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• New decay modes: 2n radioactivity

Life on the edge of nuclear stability: Experiment 

• Shell structure revisited: Magic 
numbers disappear, other arise.

From: A.Gade

Nuclear Physics News 2013

C.R. Hoffman et al 
PRC 83, 031303

26O unbound by < 200 keV
Extremely narrow width

The list is getting bigger: Efforts in MoNA, HiRA,
TexAT,  STARLiTeR etc, all probe nuclei in the continuum.

Continuum: Positive energies, unification of structure and
reaction aspects



Fig: Bertsch,Dean,Nazarewicz, SciDAC review 2007



Shell Model Embedded in Continuum (SMEC)
• K. Bennaceur et al., Phys. Lett. 488B, 75 (2000)
• J. Okolowicz.,et al, PR 374, 271 (2003)
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• S. Quaglioni, P. Navratil PRC 79, 044606 (2009)
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Complex Energy GSM/Coupled Channels
• K. Fossez, N. Michel, M. Ploszajczak, Y. Jaganathen, R. Betan PRC 91, 034609 

(2015)

Complex Scaling Method
• T. Myo, Y. Kikuchi, H. Masui, K. Kato Prog. Part and Nucl Phys 79 (2014) 1-56
• R. Lazauskas Phys. Rev. C 91, 041001(R) (2015)
• A. Kruppa, G. Papadimitriou, W. Nazarewicz, N. Michel PRC 89 014330 (2014)

Real and Complex energy methods for structure/reactions

Continuum Coupled Cluster (Coupled Cluster in Berggren basis)
• G. Hagen et al PRL 108, 242501 -109, 032502 (2012)

Other approaches: Calculable R-Matrix   Baye, Descouvemont
Complex Energy in momentum space        Deltuva, Fonseca



Bound states

 Localized wavefunctions
 Problem is being solved very precisely or with controllable precision
 e.g. variational methods

Scattering

• Wavefunctions extend to infinity
• Complicated boundary conditions
• Singularities in momentum space

 Having acquired so much experience in the bound-state
problem solution, can we imagine solving the scattering
problem as a bound state problem?



Examples: Bound state techniques for scattering 

• Lorentz Inverse Transform

Barnea, Efros, Orlandini, Leidemann, Quaglioni, Bacca

• Momentum Lattice

Rubtsova, Kukulin

• Complex Scaling

• L2 Stabilization Techniques

Arai, Kruppa, Hazi, Pei, Nazarewicz. Basically similar to Lattice QCD way of extracting scattering info



• Bound state technique to calculate resonant parameters
and/or states in the continuum 

Prog. Part. Nucl. Phys. 74, 55 (2014) and 68, 158 (2013)  
(reviews of bound state methods by Orlandini, Leidimann-Lazauskas, Carbonell)

The complex scaling

Belongs to the category of:

• Nuttal and Cohen PR 188, 1542 (1969)
• Lazauskas and Carbonell PRC 72 034003 (2005)
• Witala and Glöckle PRC 60 024002 (1999)
• Aoyama et al PTP 116, 1 (2006)
• Horiuchi, Suzuki, Arai PRC 85, 054002 (2012)

• Myo, Kikuchi, Masui, Kato Prog.  Part. Nucl. Phys. 79 1 (2014). 
Recently: G. Papadimitriou and J.P. Vary PRC(R) 91,021001 (2015) and
PLB 746, 121 (2015)

Nuclear Physics

Chemistry
• Moiseyev Phys. Rep  302 212 (1998)
• Y. K. Ho Phys. Rep. 99 1, (1983)
• McCurdy, Rescigno PRL 41, 1364 (1978)



Complex Scaling Method in a Slater basis
A.T.Kruppa, G.Papadimitriou, W.Nazarewicz, N. Michel  PRC 89 014330 (2014)

1) Basic idea is to rotate coordinates and momenta i.e. r  reiθ, p  pe-iθ

Hamiltonian is transformed to H(θ) = U(θ)HoriginalU(θ)-1

H(θ)Ψ(θ) = ΕΨ(θ) complex eigenvalue problem

• The spectrum of H(θ) contains bound, resonances and continuum states.

The complex scaling

• It can be shown that a resonance wavefunction behaves
asymptotically as a bound state:
e.g: 



Complex Scaling with a general non-local realistic force?

Apply CS in a chiral NN force: 
• 2-body problem in relative coordinates.
• H = Trel + Vrel in HO basis
• Deuteron bound state (3S1-3D1 coupled channels) 
• Compute complex scaled matrix elements of the interaction
• Simple implementation: Shift CS transformation to the basis for the TBME

Hθ = e-2iθTrel +Vrel(θ)

 Diagonalize Hθ with your favorite diagonalization routine

Has been tried with very strong core Reid and AV18 potentials (analytical/local)
(Lazauskas, Glöckle, Witala, Horiuchi….)



 Test is successful. Bound state position does not change after rotation.
 Probably the first application of CS on a chiral potential.
 That’s all you need to create matrix elements in the lab system for other applications

G. Papadimitriou and J.P. Vary  PRC(R) 91, 021001 2015



Complex Scaling for scattering phase-shifts
(selected examples) G. Papadimitriou and J.P. Vary  PRC(R) 91, 021001 2015

G. P and J. P. Vary Phys. Lett. B 746, 121 (2015)

 Connection with continuum level density (CLD)

H(θ) is the CS interacting Hamiltonian
H0(θ) is the asymptotic Hamiltonian (kinetic energy + (Coulomb))
(Formulas based on work of Giraud, Kruppa, Arai, Kato…)

 From the CLD one could also extract resonant parameters:
CLD has peaks in the vicinity of a resonance. Use a function to determine the resonant

parameters

CS offers three different ways to obtain resonant parameters:
1) From eigenstates of Hamiltonian
2) From CLD (e.g. fit to Breit-Wigner)
3) From phase-shift via the inflection criterion

You could check with the same Hamiltonian what each ‘method’ gives

and



Entem-Machleidt (EM) fitInput non-local realistic potential

3D2 np scattering phase-shift

N=20 HO states
hw=30 MeV

Ann’ are HO basis matrix elements
φn(r) are radial HO basis 

N3LO



Compare result with results obtained
using the Busch formula for
particles in a trap at hw  0

 To extract phase shifts from nucleons in a HO trap one need
N=1800  HO  basis states to have convergence as hw  0

T. Luu et al PRC 2010

3Po np scattering phase-shift



Resonant θ-trajectory with realistic interactions 

High energy, very model dependent poles in np scattering 

G. P and J. P. Vary Phys. Lett. B 746, 121 (2015)

Determination of resonant parameters through the
θ-trajectory criterion



Back rotation in the CSM

 Even though within CSM one is able to obtain resonant states,
the radial dependence of the resonant state is not proper. 

 The wavefunction being constructed as a linear superposition
of L2 integrable basis decays asymptotically 

 Observables are calculated as: 

where For example:

 It is known that once the wavefunction is backrotated then
i) the Gamow character can be retrieved 
ii) observables can be calculated in the usual way:

where

 We will apply the backrotation for calculations of observables starting
with a schematic model



Schematic model for backrotation

Model: Two particles interacting via a local potential in 3D:

Introduced by Csótó et al PRA 71, 1990
Also used by T. Myo et al in PTP 99, 1998 and recently by D. Baye Phys.Rep 1 2015

 It supports bound states and resonances above threshold and provides a playground
for testing purposes (and learning)

CSM diagonalization
in a HO basis

H(θ) = e-2iθΤ + V(reiθ)

Ν = 30
θ = 0.35
h = c = b = 1

H = T + V(r)



Schematic model for backrotation

 Back rotate the 13 broad resonant state to obtain the Gamow
character of the state

Not good



Schematic model for backrotation

The problem of backrotation is a known problem in CSM

The solution lies in the Tikhonov regularization method 

 Now defined from (-∞,+∞)

 F.T

 Tikhonov regularization

x = -lnr   ,   y = θ

The recipe that is followed is:

Parameter κ controls the regularization



Schematic model for backrotation

For several κ the long-range behavior is different, showing an outgoing behavior initially
The state however dies-off for large r.

 We will calculate observables with this state



Schematic model for backrotation
rms radius

The complex rotated operator calculation (typical in CSM) serves as benchmark
Converged results for N=30 (θ-independence for θ > 0.25)



Schematic model for backrotation

Dipole transition  0+  1-

 i is the initial state (e.g. 0+), ν are the final CSM continuum states (e.g. 1-)

 We calculate the following:

In CSM based on the extended or Berggren completeness of the 
many-body spectrum

 More stringent test on the back rotation since we back rotate an
ensemble of states

and



Schematic model for backrotation

Results are indistinguishable which also implies that the
back rotated solutions form a complete set  



Realistic case for backrotation

• Dipole transition from the 3S1-3D1 channel to the 
continuum 3P1 channel.

Successful test of back rotation with a realistic interaction 

Preliminary



Backrotation in 6He 2+ resonant state density (CSM in a Slater basis)
Kruppa, Papadimitriou, Nazarewicz, Michel (PRC 89 (2014))

2+ first excited state in 6He

The 2+ state is a many-body resonance (outgoing wave)
 GSM exhibits naturally this behavior
 but CS is decaying for large distances, even for a resonance state

This is OK. The solution Ψ(θ) is known to “die” off (L2 function)



Solution

 Perform a direct back-rotation. 



The CS density regains the correct asymptotic
behavior

2+ densities in 6He (real and imaginary part)

 Regularization via Tikhonov method



Widths using (phenomenolodgical) R-matrix formulas

• Scattering takes place on the real-axis. Cross sections, phase-shifts are all real energy
quantities.

• With CSM we can obtain the resonant state as the complex eigenvalue of the CS Hamiltonian
but at the same time with the same method  we can compute real energy 
phase-shifts through the CS CLD. 

 The formulas one employs for the determination of resonance parameters through the phase-shift are

based on the inflection criterion:  

V0 is reduced gradually

 R-matrix inflection point formula works well for widths up to Γ~600 keV. Position in good agreement
 Going to complex energy provides an unambiguous determination of resonance parameters. 



Complex Energy Method: Gamow Shell Model

Why use different basis sets for nuclei:

 Describe nucleus of radius R with an interaction Λ using a basis

 One would need a number of basis states

 Proportionality depends on the underlying basis and efficiencies could be
gained  by using Berggren basis, Sturmian, Discrete Variable Representation  

 In the case of the Berggren basis one has access to an automatic description
of resonant and non-resonant continuum states



The Berggren completeness treats bound, 

resonant and scattering states on equal footing. 

 

Has been successfully applied in the shell 

model in the complex energy plane to light 

nuclei. For a review see  

 

N. Michel et al J. Phys. G 36, 013101 (2009). 

Physics of nuclei at the edges of stability!

Adopted from G. Hagen

The Gamow Shell Model

• Complete orthonormal basis
• Hamiltonian expressed in COSM coordinates keeping Fock space tractable
• Complex Symmetric standard eigenvalue problem AX = λX
• Any kind of interaction applicable

s.p. basis



Examples: Neutron correlations in 6He ground state (G. P et al PRC 84, 051304 2011)

 Probability of finding the particles at distance r from the core with an angle θnn

Halo tail

It contains a lot of info. Manifests the strong dineutron correlation, Implies that s.p. basis
may not be able to capture the clusterization physics.  “Infinite COSM basis” S2n ~ 500keV
Jacobi basis S2n ~ 900 keV for the same interaction
(see also Descouvemont, Daniel, Baye PRC 67 (2003), Aoyama et al PTP 93 (1995))

 It is an interesting mathematical/technical  problem
 Effective interactions eventually cure the “missing” physics.

<θ>~68 deg



Neutron correlations in 6He 2+ excited state

 2+ neutrons almost uncorrelated… 

G.P et al PRC(R) 84, 051304, 2011 



Neutron correlations in 8He ground state



ICNT 2015 Slide 42

Results: Decay Energy

E
d
e
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y
Lunderberg, et al., PRL 108, 102501 (2012).

26O unbound by < 200 keV
Extremely narrow width

Theory

Chronological time

26O: Experimental and Theoretical situation

From Z. Kohley ICNT 2015 talk

• Different theory predictions: Trace the 
discrepancy in either the
many-body technique or the Hamiltonian

 Prediction                                observation
 Many body methods nuclear Hamiltonian



Radioactivity


26O may qualify as a two-neutron emitter 

ICNT 2015 Slide 45

Radioactivity

Pfutzner et al. (2012):  T1/2 > 10-14 s  (10 fs)

- K-shell vacancy half-life of carbon atom 2 x 10-14 s

- Width ( ) is 0.03 eV, which is about room temp

Cerny & Hardy (1977): T1/2 > 10-12 s  (1ps)

IUPAC, discovery of element: T1/2 > 10-14s (10 fs)

- Around the time for nucleus to acquire outer electrons

From Z. Kohley ICNT talk



Using a 24O core and a schematic interaction study S2n-width correlation of 26O

• Large Gamow basis for p-sd orbitals
• WS basis fitted to 24O+n GSI experiment
• New experiments provide a very small width for 26O g.s. Need precise calculation of S2n

Phenomenology of 26O

~5ns



Correlations in 26O

• Asymmetry in the distributions
• Even when the system is very unbound,

neutrons show preference to be close to each other
 Hint of correlated emission of neutrons

Nuclei talk MSU 2015

 Study of correlations as a function of the S2n



6He


6He is not a neutron emitter and in the unbound regime there is

a democratic distribution of neutrons around the core. 
Different situation as compared to 26O

Nuclei talk MSU 2015

 Study of correlations as a function of the S2n



6Be

Substitute 2 neutrons with 2 protons. Bound state regime similar to 6He
Very extended proton distribution in the continuum. Protons still well correlated.

Nuclei talk MSU 2015



4H,4Li:

Expreriment: provides a g.s. and 1st excited state very close to each other
Theory:
Few attempts, e.g. 
• Bevelacqua PRC 16 1673 (1976) within the Lane-Robson

R-matrix framework. Sussex NN interaction.
• Fonseca PRC 19, 1711 4-body soluble model

• GCM by Descouvemont Phys. Rev. C 63, 027001
• Timofeyuk PRC 65, 064306 (2002)  HH expansion – Volkov type of interactions
• Lisbon, Pisa, Strasbourg,Saclay groups benchmark of 3H+n and 3He+p PRC 84, 054010

Basis:
Gamow p3/2 neutron 
states
(0p3/2 s.p. res) +
20 scattering continua.

Rest up to h-waves are H.O
States of hw= 20 MeV

NCGSM G.P et al in preparation

 Extrapolated result has an uncertainty of about +-20 keV

 Sensitivity tests to be completed



Results

Basis:
Gamow p3/2 proton
states
(0p3/2 s.p. res) +
20 scattering continua.

Rest up to h-waves are H.O
States of hw= 20 MeV

G.P et  al in preparation

 Similar trend with 4H



http://www.tunl.duke.edu/nucldata/chain/04.shtml

3H:    -7.92 MeV
3He: -7.12 MeV (for the thresholds)

Results as compared to experiment

NCGSM

4H:
2- g.s: 2.775 MeV Γ = 2650 keV
1- 1st 2.915 MeV   Γ  = 3085 keV

4Li:
2- g.s: 3.613 MeV Γ = 2724 keV
1- 1st 3.758 MeV   Γ  = 3070 keV



Results for 5H

Smaller width than 4H, maybe an indication of a longer lifetime, 
(Descouvemont made such an observation as well)
but… still sensitivity aspects to be investigated 

Experiment: ER ~ 2.3/6.3 MeV above 3H+n+n, Γ~1.3/6.3 MeV

Theory: 
• 3body model (3H+n+n) by Grigorenko, Danilin, Zhukov etc (PRC 62 014312)

ER ~2.5-3.0 MeV above threshold, Γ ~ 3-4 MeV

• GCM by Descouvemont (Phys. Rev. C 63, 027001)   ER ~ 3 MeV above threshold Γ ~1-4 MeV

Eextrp = -2.414 MeV +- 0.32 MeV

Γ~ 2000 keV



Conclusions/Future plans

 Complex scaling applied to non-local general realistic potentials
 Tests on p-n system successful. Phase-shifts calculated within an

L2 basis.
 Explore CS more, strength functions etc
 No boundary condition, HO basis (or other). Could take advantage of 

model-independent extrapolations of the HO basis (UV/IR) for resonant states.
 Use complex scaling for few-body scattering calculations and many-body 

L2 integrable basis calculations. Use together with microscopic NCSM-RGM
for cluster scattering. Non-local optical potential should be OK to treat. 

 Explore other orthonormal L2 basis beyond HO (e.g. Lagrange mesh, wavelets)

 Back rotation was tested to calculations of observables other than densities.
The back rotated state is regularized and results are in agreement with typical
treatment of observables in CSM. 

 Correlation densities for 26O show a hint of a possible scenario for 
2n-radioactivity. 

 Provide correlations of particles data for input for experiment

 Gamow basis has been applied successfully in an ab-initio GSM framework
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Back up



NCGSM for reaction observables

 NCGSM is a structure method but overlap functions can be 
assessed.

 Asymptotic normalization coefficients (ANCs) are of 
particular interest because they are observables…

(Mukhamedzanov/Kadyrov, Furnstahl/Schwenk, Jennings )

 ANCs computing difficulties: (see also K.Nollett and B. Wiringa PRC 83, 041001,2011)

1) Correct asymptotic behavior is mandatory
2) Sensitivity on S1n … 

See also Okolowicz et al Phys. Rev. C85, 064320 (2012)., for properties of ANCs

 Astrophysical interest
(see I. Thompson and F. Nunes “Nuclear Reactions for Astrophysics:…”  book)



Results: Ab-initio overlaps in the NC-GSM

• Basic ingredients of the theory of direct reactions 

Two ways of calculating the width 
a) many body diagonalization
b) from overlap function

Equivalent

(1)

The ANC is extracted by
fitting the tail of the
overlap with a Hankel function 

Γ(5He) = 311 keV

C = 0.197

and from (1)  

Calculations at a Vlow k Λ = 1.9 fm-1

G.P. et al   Phys. Rev. C 88, 044318 

Γ(5He) = 400 keV (diagonalization of H)



Results: Ab-initio overlaps in the NC-GSM

Overlap tail sensitive to
S1n

S1n (Λ = 2.1 fm-1) = -2 MeV

Γdiagonalization = 591 keV

ΓANC = 570 keV 

The width exhibits the correct
behavior

ANC (Λ = 2.1 fm-1) = 0.255 

Calculations at a Vlow k Λ = 1.9 fm-1 and 2.1 fm-1

G.P. et al   Phys. Rev. C 88, 044318 



GSM HAMILTONIAN

 We assume an alpha core in some of our calculations..

Vij usually a phenomelogical/schematic NN
interaction, and fitted to spectra
of nuclei:
Minnesota force is used, unless
otherwise indicated.

s.p. basis



Some results

2+ first excited state in 6He

The 2+ state is a many-body resonance (outgoing wave)
 GSM exhibits naturally this behavior
 but CS is decaying for large distances, even for a resonance state

This is OK. The solution Ψ(θ) is known to “die” off (L2 function)



Solution

 Perform a direct back-rotation. What is that?

In the case of the density this becomes:

Back-rotation



The CS density has the correct asymptotic
behavior (outgoing wave)

2+ densities in 6He (real and imaginary part)

• Back rotation is very unstable numerically. 
Long standing problem in the CS community (in Quantum Chemistry as well)

• The problem lies in the analytical continuation of
a square integrable function in the complex plane.

• We are using the theory of Fourier transformations and a regularization process (Tikhonov)
to minimize the ultraviolet numerical noise of the inversion process. 



Solution

Back rotation is very unstable numerically. 
Unsolved problem in the CS community (in QC as well)

The problem lies in the analytical continuation of
a square integrable function in the complex plane.

We are using the theory of Fourier transformations and
Tikhonov regularization process to obtain the original (GSM) density

To apply theory of F.T to the density, it should be defined in (-∞,+∞) 

 Now defined from (-∞,+∞)

 F.T

Value of (1) for x+iy
(analytical continuation)



 Tikhonov regularization

x = -lnr   ,   y = θ



 Similar treatment by Caprio, Vary, Maris  in Sturmian basis





Complex Scaling



Neutron correlations in 8He ground state



Neutron correlations in 6He 2+ excited state

 2+ neutrons almost uncorrelated… 

G.P et al PRC(R) 84, 051304, 2011 



When theorists agree! 

 NN force: JISP16 (A. Shirokov et al PRC79, 014610)  and 
NNLOopt (A. Ekstrom et al PRL 110, 192502)

 Quality control: Verification/Validation, cross check of codes

MFDn: Maris, Vary,…
NC-GSM: 
Papadimitriou…

Calculations are done a pure
HO basis



Dipole transition strength 3S1-3D1 
3P1  (preliminary)

 Strength function is smoothing out as in the toy model potential case. 
 Need to investigate the pattern
 The position is not changing 

JISP16 hw=40 MeV
N = 20



More applications

 A toy model for CS (Csoto et al PRA 41 3469, Myo et al PTP 99, 801)

• Simple Gaussian potential (attractive + repulsive) 
• Supports a bound 0+ g.s
• 1- excited states resonances and continua

 Study dipole transition strength from 0+  1- within CS

 i is the initial state (e.g. 0+), ν are the final continuum states (e.g. 1-)
 Tilde symbol is important: conjugation does not affect the radial parts (c-product)
 The decomposition is mathematically possible due to the Berggren completeness or

extended completeness relation (ECR)

 Decomposition of the strength function can quantify which state(s) contribute.



Decomposition of contributions to the strength function

 Contributions from resonances and continua



Convergence with rotation parameter θ

 CS serves as a smoothing procedure. Need to study dependence on θ.
Already results indistinguishable for θ=0.2, 0.3



L.B.Wang et al, PRL 93, 142501 (2004)
P.Mueller et al, PRL 99, 252501 (2007)
M. Brodeur et al, PRL 108, 052504 (2012)

6,8He charge radiiApplications 

M.Brodeur et al 

4He 6He 8He

L.B.Wang et al 1.67fm 2.054(18)fm

1.67fm

RMS charge radii

2.059(7)fm 1.959(16)fm

• Very precise data based on Isotopic Shifts measurements

But why do we care? Because of this example:

Z.-T.Lu, P.Mueller, G.Drake,W.Nörtershäuser, 

S.C. Pieper, Z.-C.Yan

Rev.Mod.Phys. 2013, 85, (2013). 

“Laser probing of neutron rich nuclei in light 

atoms”   

6He: 2n as a strong correlated pair
8He: 4n are distributed more symmetrically around the   

charged core

Other effects also…

Can we calculate and quantify these correlations?

• Stringent test to constraint or improve  the nuclear Hamiltonian

From M. Kortelainen



6He

8He

G. Papadimitriou et al PRC 84, 051304 
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Neutron correlations in 6He ground state

 Probability of finding the particles at distance r from the core with an angle θnn

Halo tail

See also I. Brida and F. Nunes NPA 847,1 and Quaglioni, Redondo, Navratil PRC 88, 034320 



Realistic two-body potentials in coordinate and momentum space (Inputs)

Repulsive core makes calculations difficult

Fig. from S. Bogner et al Prog.Part.Nucl.Phys.65:94-147,2010



Fig. from S. Bogner et al Prog.Part.Nucl.Phys.65:94-147,2010

 Need to decouple high/low momentum modes
 Achieved by Vlow-k and/or other RG approaches (e.g. SRG, UCOM, Lee-Suzuki, G-matrix…)

 Observable physics is preserved (e.g. NN phase shifts) AND
calculations become easier (work with the relevant degrees of freedom)

 One has to deal with “induced” many-body forces…





Another Complex Energy Method: Gamow Shell Model

resonant states
(bound, resonances…)

Non-resonant
Continuum
along the contour

Many-body          basis 

Hermitian Hamiltonian 

The GSM in 4 steps

iSD

iAii uuSD 1

N.Michel et.al 2002
PRL 89 042502

Hamiltonian diagonalized 

Hamiltonian matrix is built (complex symmetric):

Many body correlations and coupling
to continuum are taken into account simultaneously

T.Berggren (1968)
NP A109, 265


