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Heavy ion collision at the LHC
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Stages of a nucleus-nucleus collision

freeze out

hadrons — kinetic theory

gluons & quarks in eq.
viscous hydro
gluons & quarks out of eq.

strong fields — classical dynamics

Z
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Stages of a nucleus-nucleus collision

freeze out

hadrons — kinetic theory

gluons & quarks in eq.
viscous hydro
gluons & quarks out of eq.

strong fields — classical dynamics

Z

o Well described as a nearly ideal fluid expanding into vacuum
according to relativistic hydrodynamics J
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What is hydrodynamics?

e Hydrodynamics is a macroscopic description based on
energy-momentum conservation :

3, T* =0

True in any quantum field theory
Not closed : 4 equations, 10 independent components in THY
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o Additional assumption : at macroscopic scales, T*" is
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What is hydrodynamics?

Francois Gelis

Hydrodynamics is a macroscopic description based on
energy-momentum conservation :

0, T =0

True in any quantum field theory
Not closed : 4 equations, 10 independent components in THY

Additional assumption : at macroscopic scales, T is
expressible in terms of € (energy density), P (pressure) and u*
(fluid velocity field)

For a frictionless fluid : T4, = (e + P)u*u¥ — P g*¥
Ingeneral : T =T @ VWY @ ((Voul) @ - -

TTHV = deviation from ideal fluid

Microscopic inputs : € = f(P) (EoS), 1, (, - - - (transport coeff.)
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Conditions for hydrodynamics

o The difference between P, and P, should not be too large
(for the expansion to make sense)

e The ratio 1/s should be very small (fits require /s ~ 0.1)
(for an efficient transfer from spatial to momentum anisotropy)
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AP /P,

+1
Pre-Hydro
/| time
>
Ty
Hydro

GOAL : smooth matching to Hydrodynamics

-1 e The pre-hydro model should bring the system to a

situation that hydrodynamics can handle

e Pre-hydro and hydro should agree over some range of
time = no 1o dependence
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Color Glass Condensate
in Heavy lon Collisions



Parton distributions in a nucleon

H1 and ZEUS
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Parton distributions in a nucleon

H1 and ZEUS

Q*=10 GeV?

Large x : dilute, dominated by single parton scattering

model uncert.

- parametrization uncert.
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Parton distributions in a nucleon

H1 and ZEUS

Q*=10 GeV?

Small x : dénse, multi-parton interactions become likely

model uncert.

- parametrization uncert.
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Degrees of freedom  [McLerran, Venugopalan (1994)]
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Yobs +y proj

° 'PZL - Q§ - /\QCD e Yproj—y) , Pz~ Qs €Y Yobs
e Fast partons : frozen dynamics, negligible p, = classical sources
e Slow partons : evolve with time = gauge fields
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Degrees of freedom  [McLerran, Venugopalan (1994)]

fields sources

Yoos +YCut +Ypr0j

it ropo

LI Wipl
-7FUE, +A, 3¢

2 2 AYproj— =
o p? ~Q%~ /\QCD e Yproj—y) , Pz~ Qs €Y Yobs

e Fast partons : frozen dynamics, negligible p, = classical sources

e Slow partons : evolve with time = gauge fields
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Cancellation of the cutoff dependence

fields sources

Yeu from
the loops

Yobs +ycu[ +Ypmj
Jt=p "
[p]

‘\yplm = Yeut

e The cutoff y.u is arbitrary and should not affect the result
e The probability density Wp] changes with the cutoff
e | oop corrections cancel the cutoff dependence from W/p]
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B-JIMWLK evolution equation

[Jalilian-Marian, Kovner, Leonidov, Weigert (1998)]
[Balitsky (1996)] [lancu, Leonidov, McLerran (2001)]

B-JIMWLK equation at Leading Log

L N A
Y 2z, 5, 80X T S0 (T )

H  (JIMWLK Hamiltonian)

W, lo]

e Mean field approx. (BK equation) : [Kovchegov (1999)]
e Langevin form of B-JIMWLK : [Blaizot, lancu, Weigert (2003)]
o First numerical solution : [Rummukainen, Weigert (2004)]
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B-JIMWLK evolution equation

[Jalilian-Marian, Kovner, Leonidov, Weigert (1998)]
[Balitsky (1996)] [lancu, Leonidov, McLerran (2001)]

B-JIMWI" Recent developments :
Running coupling correction
[Lappi, Mantysaari (2012)]

B-JIMWLK equation at Next to Leading Log

[Kovner, Lublinsky, Mulian (2013)]
¢ Me| [Caron-Huot (2013)][Balitsky, Chirilli (2013)]

e Langevin form of B-JIMWLK : [Blaizot, lancu, Weigert (2003)]
o First numerical solution : [Rummukainen, Weigert (2004)]
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Power counting in the saturated regime

1 . L
$=—; JFWF“VJFJ(H =I5 )AL
e S

slow gluons fast partons

In the saturated regime: J* ~ g~

—2 _# of external gluons g2>< (# of loops)

g

¢ No dependence on the number of sources J*
> infinite number of graphs at each order in g2

Example : expansion of T"" in powers of 92

1
T‘W~? Cco +¢Cq 92+C294+"'}

<
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Inclusive observables at Leading Order

[FG, Venugopalan (2006)]

e The Leading Order is the sum of all the tree diagrams

Expressible in terms of classical solutions of Yang-Mills
equations :
DI =7 +J3

e Boundary conditions : 0lim AH(x) =0

XY ——00

(WARNING : this is not true for exclusive observables!)

Components of the energy-momentum tensor at LO :

= SlE B T = e

class. fields

TH = % [E* + B?] — [E'E) + B'B/]
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CGC at LO : unsatisfactory matching to hydrodynamics

+1

AP /P,

CGC

TN LO time
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Competition between Expansion and Isotropization

e CGC at LO is very close to free streaming
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Does it get better at
Next-to-Leading Order?



CGC at NLO : instabilities

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,
Moore (2003), Rebhan, Romatschke, Strickland (2005), Arnold, Lenaghan,
Moore, Yaffe (2005), Romatschke, Rebhan (2006), Bodeker, Rummukainen
(2007), Fuijii, ltakura (2008),...,Attems, Rebhan, Strickland (2012),

Fukushima (2013)]
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CGC at NLO : instabilities

[Mrowczynski (1988), Romatschke, Strickland (2003), Arnold, Lenaghan,

 [NLO

+1

AP /P,
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Beyond NLO :

Classical Statistical
Approximation



Improved power counting and resummation

Loop ~ ¢* , Small perturbation ~ evV*®

()

e 1loop:
(gev"™)?

I,(u,v) v
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Improved power counting and resummation

Loop ~ ¢* , Small perturbation ~ evV*®

()

e 1loop:
(gev"™)?

e 2 disconnected loops :

(geVF™)*
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Improved power counting and resummation

Loop~g®> ,  Small perturbation ~ eV** J

T(x)
e 1loop:
(gev")?

e 2 disconnected loops :
(gevVFT)*

L3(u,v,w) e 2 entangled loops :
g(geV"™)* > subleading

Leading terms
¢ All disconnected loops to all orders
> exponentiation of the 1-loop result
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Classical Statistical Approximation (CSA)

T = Mg 3 T o g R oo
—_——— —
in full partially
1 — v
= J[Da] exp | — iJa(u)l}](u,v)a(v) T2 [Ainit + al

u,v

e The exponentiation of the 1-loop result collects all the terms with
the worst time behavior

e Equivalent to Gaussian fluctuations of the initial field
+ classical time evolution

¢ Note: This is the Wigner distribution of a coherent state
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CSA in Quantum Mechanics
¢ Von Neumann equation for the density operator :

00r .. o~
a7 — ¢ ]

Wigner transform :
_ ip-s S |~ S
W.(x,p) = |dse <x+§|pT|x72>

H(x,p) = st es (x + %]ﬁ|x = %> (classical Hamiltonian)

Moyal equation (equivalent to Von Neumann) :

oW-
0T

= H(x,p) 4 sin (7( 0p0x — 0x0p )) W:(x,Pp)

{3, W} +OR%)

Poisson bracket

Classical time evolution < O(R’) error
O(R') corrections come from the initial condition
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CSA in Quantum Field Theory (I)

R
B

o
o

Amplitude : G,, G (Amplitude)* : G
+

e

e From the Schwinger-Keldysh formalism, define new fields as:
b1 =2(by + ) b2=by — b

o Vertices: ¢idp>  ¢i1d3  (odd termsin ¢, only)
e ¢, encodes quantum interferences
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CSA in Quantum Field Theory (ll)

CSA : drop the vertex ¢ ¢3
e No ¢¢3 vertex = classical time evolution
o Differences with the original QFT start appearing at 2 loops
e Equivalent to classical runs averaged over the initial conditions

Ensemble of initial classical fields

e This approximation does not specify the initial fields: controlled
by the observable under consideration (e.g. (Oi|T*¥|0in))

e Initial 2-point correlations encoded in G1;. Generically:
1 2
G () ~ (fo(p) + ) 8(p7)
quasiparticles < <— vacuum zero point fluctuations

e The 1/2 generates the 1-loop quantum corrections
e Dropping the 1/2 : nothing quantum left
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CSA, . : vacuum fluctuations perturbed by CGC background

[Epelbaum, FG (2013)]
CGCat v < Q;' (1-loop accurate)

(AMy=Al Var. =] J ax(w)ag(v)
modes k

[mepsg — DD +1g ff,ﬂ] al =0

ik-x

lim akg(x)=e

x0——00
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CSA, . : vacuum fluctuations perturbed by CGC background

[Epelbaum, FG (2013)]

CGCat v < Q;' (1-loop accurate)

Var — ! [ ax(1)ai ()

B\ _ K
<‘A > - ‘ALO’
E
pPsV
[, D°8)
lim ax(¥
X 0 ——00
-
CGCatTt=0"
(A)~ Qlg . (E) ~ Q¥g
(AD~ Q@ (E?), ~Q*
&
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CSA,.c : vacuum fluctuations perturbed by CGC background

g=05

T [fm/c]
0.01 0.1 1 2 3 4

+1

12
13

0.1

Qs

e Nearly constant P, /P, for Qst 2 2
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CSApari : particles only, no quantum fluctuations
[Berges, Boguslavski, Schlichting, Venugopalan (2013)]

Dense gas of free gluons

(A")=0  Var.= J fo(k) ax(Wag(v)  ak(x) = e

modes k

fo(k) ~ (n0/g?) x 8(Q — /K3 + & k2)

BBSV : E
A, (B)=0
(A2~ QY (E?) ~ QY

CGCatT=0
(A) ~ Qg (B) ~ Q%
(AD~ Q% (BB, ~Q*
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CSApari : particles only, no quantum fluctuations

Same result for all g’s

1
P ~ L . .
= o, [nitial occupancy: 3 Initial anisotropy: { 1
o v ng=1 &,=1 (isotropic)
<
Q
2
°
2]
c
<
4
=
o
0.1
100 Time: Qt 1000

o Self-similar evolution with scaling laws consistent with the
analysis of Baier, Mueller, Schiff, Son (2002) :

P —2/3

T

f(t,pi,pz) ~T 22 £ (Ppu, Tt ?p,)
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Lessons from
Kinetic Theory



CSA in Kinetic Theory

e Boltzmann equation for the elastic process 12 — 34 :

1
0+f1 = w— J 5(4)(])] +P2—P3—P4) ‘M]2,34|2 |:f3f4(]+f] )(]+fz)—f1fz(1+f3)(1+f4):|
1
23,4

e Kinetic analogue of CSA: : keep only the cubic terms in f

f3fa(14+f1)(1+f2) —f1f2(1+F3)(1+Fa) —  f3fa(fi +F2) — Fif2(f3 4+ fa)

¢ Kinetic analogue of CSA, . : from the cubic terms, do f — f + %

f3fa(1+ F1)(1+F2) = f1f2(0 +f3)(V+Fa)  — (3 +F3)(5 +fa) (1 + 1 +f2)
—(3 + )L +£2) (1 +f3 + f4)

¢ The Boltzmann equation can be used to assess the effect of
these two approximations by comparing their solutions with that
of the unapproximated equation
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UV cutoff dependence of CSA, ..
[Berges, Boguslavski, Schlichting, Venugopalan (2013)]
[Epelbaum, FG, Tanji, Wu (2014)]
e CSA 4 is a nonrenormalizable approximation of the original QFT

e Dependence on the UV cutoff. Can also be seen in kinetic theory
T

Wwp — 1

e At late times, f(p) = — % but T and 1 depend on A,

10000

1000 | |41 / Q from Kin. Theo. s
T/ Q from Kin. Theo.

100 | [u]/Q from CSA[BBSV] m
T/Q from CSA [BBSV] .

0.1 |

0.01

1 10 100
Ay/Q
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UV cutoff dependence of CSA, ..
[Berges, Boguslavski, Schlichting, Venugopalan (2013)]
[Epelbaum, FG, Tanji, Wu (2014)]
e CSA 4 is a nonrenormalizable approximation of the original QFT

e Dependence on the UV cutoff. Can also be seen in kinetic theory
T 1

e Strong cutoff dependence if A, > physical scales
o Mild sensitivity if A, ~[3—6] x (physical scales)

s
T/ Q from Kin. Theo.

100 | [u]/Q from CSA[BBSV] m

T/Q from CSA [BBSV]

0.1 |

0.01
1 10 100

Ay/Q
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CSA,ari - misses large angle scatterings in anisotropic systems
[Epelbaum, FG, Jeon, Moore, Wu (2015)]
e Kinetic version of CSAp;t :

o0cfs ~ ¢ o [Frfa(fs + f4) — f3fa(f1 + £2)]
123 4 .- [frir—_fsfa]
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CSA,ari - misses large angle scatterings in anisotropic systems

[Epelbaum, FG, Jeon, Moore, Wu (2015)]
e Kinetic version of CSAp;t :

i dfs ~ 94J--~[+rrz+fg+h-)—fg-m—h—c»—fﬁ]
123 4 .- [frir—_fsfa]

’./ % o |f the distribution becomes very anisotropic,
7 trying to produce the particle 4 at large angle
results in f3 =~ f4 =~ 0 = nothing left

[

e The same argument applies also to any
inelastic n — n’ scattering

The CSA without vacuum fluctuations underestimates large angle
scatterings when the distribution is anisotropic, and may lead to
wrong conclusions regarding isotropization
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CSA,ari - misses large angle scatterings in anisotropic systems

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

e |nitial conditions:

D E— N

—_— fo(k) = (no/g%) B8(Q — 4/K2 + &0 k2) | H=]
N———

fo

e Kinetic CSAps independent of g*

3 01k e Kinetic CSApt leads to a universal
classical attractor

w

&
<
(QT)'ZB
classical -
0.01 | g
The
. I R . L

sca 1 2 3 45678 10 20 30 4050 102
WIro QT
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CSA,ari - misses large angle scatterings in anisotropic systems

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

e Kinetic version of CSAp;t :

o
e Unapproximated kinetic evolution
3 01l depends on g2
< e Gives a very different P, /P,
=
(QT)'ZB
classical -
full : g2 = 100 ==
0.01
The
sca 1 2 3 45678 10 20 30 4050 102
WIro QT
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CSA,ari - misses large angle scatterings in anisotropic systems

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

e Kinetic version of CSAp;t :

o
e Unapproximated kinetic evolution
3 01l depends on g2
< e Gives a very different P, /P,
* Q2B e Stays close to CSA; for larger ©
classical = as g” decreases
full : g2 = 100 ==
0.01 |- D e
The
sca 1 2 3 4 5678 10 20 30 40 50 102
Wwro QT
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CSA,ari - misses large angle scatterings in anisotropic systems

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

e Kinetic version of CSAp;t :

3A 0.1
3
&
<
(Quy23
classical -
full : g2 = 100 ==
0.01 H S
7 -
The
. I R . L
sca 1 2 3 45678 10 20 30 4050 102
WIro QT
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CSA,ari - misses large angle scatterings in anisotropic systems

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

e Kinetic version of CSAp;t :

To=7[n/sleq=1.2

M

¥ 0.1 i
3
& 100 250,
E e ._‘—2-
(Quy2?
classical -
full : g2 = 100 ==
0.01 | S
7 -
1.4 w=
Classical-attractor
The
I [ R I L
sca 1 2 3 45678 10 20 30 4050 102
WIro QT
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CSA,ari - misses large angle scatterings in anisotropic systems

[Epelbaum, FG, Jeon, Moore, Wu (2015)]

e Kinetic version of CSAp;t :

|
s With quantum fluctuations:
'd o1 goes to classical attractor b
5 only when /s — oo
QU
classical -
full : g2 = 100 ==
0.01 H o
7 -
1.4 we
The 0.35 ==
sca 1 2 3 45678 10 20 30 4050 102
Wro QT
October 2015
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Kinetic theory results for gluons [Kurkela, Zhu (2015)]

| IIIIL|,|,| | IIII|_|,|,I_|:

—

[a W
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[a W

l

[=¥

=

e ==

Z ]

< 10 <
1
0. 0.1

Occupancy: <pAf>/<p>
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Summary



Summary

e LO : no pressure isotropization, NLO : instabilities
e Resummation beyond NLO : Classical statistical approximation

¢ Two implementations... and two different results :

° CSAvaC .
roughly constant P, /P,
non-renormalizable approximation, very sensitive to UV cutoff

° CSApan .
universal classical attractor, P, /P, decreases forever,
underestimates large angle scatterings,
breaks long before reaching the attractor even for quite large n/s

¢ In the present situation, classical field simulations need to be
corroborated and validated by other approaches

e Highly needed : ways to overcome the problems of the classical
statistical approximation (Kinetic theory, 2-Pl,...)
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