Jet evolution in a dense QCD medium

Edmond Iancu IPhT Saclay & CNRS

recent work with J.-P. Blaizot, F. Dominguez, Y. Mehtar-Tani, B. Wu

Jet quenching in heavy ion collisions

- Hard processes in QCD typically create pairs of partons which propagate back-to-back in the transverse plane
- In the vacuum (pp collision), this leads to a pair of symmetric jets
- In a dense medium (AA collision), the two jets can be differently affected by their interactions with the medium: 'di-jet asymmetry'

• The ensemble of medium-induced modifications: 'jet quenching'

Di-jets in p+p collisions at the LHC

Di-jet asymmetry (ATLAS)

- Central Pb+Pb: 'mono-jet' events
- The secondary jet cannot be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV

Di-jet asymmetry at the LHC (CMS)

- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Compare to the typical scale in the medium: $T \sim 1$ GeV (average p_{\perp})
- A remarkable pattern for the energy loss:

many soft ($p_{\perp} < 2$ GeV) hadrons propagating at large angles

A challenge for the theorists

- Can one understand these data from first principles (QCD) ?
 - how gets the energy transmitted from the leading particle to these many soft quanta ?
 - do these soft quanta thermalize ? is the medium locally heated ?
 - is all that consistent with weak coupling ?
- Very different from the branching pattern for a jet in the vacuum

• bremsstrahlung

$$\mathrm{d}\mathcal{P} = \frac{\alpha_s C_R}{\pi} \, \frac{\mathrm{d}x}{x} \, \frac{\mathrm{d}k_\perp^2}{k_\perp^2}$$

A challenge for the theorists

- Can one understand these data from first principles (QCD) ?
 - how gets the energy transmitted from the leading particle to these many soft quanta ?
 - do these soft quanta thermalize ? is the medium locally heated ?
 - is all that consistent with weak coupling ?
- Very different from the branching pattern for a jet in the vacuum

• bremsstrahlung

$$\mathrm{d}\mathcal{P} = \frac{\alpha_s C_R}{\pi} \, \frac{\mathrm{d}x}{x} \, \frac{\mathrm{d}\theta^2}{\theta^2}$$

• soft & collinear splittings

A challenge for the theorists

- Can one understand these data from first principles (QCD) ?
 - how gets the energy transmitted from the leading particle to these many soft quanta ?
 - do these soft quanta thermalize ? is the medium locally heated ?
 - is all that consistent with weak coupling ?
- Very different from the branching pattern for a jet in the vacuum

- multiple branching: DGLAP
- angular ordering (destructive interferences)
- energy remains within a narrow jet
- most energy carried by a few partons with large \boldsymbol{x}

Jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

Jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

• ... and via collisions off the medium constituents

Jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

- ... and via collisions off the medium constituents
- A priori, two mechanisms for radiation:
 - triggered by the virtuality of the LP ('vacuum-like')
 - triggered by collisions ('medium-induced')

• So far, no unified description of both mechanisms (different approxs.)

Medium-induced jet evolution

- The two types of radiation are geometrically separated
 - vacuum-like: small emission angles
 - medium-induced: large angles
- The di-jet asymmetry is controlled by medium-induced radiation

Medium-induced jet evolution

- The two types of radiation are geometrically separated
 - vacuum-like: small emission angles
 - medium-induced: large angles
- The di-jet asymmetry is controlled by medium-induced radiation

• From now on: focus on the evolution which is triggered by collisions

- elastic collisions $2 \rightarrow 2$: energy-momentum transfer
- inelastic collisions $2 \rightarrow 3$: medium-induced branchings

Kinetic theory for medium-induced jet evolution

• At weak coupling, this can be encoded into a kinetic equation : Baier, Mueller, Schiff, Son '01 ('bottom-up'); Arnold, Moore, Yaffe, '03

$$\left(rac{\partial}{\partial t} + oldsymbol{v} \cdot
abla_{oldsymbol{x}}
ight) f(t,oldsymbol{x},oldsymbol{p}) \,=\, \mathcal{C}_{ ext{el}}[f] + \mathcal{C}_{ ext{br}}[f]$$

- $f(t, \boldsymbol{x}, \boldsymbol{p})$ gluon phase–space occupation number
- gluons dominate the cascade at high energies
- Rather natural for the elastic collisions: large mean free path

$$\lambda_{\mathrm{m.f.p.}} \sim \frac{1}{lpha_s^2 T \ln(1/lpha_s)} \gg t_{\mathrm{coll}} \sim \frac{1}{gT}$$

- Less obvious (but correct) for the branchings: Markovian process
 - successive emissions could interfere with each other
 - color coherence between daughter gluons is washed out by rescattering

Blaizot, Dominguez, E.I., Mehtar-Tani (2012–13)

Elastic collisions

The usual Boltzmann collision term adapted to QCD

• 'Gain' and 'loss' terms: the gluon p is the one which is measured

$$\mathcal{C}_{\rm el}[f] = \int_{\boldsymbol{p}',\boldsymbol{k},\boldsymbol{k}'} \frac{|\mathcal{M}|^2}{(2p)(2p')(2k)(2k')} \Phi[f]$$

 $\frac{\partial}{\partial q} - q$

 $-\Phi[f] = f_{\mathbf{p}}f_{\mathbf{p}'}[1+f_{\mathbf{k}}][1+f_{\mathbf{k}'}] - f_{\mathbf{k}}f_{\mathbf{k}'}[1+f_{\mathbf{p}}][1+f_{\mathbf{p}'}]$

- 5 conserved quantities: particle number and the 4-momentum
- Detailed balance \implies local thermal equilibrium: $C_{el}[f_{loc}] = 0$

$$f_{\rm eq}(p) = \frac{1}{{\rm e}^{\beta(p-\mu)}-1} \ \to \ f_{\rm loc}(x, p) = \frac{1}{{\rm e}^{\beta(x)[p-p\cdot u(x)-\mu(x)]}-1}$$

Test particles (elastic collisions only)

- The jet particles are relatively hard to start with: $p_z \gg T$
- Energy loss ('drag') & momentum broadening ('diffusion')

• Jet quenching parameter: squared momentum transfer per unit time

$$\hat{q}\simeq rac{m_D^2}{\lambda}\sim lpha_s^2 T^3 \ln rac{1}{lpha_s}$$

- The medium is in thermal equilibrium \Rightarrow Einstein relation: $\hat{q} = 4T\eta$
- Eventually, a test particle thermalizes: $f_p \propto {
 m e}^{-p/T}$

Test particles (elastic collisions only)

- The jet particles are relatively hard to start with: $p_z \gg T$
- Energy loss ('drag') & momentum broadening ('diffusion')

• first, it loses most of its energy via drag, over a time $t_{
m drag}(p_0)$

$$t_{
m drag}(p_0) \simeq \frac{p_0}{\eta} = \frac{4p_0T}{\hat{q}}$$

• then, it approaches a thermal distribution, over an additional time $t_{
m rel}$

$$t_{
m rel} \equiv rac{4T^2}{\hat{q}} \sim rac{1}{lpha_s^2 T \ln(1/lpha_s)}$$

Test particles (elastic collisions only)

- The jet particles are relatively hard to start with: $p_z \gg T$
- Small angle scattering \implies Langevin (or Fokker-Planck) dynamics
- Energy loss ('drag') & momentum broadening ('diffusion')

- first, it loses most of its energy via drag, over a time $t_{
 m drag}(p_0)$ $t_{
 m drag}(p_0) \simeq \frac{p_0}{\eta} = \frac{4p_0T}{\hat{q}} = \frac{p_0}{T} t_{
 m rel} \gg t_{
 m rel}$
- $\bullet\,$ then, it approaches a thermal distribution, over an additional time $t_{\rm rel}$
- Overall duration controlled by the 1st stage: collisional energy loss

Inelastic collisions: Medium-induced branchings

• The prototype: $2 \rightarrow 3$ (single scattering)

- 'Gain' recombination; 'loss' recombination
- Particle number is obviously not conserved
- Fixed point: zero chemical potential: $f_{\text{loc}}(x, p) = \frac{1}{e^{\beta(x)[p-p \cdot u(x)]} 1}$

CANHP 2015, YITP, Kyoto

Jets in a dense QCD medium

12 / 31

Inelastic collisions: Medium-induced branchings

• The prototype: $2 \rightarrow 3$ (single scattering)

- Formally, suppressed by α_s compared to elastic collisions
- Actually, enhanced by the would-be mass-shell singularity of the intermediate gluon (in the limit of a soft momentum transfer $q \rightarrow 0$)
- Cured by resummation of multiple soft scattering (coherent emission)
 - Landau-Pomeranchuk-Migdal effect in QCD
 - \bullet dominated by small $q \Longrightarrow \mathsf{quasi-collinear}$ splitting

'BDMPSZ' : Baier, Dokshitzer, Mueller, Peigné, Schiff; Zakharov (96-97) Aurenche, Gelis, Moore, and Zaraket '02; Arnold, Moore, Yaffe, '03

Multiple scattering

- Important when formation time $t_{
 m f}$ is larger than mean free path λ
- $t_{\rm f}$: quantum mechanical duration of a gluon emission

$$t_{\rm f} \simeq rac{1}{\Delta E} \simeq rac{x(1-x)p}{k_{\perp}^2}$$

• large when $k_{\perp} \rightarrow 0$

• k_{\perp} cannot be arbitrarily small: it accumulates via collisions

$$k_{\perp}^2 \simeq \hat{q} t_{\rm f} \Longrightarrow t_{\rm f}(x,p) \simeq \sqrt{\frac{x(1-x)p}{\hat{q}}}$$

• The BDMPSZ branching rate:

$$rac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t} = rac{lpha_s}{\pi} rac{P_{g
ightarrow g}(x)}{t_{\mathrm{f}}(x,p)} \simeq rac{lpha_s N_c}{\pi} \sqrt{rac{\hat{q}}{p}} rac{1}{[x(1-x)]^{3/2}}$$

Democratic branchings

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t} \,=\, \frac{1}{t_{\mathrm{br}}(p)} \frac{1}{[x(1-x)]^{3/2}}\,, \qquad t_{\mathrm{br}}(p) \,\equiv\, \frac{1}{\bar{\alpha}}\,\sqrt{\frac{p}{\hat{q}}}$$

• Probability $\Delta \mathcal{P}$ for a branching with $x \geq x_0$ to occur during Δt

• Δt can be arbitrarily small if $x_0 \ll 1$: prompt soft emissions

• $\Delta t \sim t_{\rm br}(p)$ if $x_0 \sim \mathcal{O}(1)$: democratic branching

Democratic branchings

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t} \,=\, \frac{1}{t_{\mathrm{br}}(p)} \frac{1}{[x(1-x)]^{3/2}}\,, \qquad t_{\mathrm{br}}(p) \,\equiv\, \frac{1}{\bar{\alpha}}\,\sqrt{\frac{p}{\hat{q}}}$$

• Probability $\Delta \mathcal{P}$ for a branching with $x \geq x_0$ to occur during Δt

• At early times $\Delta t \ll t_{\rm br}(p)$: asymmetric splittings ($x \ll 1$)

• When $\Delta t \sim t_{
m br}(p)$, the particle disappears via a democratic branching

Democratic branchings

$$\frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}t} \,=\, \frac{1}{t_{\mathrm{br}}(p)} \frac{1}{[x(1-x)]^{3/2}}\,, \qquad t_{\mathrm{br}}(p) \,\equiv\, \frac{1}{\bar{\alpha}}\,\sqrt{\frac{p}{\hat{q}}}$$

• Probability $\Delta \mathcal{P}$ for a branching with $x \geq x_0$ to occur during Δt

$$\Delta \mathcal{P} \sim \frac{\Delta t}{\sqrt{x_0} t_{
m br}(p)}$$

 $\Delta \mathcal{P} \sim 1$ when :

$$\Delta t \simeq \sqrt{x_0} t_{\rm br}(p)$$

- The daughter gluons are softer, so they disappear even faster
- $t_{\rm br}(p)\simeq$ the lifetime of the democratic cascade initiated by p

Hard gluons: only branchings

• Recall: a gluon would lose its energy p via drag after a time $t_{\rm drag}(p)$

- thermalization effects are irrelevant for the hard gluons
- Kinetic equation with branchings alone
 - energy flow within the democratic cascade
- Time evolution of the gluon spectrum: $D(p,t) \equiv p \frac{\mathrm{d}N}{\mathrm{d}p}$

$$\frac{\partial}{\partial t}D(p,t) = \frac{1}{t_{\rm br}(E)} \int \frac{\mathrm{d}x}{[x(1-x)]^{\frac{3}{2}}} \left[\sqrt{x}D\left(\frac{p}{x},t\right) - \frac{1}{2}D(p,t)\right]$$

$$p/x \cos \cos \cos \frac{p}{2} \qquad p \cos \cos \cos \frac{p}{2} \qquad p \cos \cos \cos \frac{p}{2} \qquad (1-x)p$$

Hard gluons: only branchings

• Recall: a gluon would lose its energy p via drag after a time $t_{\rm drag}(p)$

- thermalization effects are irrelevant for the hard gluons
- Kinetic equation with branchings alone
 - energy flow within the democratic cascade
- Time evolution of the gluon spectrum: $D(p,t) \equiv p \frac{dN}{dp}$

$$\frac{\partial}{\partial t}D(p,t) \,=\, \frac{1}{t_{\rm br}(E)}\int \frac{\mathrm{d}x}{\left[x(1-x)\right]^{\frac{3}{2}}}\left[\sqrt{x}\,D\left(\frac{p}{x},t\right) - \frac{1}{2}D(p,t)\right]$$

- Linear equation: 'gain' 'loss', but no recombinations
 - $\bullet\,$ gluon occupation numbers are small when $p\gg T$
- Initial condition: $D(p, t = 0) = E\delta(p E)$

- J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)
 - Exact analytic solution:

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{p}{E}, \ \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• Scaling spectrum at small x (Kolmogorov-Zakharov spectrum)

$$D(x,\tau) \simeq \frac{\tau}{\sqrt{x}} e^{-\pi\tau^2} \quad \text{for } x \ll 1$$

- Turbulent fixed point for the branching collision term
 - energy flux is independent of x (that is, of the parton generation)
 - the very definition of weak (linear) turbulence

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Exact analytic solution:

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{p}{E}, \quad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• Early times $t \ll t_{\rm br}(E)$: the broadening of the leading particle

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Exact analytic solution:

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{p}{E}, \quad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• Early times $t \ll t_{\rm br}(E)$: the broadening of the leading particle

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Exact analytic solution:

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{p}{E}, \quad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• When $t \sim t_{\rm br}(E)$, the LP disappears via democratic branching

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Exact analytic solution:

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{p}{E}, \quad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• Later times $t \gtrsim t_{\rm br}(E)$: the spectrum is suppressed at any x

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Exact analytic solution:

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{p}{E}, \quad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• The energy accumulates at x = 0: 'condensate'

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• Exact analytic solution:

$$D(x,\tau) = \frac{\tau}{\sqrt{x}(1-x)^{3/2}} e^{-\pi \frac{\tau^2}{1-x}}, \qquad x \equiv \frac{p}{E}, \quad \tau \equiv \frac{t}{t_{\rm br}(E)}$$

• Medium treated as a 'perfect sink' : instantaneous thermalization

Elastic collisions + branchings

- For the soft gluons with $p \lesssim T$, elastic collisions become essential
- The dynamics is correctly encoded in the complete kinetic equation

$$\left(rac{\partial}{\partial t} + oldsymbol{v} \cdot
abla_{oldsymbol{x}}
ight) f(t,oldsymbol{x},oldsymbol{p}) \,=\, \mathcal{C}_{ ext{el}}[f] + \mathcal{C}_{ ext{br}}[f]$$

- But this seems too complicated, even for numerical studies (?)
- So far, numerical solutions only for homogeneous situations
 - QGP thermalization starting with CGC initial conditions
 - formation of a Bose-Einstein condensate

Huang and Liao (2013); Kurkela and Lu (2014); Kurkela and Zhu (2015)

• The jet problem is further complicated by its strong inhomogeneity

$$f(t=0, \boldsymbol{x}, \boldsymbol{p}) = \frac{(2\pi)^3}{2(N_c^2 - 1)} \,\delta^{(3)}(\boldsymbol{x}) \,\delta(p_z - E) \,\delta^{(2)}(\boldsymbol{p}_{\perp})$$

A longitudinal kinetic equation

- (E.I. and Bin Wu, arXiv:1506.07871, to appear in JHEP)
 - A tractable equation can be obtained for the longitudinal dynamics

$$\begin{split} \left(\frac{\partial}{\partial t} + v_z \frac{\partial}{\partial z}\right) f(t, z, p_z) &= \frac{\hat{q}}{4} \frac{\partial}{\partial p_z} \left[\left(\frac{\partial}{\partial p_z} + \frac{v_z}{T}\right) f \right] \\ &+ \frac{1}{t_{\rm br}(p_z)} \int_{p_*} \frac{\mathrm{d}x}{[x(1-x)]^{\frac{3}{2}}} \left[\frac{1}{\sqrt{x}} f\left(\frac{p_z}{x}\right) - \frac{1}{2} f(p_z) \right] \end{split}$$

- Strictly correct when $p \gg T$
- Recombinations modeled by an IR cutoff on branchings: $p_* \sim T$
- This captures the right time scales to parametric accuracy
- Physical picture:
 - hard gluons $(p_0 \gg T)$ first degrade their energy via democratic branchings, down to $p \sim T$, then thermalize via elastic collisions

The steady source approximation

- The branching process \approx a source of gluons with $p=p_{\ast}$
- The Fokker-Planck equation in D = 1 + 1 can be solved exactly

• A front $\propto \delta(t-z)$: gluons with $T \lesssim p < p_*$

• gluons recently injected that had no time to thermalize

CANHP 2015, YITP, Kyoto

The steady source approximation

- The branching process \approx a source of gluons with $p=p_{\ast}$
- The Fokker-Planck equation in D = 1 + 1 can be solved exactly

• A tail at $z \lesssim t - t_{
m rel}$: $f_p \propto {
m e}^{-|p|/T}$

• gluons in thermal equilibrium with the medium

Numerical studies of the full dynamics (1)

- Numerical solutions to the longitudinal kinetic equation
- $\bullet~$ Parameters: $T=0.5\,{\rm GeV}$, $t_{\rm rel}=1\,{\rm fm}$, $E~=~90\,T$, $t_{\rm br}(E)\simeq 9.5\,{\rm fm}$

• $t = 0.1 t_{\rm br}(E) \simeq 1$ fm is representative for the 'leading jet' at the LHC

- $t = 0.3 t_{\rm br}(E) \simeq 3$ fm : the 'subleading jet' (partially quenched)
- With increasing time, the jet substructure is softening and broadening

Numerical studies of the full dynamics (1)

- Numerical solutions to the longitudinal kinetic equation
- $\bullet~$ Parameters: $T=0.5\,{\rm GeV}$, $t_{\rm rel}=1\,{\rm fm}$, $E~=~90\,T$, $t_{\rm br}(E)\simeq 9.5\,{\rm fm}$

• $t = 0.3 t_{\rm br}(E) \simeq 3 \, {\rm fm}$

- the LP peak still visible around $\boldsymbol{p}=\boldsymbol{E}$
- a second peak emerges near p = T (branchings)
- this second peak develops a thermalized tail at z < t (collisions)

Jets in a dense QCD medium

21 / 31

Numerical studies of the full dynamics (2)

• $t = t_{\rm br}(E)$: the leading particle disappears (democratic branching)

Numerical studies of the full dynamics (2)

• $t = 1.5 t_{\rm br}(E) \simeq 15$ fm : very large medium (almost fully quenched)

The late stages: thermalizing a mini-jet

- At late times $t \gg t_{\rm br}(E)$, the jet is fully quenched
 - no trace of the leading particle, just a thermalized tail
 - the emergence of hydrodynamics : spatial diffusion

Conclusions

- A simple, yet detailed, 2-step, picture for jet quenching from pQCD
 - copious production of 'mini-jets' via democratic branchings
 - $\bullet\,$ thermalization of the soft branching products with $p\sim T$
- Characteristic, 'front + tail', structure of the (partially) quenched jet
 - 'front' : the leading particle, but also soft gluons radiated at late times
 - 'tail' : soft partons in local thermal equilibrium with the medium
- Energy loss by the jet towards the medium is identified as the energy carried by the thermalized tail.
- Many approximations, need for more detailed/precise studies: coupled evolution of jet + medium in D= 1 + 3 + 3
- Well defined problem, but one definitely needs better calculations

Energy distribution

• Left: *z*-distribution of the energy density $\varepsilon(t, z) = \int dp |p| f(t, z, p)$

- even for $t = t_{br}(E)$, most of the energy is still carried by the front ...
- but the respective 'front' is mostly made with soft gluons $(p \sim T)$
- branching products which did not yet have the time to thermalize
- $\bullet\,$ a thermalized tail is clearly visible at z < t

Energy distribution

- Left: *z*-distribution of the energy density $\varepsilon(t, z) = \int dp |p| f(t, z, p)$
- Right: *p*-distribution near the front: f(t, z, p) for z = t
 - scaling window at $t \ll t_{\rm br}(E)$: $p^{3/2}f \approx {\rm const.} \implies$ wave turbulence
 - for $t\gtrsim 0.5\,t_{\rm br}(E)$, some pile-up is visible around p=T
 - thermalization is efficient but certainly not instantaneous

Energy loss towards the medium

• Upper curves: E = 90 T; lower curves: E = 25 T

- $\Delta E_{\rm ther}$: the energy carried by the thermalized tail $(t z \ge t_{\rm rel})$
- $\Delta E_{\rm flow} = \nu \omega_{\rm br}(t) \propto t^2$ with $\nu \simeq 4.96$: the energy carried away by the turbulent flow (ideal branching process)

CANHP 2015, YITP, Kyoto

Energy loss towards the medium

• Upper curves: E = 90 T; lower curves: E = 25 T

- The energy carried by the thermalized tail is ...
 - somewhat smaller than the 'flow' energy: medium is not a 'perfect sink'

• ... but still substantial: $6 \div 20 \text{ GeV}$ for $L = 3 \div 6 \text{ fm}$

CANHP 2015, YITP, Kyoto

Di-jet asymmetry : $A_{\rm J}$ (CMS)

 Event fraction as a function of the di-jet energy imbalance in p+p (a) and Pb+Pb (b-f) collisions for different bins of centrality

$$A_{\rm J} = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})$$

• N.B. A pronounced asymmetry already in the p+p collisions !

Energy imbalance @ large angles: R = 0.8

• In-Cone : $E_{\text{Lead}}^{\text{in}} > E_{\text{SubLead}}^{\text{in}}$: di-jet asymmetry, hard particles • Out-of-Cone : $E_{\text{Lead}}^{\text{out}} < E_{\text{SubLead}}^{\text{out}}$: soft hadrons @ large angles

An exact solution to the 1-D FP equation

• The Green's function for ultrarelativistic FP in D=1+1+1

$$\left(\frac{\partial}{\partial t} + v\frac{\partial}{\partial z}\right)f = \frac{\hat{q}}{4}\frac{\partial}{\partial p}\left(\frac{\partial}{\partial p} + \frac{v}{T}\right)f, \quad f(t=0,z,p) = \delta(z)\delta(p-p_0)$$

$$f(t,z,p>0) = \frac{e^{-\frac{p_0-p}{2}-\frac{t}{4}}}{2\sqrt{\pi t}} \left[e^{-\frac{(p-p_0)^2}{4t}} - e^{-\frac{(p+p_0)^2}{4t}} \right] \delta(t-z)$$

$$+ \frac{\mathrm{e}^{-\frac{(p+p_0-z)^2}{4t}-p}}{8\sqrt{\pi}t^{5/2}} \left[t(t+2) - (p+p_0-z)^2\right] \times \\ \times \operatorname{erfc}\left(\frac{1}{2}\sqrt{t-\frac{z^2}{t}}\left(\frac{p+p_0}{t+z}-1\right)\right)$$

+
$$\frac{(t+z)(p+p_0+t-z)}{4\pi t^2 \sqrt{t^2-z^2}} e^{-\frac{(p+p_0)^2}{2(t+z)} + \frac{p_0-p}{2} - \frac{t}{4}}$$

Limiting behaviors

• Physics transparent at both small and large times: $t_{
m drag}(p_0) = \frac{p_0}{T} t_{
m rel}$

• small times: $t_{\rm rel} \lesssim t \ll t_{
m drag}(p_0)$

$$f(t,z,p) \propto e^{-\frac{(p-\langle p(t) \rangle)^2}{\hat{q}t}} \delta(t-z)$$

$$\langle p(t) \rangle = p_0 - \frac{t}{t_{\rm rel}} T$$

- energy loss & diffusion
- large times: $t > t_{
 m drag}(p_0) \gg t_{
 m rel}$

$$f \simeq e^{-\frac{|p|}{T}} \exp\left\{-\frac{\left(z - (p_0/T)t_{\rm rel}\right)^2}{4tt_{\rm rel}}\right\}$$

• equilibrium & spatial diffusion

• plots:
$$p_0=5T$$
, $t_1=t_{
m rel}$, $t_2=20t_{
m rel}$

CANHP 2015, YITP, Kyoto

Formation time & emission angle

$$t_{
m f}(\omega)\simeq \sqrt{rac{\omega}{\hat{q}}} \qquad \& \qquad heta_{
m f}(\omega)\simeq \; rac{\sqrt{\hat{q}t_{
m f}}}{\omega}\sim \left(rac{\hat{q}}{\omega^3}
ight)^{1/4}$$

This mechanism applies so long as

 $\lambda \ll t_{\rm f}(\omega) \leq L \implies T \ll \omega \leq \omega_c \equiv \hat{q}L^2$

• Soft gluons : short formation times & large emission angles

• The emission angle keeps increasing with time, via rescattering

CANHP 2015, YITP, Kyoto

Formation time & emission angle

$$t_{
m f}(\omega)\simeq \sqrt{rac{\omega}{\hat{q}}}$$
 & & $heta_{
m f}(\omega)\simeq ~rac{\sqrt{\hat{q}t_{
m f}}}{\omega}\sim \left(rac{\hat{q}}{\omega^3}
ight)^{1/4}$

This mechanism applies so long as

 $\lambda \ll t_{\rm f}(\omega) \leq L \implies T \ll \omega \leq \omega_c \equiv \hat{q}L^2$

• Soft gluons : short formation times & large emission angles

• Emissions can effectively be treated as collinear

CANHP 2015, YITP, Kyoto