, PDR in ²⁶Ne

Perspective

- © Campaign on monopole strengths and clusters is in progress AMD looks working well and promising
 - O Monopole strength in the island of inversion (³⁰Ne and ³²Mg)
 - O GT response function and cluster states in ²²Ne and ²²Na