# **Correlations & Fluctuations in Large & Small Systems**

the last part into the

## Huichao Song

宋慧超 Peking University

<u>mini-symposium on "Computational Physics</u> <u>for High-Energy Heavy-Ion Collisions"</u>

> YITP Kyoto Japan, Oct 5, 2015

Oct. 6, 2015





**Dynamical Modeling for Relativistic Heavy Ion Collisions** 

Hydrodynamics & its hybrid model-QGP viscosity-initial state flucutations. &<br/>final state correlations-Collective flow in small systemsDynamical modeling near the QCD<br/>critical point

-Correlated fluctuations



# Hydrodynamics & its Hybrid Model

# Viscous Hydrodynamics

$$\partial_{\mu} T^{\mu\nu}(x) = 0$$
  

$$\tau_{\pi} \Delta^{\alpha\mu} \Delta^{\beta\nu} \dot{\pi}_{\alpha\beta} + \pi^{\mu\nu} = 2\eta \,\sigma^{\mu\nu} - \frac{1}{2} \pi^{\mu\nu} \frac{\eta T}{\tau_{\pi}} \partial_{\lambda} \left( \frac{\tau_{\pi}}{\eta T} u^{\lambda} \right)$$
  

$$\tau_{\Pi} \dot{\Pi} + \Pi = -\zeta (\partial \cdot u) - \frac{1}{2} \Pi \frac{\zeta T}{\tau_{\Pi}} \partial_{\lambda} \left( \frac{\tau_{\Pi}}{\zeta T} u^{\lambda} \right)$$
  
Net baryon density: Frankfurt (2014), BNL(2015)  
Heat conductivity: Mcgill ... on-going work

#### 2<sup>nd</sup> order viscous hydro (I-S)

-2+1-d: OSU, INT, Stony Brook, Pudue, Calcutta (2008), Crakow, Frankfurt(2010) ... -3+1-d: Mcgill(2011), MSU(2012), Crakow(20 Nagoya(2013), Frankfurt(2013) .....

#### Anisotropic hydrodynamics

Frankfurt(2010), Cracow(2012), Kent,OSU (2013)

**Hydrodynamics with thermal fluctuations** Sophia (2014)



# Viscous Hydro + Hadron Cascade Hybrid Model



# Event-by-event hydrodynamics

Single shot simulations: smoothed initial conditions (before 2010) <u>E-b-E simulations</u>: fluctuating initial conditions (since 2010)



# QGP viscosity from flow data

## VISHNU hybrid model & QGP viscosity



-Main uncertainties come from initial conditions

-Other uncertainties (much smaller)

-Initial flow, bulk viscosity, single shot vs. e-b-e calculations (each of them shift V<sub>2</sub> by a few percent, partial cancellation among them)

# V<sub>2</sub> and QGP viscosity at the LHC



The average QGP viscosity is roughly the same at RHIC and LHC Please also refer to C. Gale, et al., ArXiv: 1209.5330 [nucl-th]

# LHC: spectra for identified hadrons

Song, Bass & Heinz, PRC 2014



# Spectra of Strange & Multi-strange Hadrons



-a nice fit of spectra for Lambda, Xi, and Omega

# $V_2(p_T)$ for pions, kaons & protons at LHC



A very nice fit of V<sub>2</sub>(P<sub>T</sub>) for all centrality bins at LHC from VISHNU hybrid model

# V2 of Strange & Multi-strange Hadrons

Zhu, Meng, Song, Liu PRC 2015



-Nice descriptions of Lambda, Xi and Omega V2 at various centralities

# Chemical & Thermal freeze-out at the LHC

## Chemical freeze-out for various hadrons



Zhu, Meng, Song, Liu PRC 2015

-Earlier Chemical freeze-out of Xi and Omega!

-Different hadrons may have different effective chemical freeze-out temperature

## Thermal freeze-out of various hadrons



Zhu, Meng, Song, Liu PRC 2015

-thermal freeze-out time distributions widely spread for various hadrons

-Earlier thermal freezeout of Xi and Omega!

Please also refer to S. Takeuchi, et.al, arXiv: 1505.05961 [nucl-th]

# **EbE-Simulations**

### -Initial state fluctuations and final state correlations



# Initialization & Pre-equilibrium

- -fluctuations of nucleon positions: MC-Glauber, MC-KLN
- -fluctuations of color charges (in the framework of CGC):
  - **IP-Glasma:** B. Schenke et al., Phys.Rev. C85, 024901 (2012).
  - Correlated Fluctuation: B. Muller & A. Schafer, Phys.Rev. D85,114030 (2012).
- -fluctuations of local gluon numbers (in the famework of MC-KLN):
  - Multiplicity fluctuations: A. Dumitru and Y. Nara, Phys. Rev. C 85, 034907 (2012).
- -Pre-equilibriums:
  - URQMD initialization: H.Petersen & M. Bleicher, Phys. Rev. C81, 044906, (2010).
    AMPT initialization: L. Pang, Q.Wang & X.Wang, Phys.Rev. C86, 024911(2012).
    EPOS/NEXUS initialization: K. Werner et al., Phys. Rev. C83:044915, (2011).

•••••

#### The Success of IP-Glasma + MUSIC





-IP-Glasma: sub-nucleonic color fluctuations + CYM dynamics -nice descriptions of integrated and differential Vn



-In hydrodynamics,  $P(V_n)$  follows  $P(\mathcal{E}_n)$ 

-A nice description of  $P(V_n)$  with IP-Glasma initialization

# $\mathcal{E}_n$ & V<sub>n</sub> distributions (MC-Glauber vs. MC-KLN)



-Neither MC-Glauber nor MC-KLN works for all centralities

# More flow observables

# Extracting $\eta/s$ from V<sub>n</sub> in ultra-central collisions



-In most central collisions, fluctuation effects are dominant (Geometry effects are suppressed)

-can not simultaneously fit V<sub>2</sub> and V<sub>3</sub> with single  $\eta/s$  (MC-Glauber & MC-KLN)

# Ultracentral Collisions: bulk visc. & NN correlations



-MC-Glauber & MC-KLN: can not simultaneously fit V2 and V3

-IP+Glasma + NN correlations + bulk viscosity nicely reproduces Vn in ultra-central collisions

# Higher Order Event Plane Correlations

#### Qiu & Heinz, PLB(2012)



-qualitatively reproduce the measured event plane correlations

#### Vm Correlations via cumulants



Symmetric 2-harmonic 4-particle Cumulants, SC(m,n)  $SC(m,n) = \langle v_m^2 v_n^2 \rangle - \langle v_m^2 \rangle \langle v_n^2 \rangle$ 

#### Vm correlations via cumulants



-provide strong constraint on  $\eta/s(T)$ 

# V2, V3, V4 for identified hadrons

#### N. Mohammadi, QM2015 talk



# V2, V3, V4 for identified hadrons

#### N. Mohammadi, QM2015 talk



Mass ordering of higher flow harmonics: interaction between radial & anisotropic flow

# Massive Data evaluation

### Exp Observables

- particle yields
- spectra
- elliptic flow
- triangular flow & higher order flow harmonics
- event by event Vn distributions
- higher-order event plane correlations

## **Theoretical Inputs:**

- type of initial conditions
- initial flow
- starting time
- EoS
- shear viscosity
- bulk viscosity
- relaxation times
- freeze-out/switching cond.



# Massive data evaluation

Early CHIMERA Results (Comprehensive Heavy Ion Model Evaluation and Reporting Algorithm)





An extension to 6-dimentional parameter space, please refer to MSU-DUKE collaboration, arXiv: 1303.5769, Bernhard, QM2015 Poster

# Fluctuations and Correlations in smaller systems

# -p+Pb collisions at 5 TeV

Pb+Pb





## Collective flow -- Experimental Observations



# Collective flow? -- Hydrodynamics Simulations



# Correlations from initial state



<u>Where dose the correlations (collective flow) in 5.02 TeV</u> <u>p-Pb collisions come from?</u>

- -Initial State?
- -QGP ?
- -Hadronic matter?

# UrQMD Baseline Calculations

Zhou, Zhu, Li, Song, PRC 2015

Assumption: p-Pb collisions only produce hadronic systems without reach the thresh hold of the QGP formation



## V2 mass ordering in p+Pb collisions at 5.02 TeV



V2 mass ordering is produced by UrQMD, similar to the ALICE data

## Hadronic interactions & v2 mass ordering



-Hadronic interaction can generate a mass ordering for 2- particle correlations -Additive quark model: different M-M M-B cross-sections Fluctuations and Correlations in even smaller systems

-p+p collisions at 13 TeV



## Correlations and flow in 13 TeV p+p



# Correlations and flow in 13 TeV p+p (from CMS)



# Fluctuations and correlations --more small systems at RHIC





## Fluctuations and Correlations in small systems



Many many related flow measurements for different small colliding system,

- -What is the solid flow signal?
- -Why hydrodynamics work well for such small system

# Correlated fluctuations near the QCD critical point



#### **Initial State Fluctuations**

-QGP fireball evolutions smearout the initial fluctuations -uncorrelated (in general)

#### **Fluctuations near the critical point**

-dramatically increase near Tc -Strongly correlated

## **STAR BES:** Cumulant ratios





# **Theoretical predictions on critical fluctuations**

**Stephanov PRL 2009** 

$$P[\sigma] \sim \exp\{-\Omega[\sigma]/T\}, \qquad \Omega = \int d^3x \left[\frac{1}{2}(\nabla\sigma)^2 + \frac{m_\sigma^2}{2}\sigma^2 + \frac{\lambda_3}{3}\sigma^3 + \frac{\lambda_4}{4}\sigma^4 + \cdots\right]$$
$$\langle \sigma_0^2 \rangle = \frac{T}{V}\xi^2 \qquad \langle \sigma_0^3 \rangle = \frac{2\lambda_3 T}{V}\xi^6; \qquad \langle \sigma_0^4 \rangle_c = \frac{6T}{V}[2(\lambda_3\xi)^2 - \lambda_4]\xi^8.$$



At critical point:  $\xi \sim \infty$  (infinite medium) Finite size & finite evolution time:  $\xi < O(2-3fm)$ It is important to address the effects from dynamical evolutions Dynamical Modeling near the QCD critical point

# Chiral Hydrodynamics (I)

#### K. Paech, H. Stocker and A. Dumitru, PRC2003

$$L = \overline{q}[i\gamma - g(\sigma + i\gamma_5\tau\pi)]q + \frac{1}{2}[\partial_{\mu}\sigma\partial^{\mu}\sigma + \partial_{\mu}\pi\partial^{\mu}\pi] - U(\sigma,\pi)$$

$$\int_{\alpha} \partial_{\mu} \partial^{\mu} \sigma + \frac{\partial U_{eff}}{\partial \sigma} + g < \overline{q}q >= 0$$
  
$$\partial_{\mu} T^{\mu\nu}_{fluid} = S^{\nu} \qquad S^{\nu} = -(\partial^{2}u + \frac{\partial U_{eff}}{\partial u})\partial^{\nu} \sigma$$

the order of the phase transition is in charged by the coupling g.

#### $\sigma$ <u>order parameter</u>

quark & anti-quark is treated as the heat bath (fluid), which interact with the chiral field via effective mass  $g\sigma$ 



# Chiral Hydrodynamics (II)



-Chiral fluid dynamics with dissipation & noise Nahrgang, et al., PRC 2011 -Chiral fluid dynamics with a Polyakov loop (PNJL)

Herold, et al., PRC 2013



From dynamical evolution to experimental observables, it is important to properly treat the freeze-out procedure with external field

Jiang, Li & Song in preparation

# Correlated fluctuations along the freeze-out surface near T<sub>c</sub>

-theoretical models

## Particle emissions near Tc with external field



Jiang, Li & Song in preparation

Particle emissions in traditional hydro

$$E\frac{dN}{d^3p} = \int_{\Sigma} \frac{p_{\mu}d\sigma^{\mu}}{2\pi^3} f(x,p)$$

Particle emissions with external field

$$M \longrightarrow g\sigma(x)$$
  
$$f(x,p) = f_0(x,p)[1 - g\sigma(x)/(\gamma T)]$$
  
$$= f_0 + \delta f$$

$$\begin{split} \langle \delta f_1 \delta f_2 \rangle_{\sigma} &= f_{01} f_{02} f_{03} \left( \frac{g^2}{\gamma_1 \gamma_2} \frac{1}{T^3} \right) \langle \sigma_1 \sigma_2 \rangle_c \,, \\ \langle \delta f_1 \delta f_2 \delta f_3 \rangle_{\sigma} &= f_{01} f_{02} f_{03} \left( -\frac{g^3}{\gamma_1 \gamma_2 \gamma_3} \frac{1}{T^3} \right) \langle \sigma_1 \sigma_2 \sigma_3 \rangle_c \,, \\ \langle \delta f_1 \delta f_2 \delta f_3 \delta f_4 \rangle_{\sigma} &= f_{01} f_{02} f_{03} f_{04} \left( \frac{g^4}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \frac{1}{T^4} \right) \langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \rangle_c \,. \end{split}$$

$$\begin{split} \langle \delta f_1 \delta f_2 \rangle_{\sigma} &= f_{01} f_{02} f_{03} \left( \frac{g^2}{\gamma_1 \gamma_2} \frac{1}{T^3} \right) \langle \sigma_1 \sigma_2 \rangle_c \,, \\ \langle \delta f_1 \delta f_2 \delta f_3 \rangle_{\sigma} &= f_{01} f_{02} f_{03} \left( -\frac{g^3}{\gamma_1 \gamma_2 \gamma_3} \frac{1}{T^3} \right) \langle \sigma_1 \sigma_2 \sigma_3 \rangle_c \,, \\ \langle \delta f_1 \delta f_2 \delta f_3 \delta f_4 \rangle_{\sigma} &= f_{01} f_{02} f_{03} f_{04} \left( \frac{g^4}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \frac{1}{T^4} \right) \langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \rangle_c \,. \end{split}$$

### For stationary & infinite medium:

$$\left\langle (\delta N)^2 \right\rangle_c = \left( \frac{g_i}{(2\pi)^3} \right)^2 \int d^3 p_1 d^3 x_1 \int d^3 p_2 d^3 x_2 \frac{f_{01} f_{02}}{\gamma_1 \gamma_2} \frac{g^2}{T^2} \left\langle \sigma_1 \sigma_2 \right\rangle_c, \\ \left\langle (\delta N)^3 \right\rangle_c = \left( \frac{g_i}{(2\pi)^3} \right)^3 \int d^3 p_1 d^3 x_1 \int d^3 p_2 d^3 x_2 \int d^3 p_3 d^3 x_3 \frac{f_{01} f_{02} f_{03}}{\gamma_1 \gamma_2 \gamma_3} \left( -\frac{g^3}{T^3} \left\langle \sigma_1 \sigma_2 \sigma_3 \right\rangle_c \right), \\ \left\langle (\delta N)^4 \right\rangle_c = \left( \frac{g_i}{(2\pi)^3} \right)^4 \int d^3 p_1 d^3 x_1 \int d^3 p_2 d^3 x_2 \int d^3 p_3 d^3 x_3 \int d^3 p_4 d^3 x_4 \frac{f_{01} f_{02} f_{03} f_{04}}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \frac{g^4}{T^4} \left\langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \right\rangle_c.$$

--the results in Stephanov PRL09 are reproduced



#### **CORRELATED** particle emissions along the freeze-out surface

$$\begin{split} \left\langle (\delta N)^2 \right\rangle_c \ &= \ \left( \frac{g_i}{(2\pi)^3} \right)^2 \left( \prod_{i=1,2} \left( \frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^\mu d\eta_i \right) \right) \frac{f_{01} f_{02}}{\gamma_1 \gamma_2} \frac{g^2}{T^2} \left\langle \sigma_1 \sigma_2 \right\rangle_c, \\ \left\langle (\delta N)^3 \right\rangle_c \ &= \ \left( \frac{g_i}{(2\pi)^3} \right)^3 \left( \prod_{i=1,2,3} \left( \frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^\mu d\eta_i \right) \right) \frac{f_{01} f_{02} f_{03}}{\gamma_1 \gamma_2 \gamma_3} \left( -\frac{g^3}{T^3} \left\langle \sigma_1 \sigma_2 \sigma_3 \right\rangle_c \right), \\ \left\langle (\delta N)^4 \right\rangle_c \ &= \ \left( \frac{g_i}{(2\pi)^3} \right)^4 \left( \prod_{i=1,2,3,4} \left( \frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^\mu d\eta_i \right) \right) \frac{f_{01} f_{02} f_{03}}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \frac{g^4}{T^4} \left\langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \right\rangle_c \end{split}$$

#### --partially include the evolution effects and volume effects

<u>For simplicity</u>: We assume that the correlated sigma field only influence the particle emissions near Tc, which does not influence the evolution of the bulk matter

<u>Input:</u> hydro freeze-out surface; hydro has been tuned to fit dN/dy, spectra and V2



#### **<u>CORRELATED</u>** particle emissions along the freeze-out surface

$$\begin{split} \left\langle (\delta N)^2 \right\rangle_c \ &= \ \left( \frac{g_i}{(2\pi)^3} \right)^2 \left( \prod_{i=1,2} \left( \frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^\mu d\eta_i \right) \right) \frac{f_{01} f_{02}}{\gamma_1 \gamma_2} \frac{g^2}{T^2} \left\langle \sigma_1 \sigma_2 \right\rangle_c, \\ \left\langle (\delta N)^3 \right\rangle_c \ &= \ \left( \frac{g_i}{(2\pi)^3} \right)^3 \left( \prod_{i=1,2,3} \left( \frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^\mu d\eta_i \right) \right) \frac{f_{01} f_{02} f_{03}}{\gamma_1 \gamma_2 \gamma_3} \left( -\frac{g^3}{T^3} \left\langle \sigma_1 \sigma_2 \sigma_3 \right\rangle_c \right), \\ \left\langle (\delta N)^4 \right\rangle_c \ &= \ \left( \frac{g_i}{(2\pi)^3} \right)^4 \left( \prod_{i=1,2,3,4} \left( \frac{1}{E_i} \int d^3 p_i \int_{\Sigma_i} p_{i\mu} d\sigma_i^\mu d\eta_i \right) \right) \frac{f_{01} f_{02} f_{03} f_{04}}{\gamma_1 \gamma_2 \gamma_3 \gamma_4} \frac{g^4}{T^4} \left\langle \sigma_1 \sigma_2 \sigma_3 \sigma_4 \right\rangle_c \end{split}$$

#### --partially include the evolution effects and volume effects

#### The choice of input parameters





lattice simulation of the effective potential around critical point.

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009); S. P. Klevansky, Rev. Mod. A. Andronic, et al. NPA (2006); Phys, Vol, 64, No.3 (1992); W. Fu, Y-x, Liu, Phys. Rev. D 79, 074011 (2009); M. M. Tsypin, Phys. Rev. Lett. 73, 2015 (1994); M. M. Tsypin, Phys. Rev. B 55, 8911 (1997).; B. Berdnikov and K. Rajagopal, Phys. Rev. D 61, 105017 (2000).

Jiang, Li & Song in preparation

# Correlated fluctuations along the freeze-out surface near T<sub>c</sub>

-comparison with the experimental data

# STAR data vs Thermal fluctuation baselines

**Рт=(0.4-2) GeV** 

Xiaofeng Luo CPOD 2014

#### Cumulants vs. Poisson



**Fluctuations measured in experiment:** critical fluct. + thermal fluct. + ... The higher order cumulants shows large deviations from Poisson expectations

## $\kappa\sigma^2$ , $S\sigma$ : (Model + Poisson baselines)

#### Jiang, Li & Song in preparation



## C<sub>1</sub> C<sub>2</sub> C<sub>3</sub> C<sub>4</sub>: (Model + Poisson baselines)



Critical fluctuations give positive contribution to  $C_2$ ,  $C_3$ ; well above the poisson baselines, can NOT explain/describe the  $C_2$ ,  $C_3$  data

C<sub>1</sub> C<sub>2</sub> C<sub>3</sub> C<sub>4</sub>: Pt-(0.4-2) GeV (Model + Poisson baselines)



In this model (and also Stephanov PRL09 framework) critical fluctuations's contributions to C<sub>2</sub>, C<sub>3</sub> are always positive

#### Effects from dynamical evolutions

$$\partial_{\tau} \mathsf{P}(\sigma;\tau) = \frac{1}{\mathsf{m}_{\sigma}^{2} \tau_{\mathsf{eff}}} \Big[ \partial_{\sigma} \Big[ \partial_{\sigma} \Omega_{0}(\sigma) + \mathsf{V}_{4}^{-1} \partial_{\sigma} \Big] \mathsf{P}(\sigma;\tau) \Big]$$

near-equilibrium limit:

$$\partial_{\tau} \kappa_{2} = -2 \tau_{\text{eff}}^{-1} a_{2} \delta \kappa_{2}$$
$$\partial_{\tau} \kappa_{3} = -3 \tau_{\text{eff}}^{-1} [a_{2} \delta \kappa_{2} + a_{3} \delta \kappa_{3}]$$
$$\partial_{\tau} \kappa_{4} = -4 \tau_{\text{eff}}^{-1} [a_{2} \delta \kappa_{2} + a_{3} \delta \kappa_{3} + a_{4} \delta \kappa_{3}]$$

S. Mukherjee, R. Venugopalan, Y. Yin, PRC92 (2015)

sign of non-Gaussian cumulants can be different from equilibrium one



# Summary

## **Dynamical Modeling for Relativistic Heavy Ion Collisions**



-more & precise experimental data at different colliding systems provide valuable information on the properties of the QGP and the QCD phase diagram

-Sophisticated dynamical model are need to be further developed



## Boltzmann approach with external field

Stephanov PRD 2010

$$S = \int d^3x \frac{1}{2} (\partial_\mu \sigma \partial^\mu \sigma - U(\sigma)) - \int ds M(\sigma),$$
$$\begin{bmatrix} \partial^2 \sigma + dU/d\sigma + (dM/d\sigma) \int_p f/\gamma = 0, \\ \frac{p^\mu}{M} \frac{\partial f}{\partial x^\mu} + \partial^\mu M \frac{\partial f}{\partial p^\mu} + \mathcal{C}[f] = 0, \end{bmatrix}$$

-analytical solution with perturbative expansion, please refer to Stephanov PRD 2010

Stationary solution for the Boltamann equation with external field

$$f_{\sigma}(\boldsymbol{p}) = e^{\mu/T} e^{-\gamma(\boldsymbol{p})M/T}.$$

**Effective particle mass:**  $M = M(\sigma) = g\sigma$ 

## mт spectra & radial flow

Zhou, Zhu, Li, Song, PRC2015



-Broken of  $m_{\tau}$ -scaling in both ALICE and UrQMD

-The UrQMD systems can not generate the amount of radial flow as observed in experiment