Towards Optical Potentials from Coupled Cluster Calculations

J. Rotureau

<u>Collaborators</u>:

- G. Hagen
- F. Nunes
- T. Papenbrock
- P. Danielewicz

Computational Advances in Nuclear and Hadron Physics workshop, Yukawa Institute for Theoretical Physics, Kyoto, Sept-Oct 2015.

* microscopic construction of optical potentials : nucleons as degrees of freedom, modern realistic n-n, 3n forces...

* microscopic construction of optical potentials : nucleons as degrees of freedom, modern realistic n-n, 3n forces...

* predictive theory for nuclear reactions

* reliable/accurate extrapolations for systems far from stability.

Microscopic approaches for a unified description of structure and reactions

Continuum (real-energy) Shell Model H.W.Bartz et al, NPA (1977) ; R.J. Philpott, NPA (1977) ; K. Bennaceur et al, NPA(1999) ; J. Okołowicz et al PR (2003) J. R et al, PRL (2005).

$$\begin{aligned} \mathcal{Q} &= A \\ \mathcal{P} &= [A-1] \otimes 1 \\ \mathcal{T} &= [A-2] \otimes 2 \end{aligned}$$

Gamow (complex-energy) Shell Model

N. Michel et al, PRL (2002) ; N. Michel et al, JPG (2009) ; G. Hagen et al PRC (2005) ; G. Papadimitriou et al, PRC (2014); Y. Jaganathen et al JP (2012) ; K. Fossez et al PRA (2015).

No-Core Shell Model with continuum

S. Quaglioni et al PRC (2009), P Navratil et al (PRC) (2011), G. Hupin PRL (2015)

+ R-matrix, Complex scaling, Cluster-orbital Shell Model....

Single-particle Green's function

$$G(\alpha,\beta,t,t') = -\frac{i}{\hbar} \langle \Psi_0^A | \mathcal{T}[a_\alpha(t)a_\beta^{\dagger}(t')] | \Psi_0^A \rangle$$

Time ordering operator :

$$\mathcal{T}[a_{\alpha}(t)a_{\beta}^{\dagger}(t')] = \theta(t-t')a_{\alpha}(t)a_{\beta}^{\dagger}(t') - \theta(t'-t)a_{\beta}^{\dagger}(t')a_{\alpha}(t)$$

After a Fourier transformation:

$$G(\alpha, \beta, E) = \langle \Psi_0^A | a_\alpha \frac{1}{E - (H - E_0^A) + i\eta} a_\beta^\dagger | \Psi_0^A \rangle$$
$$+ \langle \Psi_0^A | a_\beta^\dagger \frac{1}{E + (E_0^A - H) - i\eta} a_\alpha | \Psi_0^A \rangle$$

 $\eta \to 0$

Single-particle Green's function

$$G(\alpha,\beta,t,t') = -\frac{i}{\hbar} \langle \Psi_0^A | \mathcal{T}[a_\alpha(t)a_\beta^{\dagger}(t')] | \Psi_0^A \rangle$$

Time ordering operator :

$$\mathcal{T}[a_{\alpha}(t)a_{\beta}^{\dagger}(t')] = \theta(t-t')a_{\alpha}(t)a_{\beta}^{\dagger}(t') - \theta(t'-t)a_{\beta}^{\dagger}(t')a_{\alpha}(t)$$

Lehman representation

$$\begin{split} G(\alpha,\beta;E) &= \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{\alpha} | \Psi_{n}^{A+1} \rangle \langle \Psi_{n}^{A+1} | a_{\beta}^{\dagger} | \Psi_{0}^{A} \rangle}{E - [E_{n}^{A+1} - E_{0}^{A}] + i\eta} \\ &+ \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{\beta}^{\dagger} | \Psi_{m}^{A-1} \rangle \langle \Psi_{m}^{A-1} | a_{\alpha} | \Psi_{0}^{A} \rangle}{E - [E_{0}^{A} - E_{m}^{A-1}] - i\eta} \end{split}$$

Connection to experimental data:

i) poles: energy of the A+1 and A-1 nuclei with respect to the g.s. of the A-nucleon system ii) spectral functions : $E \le \epsilon_F^- = E_0^A - E_0^{A-1}$

$$\begin{cases} S_{h}(\alpha; E) = \frac{1}{\pi} \text{Im } G(\alpha, \alpha; E) = \sum_{m} |\langle \Psi_{m}^{A-1} | a_{\alpha} | \Psi_{0}^{A} \rangle|^{2} \delta(E - (E_{0}^{A} - E_{m}^{A-1})) \\ S_{p}(\alpha; E) = -\frac{1}{\pi} \text{Im } G(\alpha, \alpha; E) = \sum_{n} |\langle \Psi_{n}^{A+1} | a_{\alpha}^{\dagger} | \Psi_{0}^{A} \rangle|^{2} \delta(E - (E_{n}^{A+1} - E_{0}^{A})) \\ E \ge \epsilon_{E}^{+} = E_{0}^{A+1} - E_{0}^{A} \end{cases}$$

"measure" of the correlations in nuclei as their behaviors deviate from an independent particle model

Spectroscopy with knockout reactions

(ejectile with <u>large</u> momentum **p**)

$$d\sigma \sim \sum_{n} \delta(E_{n}^{A-1} + \frac{\mathbf{p}^{2}}{2m} - E_{0}^{A} - \hbar\omega) \langle \Psi_{n}^{A-1} | a_{\mathbf{p}-\hbar\mathbf{q}} | \Psi_{0}^{A} \rangle$$
$$= S_{h}(\mathbf{p} - \hbar\mathbf{q}; \frac{\mathbf{p}^{2}}{2m} - \hbar\omega)$$

Dyson equation

Dyson equation

$$\begin{split} G(\alpha,\beta;E) &= G^{(0)}(\alpha,\beta;E) + \sum_{\gamma,\delta} G^{(0)}(\alpha,\gamma;E) \Sigma(\gamma,\delta;E) G(\delta,\beta;E) \\ & \text{self-energy = optical potential} \\ \left\{ \begin{aligned} z_n^{A-1}(r) &= \langle \Psi_n^{A-1} | a_r | \Psi_0^A \rangle \\ \xi_{E^+}^c(r) &= \langle \Psi_0^A | a_r | \Psi_{E^+}^c \rangle \end{aligned} \right\} \\ & \text{solutions of a one-body Schrödinger-like equation with the self-energy .} \end{split}$$

wave function for the elastic scattering from the g.s of the A-nucleon system

Dyson equation

Applications in Nuclear Physics :

- Self consistent Green's function : W. H. Dickhoff et al (2004), C. Barbieri et al (2009)....
- See talk by C. Barbieri during week 4 of the workshop.

Coupled Cluster Green's function

CC talks by G. Hagen and T. Papenbrock during the week 4 of the workshop.

Coupled Cluster calculations of g.s. energies and charge radii

A. Ekström et al, PRC (R) 91 (2015)

Coupled cluster (i)

Exponential ansatz for the many-body wave function :

 $|\Psi\rangle = e^T |\Phi\rangle$

G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D. J. Dean, Rep. Prog. Phys.(2014)

Similarity-transformed Hamiltonian

$$\bar{H} = e^{-T}He^{T}$$

Coupled-cluster equations

$$E = \langle \Phi | \bar{H} | \Phi \rangle$$

$$0 = \langle \Phi_i^a | \bar{H} | \Phi \rangle$$

$$0 = \langle \Phi_{ij}^{ab} | \bar{H} | \Phi \rangle$$

....

Coupled Cluster Green's function

$$\begin{split} G(\alpha,\beta;E) &= \langle \Phi_L | \bar{a}_{\alpha} \frac{1}{E - [\bar{H} - E_0^A] + i\eta} \bar{a}_{\beta}^{\dagger} | \Phi \rangle \\ &+ \langle \Phi_L | \bar{a}_{\beta}^{\dagger} \frac{1}{E - [E_0^A - \bar{H}] - i\eta} \bar{a}_{\alpha} | \Phi \rangle \\ \rightarrow \text{The first step is the resolution of CC equations to get} \qquad \text{solution of the Coupled} \\ \text{the cluster operator } T=T_1+T_2+\dots \end{split}$$

 \rightarrow Similarity-transformed operators

$$\bar{a^{\dagger}}_{\alpha} = e^{-T} a^{\dagger}_{\alpha} e^{T}$$
$$\bar{a}_{\alpha} = e^{-T} a_{\alpha} e^{T}$$

 \rightarrow Inversion of the (similarity-transformed) Hamiltonian is avoided by using the Lanczos method....

Particle spectral function

Hole spectral function

Coupled cluster with the Berggren basis

Particle spectral function with the Berggren basis

Towards Optical Potentials from Coupled Cluster Calculations

Combining the Many-body Green's function and the Coupled-Cluster method.

Ab-initio approach with n-n, 3n forces and coupling to the continuum

Microscopic construction of optical potentials