

CANHP 2015

Dynamical description of fission

Guillaume SCAMPS

Tohoku University

Collaboration : K. Hagino, D. Lacroix, C. Simenel

Lack of theoretical prediction

Lack of theoretical prediction

- Error of order of magnitudes on the life-time
- Lack of prediction for the charge/mass distribution

Prediction are necessary for :

- Astrophysics (r-process)
- Industrial applications, production of ions, reactors...

Lots of theoretical questions

- How to define the scission?
- What are the important degrees of freedom ?
- Shell effects?
- Effect of pairing? Odd-even effects?
- How the energy is split into the fragments ?

۰...

State of the art :

	Macroscopical model	
	Liquid drop	
Static	with shell correction	
	P. Moller, et al., Nature 409 (2001)	
Dynamics	Stochastic motion	
	J. Randrup, PRL 106 (2011)	

State of the art :

	Macroscopical model	Microscopical model
	Liquid drop	Mean-field theory with pairing,
Static	with shell correction	HF+BCS or HFB
		258 Fm (skm*)
	P. Moller, et al., Nature 409 (2001)	A. Staszczak, et al., PRC 80, (2009)
Dynamics	Stochastic motion	Dynamical mean-field
		TDHF+BCS
		The second secon
	J. Randrup, PRL 106 (2011)	G. Scamps, et al, PRC 92 (2015)

Adiabatic approximation

Adiabatic path

Path that minimize the energy with respect to degrees of freedom orthogonal to the elongation.

TDHF or TDHF+BCS

All the degrees of freedom are taken into account

TDHF calculation, fission of ²⁶⁴Fm

C. Simenel and A. S. Umar, Phys. Rev. C 89, 031601(R), 2014

The adiabaticity approximation is assumed for the barrier crossing but is known to break down before scission.

TDHF calculation, fission of ²⁶⁴Fm

C. Simenel and A. S. Umar, Phys. Rev. C 89, 031601(R), 2014 The adiabaticity is not assume in the TDHF evolution

TDHF calculation, fission of ²⁶⁴Fm

Conclusion

Total Kinetic energy = 241 MeV Excitation energy = $E^*_{\rm adiabatic}$ + $E^*_{\rm TDHF}$ = 34 MeV

Mean-field theory with pairing

TDHF

- Independent particle
- Initialisation : $\hat{h}_{MF} \ket{\phi_i} = \epsilon_i \ket{\phi_i}$
- Evolution : $i\hbar \frac{d\rho}{dt} = [h_{MF}, \rho]$

TDHFB

- Pairing correlation
- Quasi-particles : $|\omega_{\alpha}\rangle = \begin{pmatrix} U_{\alpha} \\ V_{\alpha} \end{pmatrix}$
- Evolution : $i\hbar \frac{d|\omega_{\alpha}\rangle}{dt} = \begin{pmatrix} h & \Delta \\ -\Delta^* & -h^* \end{pmatrix} |\omega_{\alpha}\rangle$

TDHF+BCS

• Based on TDHFB with the approximation : $\Delta_{ij} = \delta_{ij} \Delta_i$

• Evolution :
$$i\hbar \frac{d\phi_i}{dt} = (\hat{h}_{MF} - \epsilon_i)\phi_i$$

 $i\hbar \frac{dn_i}{dt} = \Delta_i^* \kappa_i - \Delta_i \kappa_i^*$
 $i\hbar \frac{d\kappa_i}{dt} = \kappa_i (\epsilon_i - \epsilon_i) + \Delta_i (2n_i - 1)$

Inconvenient of the BCS approximation

- gaz problem
- continuity equation

Inconvenient of the BCS approximation

- gaz problem
- continuity equation

Limitation of the TDHF+BCS and TDHFB

- $\bullet\,$ no mixing of states -> classical trajectory
- no Bohr term in the evolution -> lack of dissipation
- 3 and more correlation are neglected
- Fluctuation of the number of particles > projection is needed

Inconvenient of the BCS approximation

- gaz problem
- continuity equation

Limitation of the TDHF+BCS and TDHFB

- no mixing of states -> classical trajectory
- no Bohr term in the evolution -> lack of dissipation
- 3 and more correlation are neglected
- Fluctuation of the number of particles > projection is needed

Strategy

The computational time saved by using the BCS approximation can be used to go beyond the TDHFB approach.

Inconvenient of the BCS approximation

- gaz problem
- continuity equation

Limitation of the TDHF+BCS and TDHFB

- $\bullet\,$ no mixing of states -> classical trajectory
- no Bohr term in the evolution -> lack of dissipation
- 3 and more correlation are neglected
- Fluctuation of the number of particles > projection is needed

Strategy

The computational time saved by using the BCS approximation can be used to go beyond the TDHFB approach.

Exemple

- -Stochastic TDHF+BCS,
- -Time dependent projected BCS,
- -Time dependent density matrix,
- -Time dependent multi-particles multi-holes,
- -TDQRPA.

Giant Dipole resonance

Giant Quadrupole resonance

Guillaume SCAMPS

Dynamical description of fission

TDHF+BCS has an exploratory method : transfer reaction

G. Scamps, D. Lacroix, PRC 87, 014605 (2013)

Guillaume SCAMPS

TDHF+BCS has an exploratory method : transfer reaction

 ${}^{46}Ca + {}^{40}Ca$

G. Scamps, D. Lacroix, PRC 87, 014605 (2013)

Guillaume SCAMPS

Why does we need pairing?

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

Why does we need pairing?

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

Why does we need pairing?

TDHF **TDHF+BCS**

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

Guillaume SCAMPS

Influence of pairing on fission process

Influence of pairing on fission process

²⁵⁸Fm : Experimental results

FIG. 8. Mass distributions obtained by sorting fission events according to their total kinetic energies: (a) for events with TKE's < 220 MeV and (b) for those with TKE's ≥ 220 MeV.

Guillaume SCAMPS

Dynamical description of fission

²⁵⁸Fm : Bimodal or trimodal fission ?

3 possible modes

• Symmetric compact fragment

 Asymmetric elongated fragment

• Symmetric elongated fragment

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

3 possible modes

• Symmetric compact fragment

 Asymmetric elongated fragment

• Symmetric elongated fragment

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

3 possible modes

• Symmetric compact fragment

 Asymmetric elongated fragment

• Symmetric elongated fragment

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

Sly4d

Guillaume SCAMPS

3 possible modes

• Symmetric compact fragment

 Asymmetric elongated fragment

• Symmetric elongated fragment

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

Sly4d

Guillaume SCAMPS

3 possible modes

• Symmetric compact fragment

 Asymmetric elongated fragment

• Symmetric elongated fragment

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

3 possible modes

• Symmetric compact fragment

 Asymmetric elongated fragment

• Symmetric elongated fragment

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

3 possible modes

• Symmetric compact fragment

 Asymmetric elongated fragment

• Symmetric elongated fragment

G. Scamps, C. Simenel, D. Lacroix, PRC 92 (2015)

Distribution of number of particles

Projection technique

 $\begin{array}{l} \mbox{Proba} \ (\mbox{N part. on the left}) = \langle \Psi | \hat{P}_{left}(N) | \Psi \rangle \\ \mbox{TDHF}: \mbox{C. Simenel, PRL 105 (2010)} \\ \mbox{TDHF+BCS}: \mbox{G. Scamps and D. Lacroix, PRC 87, 014605 (2013)} \end{array}$

Conclusion

Reproduction of the odd-even effect with $\mathsf{TDHF}{+}\mathsf{BCS}$

Distribution of number of particles

Systematic comparison for actinide

Conclusion

 \rightarrow Good reproduction of the Z ${\simeq}54$ "magic" number

Lack of fluctuation with time-dependent mean field

TDHF with Balian-Vénéroni variational principle

TDHF with Balian-Vénéroni variational principle

Conclusion

BV provides the fluctuations for the scission process Need initial fluctuations (second part of the talk)

Conclusion TDHF+BCS

Conclusion

- Good reproduction of the total kinetic energy
- Important effect of pairing on fission process (J. W. Negele, et al. (1978))
- Reproduction of the even-odd effects
- Reproduction of the Z \simeq 54 behavior
- Fluctuation obtained with Balian-Vénéroni method (for TDHF)

Prospects

- Finite temperature calculation
- Description of the evaporation
- Study of the collective excitation after the scission

Outlooks

Time-dependent generator coordinate method (TDGCM)

Time dependent Hill-Wheeler

$$|\Psi(t)
angle = \int d\mathbf{q} f(\mathbf{q},t) |\mathbf{q}
angle$$

$$i\hbar \frac{\partial}{\partial t}g(i,j,t) = \sum_{k,l} H_{ij,kl}g(k,l,t)$$

H. Goutte Phys. Rev. C 71, 024316 (2005).

Dynamical description of tunneling effect

Aim of the study

Description of the fission dynamics under the barrier in a schematic model

Observables of interest

- Life-time
- Fluctuations after the barrier

Can we describe the tunneling process with Time-dependent theory?

Schematic model

CAP method

Complex absorbing potential method

With

$$W(R) = W_0 \Theta(R - R_a)(R - R_a)^2$$

Numerical solution

Iterative method

• Euler :

$$|\Psi(t+\delta t)
angle = (1-rac{i\delta t}{\hbar}H')|\Psi(t)
angle$$

- Rundge-Kutta
- Crank-Nicholson :

$$|\Psi(t+\delta t)
angle = rac{1-rac{i\delta t}{2\hbar}H'}{1+rac{i\delta t}{2\hbar}H'}|\Psi(t)
angle$$

Numerical solution

Iterative method

• Euler :

$$|\Psi(t+\delta t)
angle = (1-rac{i\delta t}{\hbar}H')|\Psi(t)
angle$$

- Rundge-Kutta
- Crank-Nicholson :

$$|\Psi(t+\delta t)
angle = rac{1-rac{i\delta t}{2\hbar}H'}{1+rac{i\delta t}{2\hbar}H'}|\Psi(t)
angle$$

Δx Δx Δx Δx Δx Δx Δt Δt Δt

Problem

 $\delta t \ll {\rm fission}$ life-time

Determination of the life-time

Integration of the equation

$$|\Psi(t)
angle=e^{-rac{i}{\hbar}t\hat{H}'}|\Psi_0
angle,$$

Hamiltonian eigenfunction basis :

$$H'|\varphi_i'\rangle = E_i|\varphi_i'\rangle$$
 and $\langle \varphi_i'|H' = E_i\langle \varphi_i'|.$

Closure relation :

$$|\varphi_i^r\rangle\langle\varphi_i^l|=1$$

Simple evolution :

$$|\Psi(t)
angle = \sum_{i} e^{-rac{i}{\hbar} t E_{i}} |arphi_{i}^{\prime}
angle \langle arphi_{i}^{\prime}|\Psi_{0}
angle$$

Complex energy

Evolution :

$$|\Psi(t)
angle = \sum_{i} e^{-rac{i}{\hbar}t \mathcal{E}_{i}} |arphi_{i}^{r}
angle \langle arphi_{i}^{l} |\Psi_{0}
angle$$

$$N(t) = \sum_{i} |\langle arphi_{i}^{i} | \Psi_{0}
angle|^{2} e^{-rac{2 \mathrm{Im}(E_{i})}{\hbar}}$$

Resonance state associated with the complex energy :

$$H'|\varphi_i^r\rangle = (E_i^r + i\frac{\Gamma}{2})|\varphi_i^r\rangle$$

 $\boldsymbol{\Gamma}$: width of the resonance

Dynamic

Decay

Dynamic

Decay

Dynamic

Dynamic

Comparaison of fission path

Sub-barrier dynamics

G. Scamps, K. Hagino, Phys. Rev. C 91, 044606 (2015).

Guillaume SCAMPS

Realistic microscopic calculation, ²⁵⁸Fm

Collective hamiltonian

Conclusion

Conclusion

- Method to study very long tunneling processes
- Good agreement with the semi-classical theory

Prospect

• Application to realistic calculations

Thank you