#### Equation of State from Lattice QCD

#### Prasad Hegde

#### **BNL-Bielefeld-CCNU** and HotQCD collaborations



Central China Normal University, Wuhan, China.



Computational Advances in Nuclear and Hadron Physics 2015 (CANHP2015),

Yukawa Institute of Theoretical Physics Kyoto University, 5<sup>th</sup> October 2015.

## Equation of state



Sole QCD input in the hydrodynamic evolution of the QGP created in heavy ion collisions [see talk by Huichao Song].



Baryochemical potential  $\mu_{\rm B}$  negligible (compared to the temperature) at LHC and top RHIC energies.

However, with the advent of the Beam Energy Scan program at RHIC, need an EoS valid up to  $\mu_{\rm B} \sim 500$  MeV.

Resummed perturbation theory [N.Haque *et al.* JHEP 1405, 027 (2014)] does not work for temperatures below T~200 MeV; non-perturbative methods necessary.

### Pressure, energy and entropy



Around 10% difference from the noninteracting ideal gas limit even at T  $\approx$  400 MeV  $\approx$  2.7 T<sub>c</sub>.

p, s and  $\epsilon$  well-approximated by a gas of non-interacting resonances (Hadron Resonance Gas) at temperatures below T<sub>c</sub>.

Recently, we presented continuumextrapolated results for the equation of state at  $\mu_B = 0$  [HotQCD, Phys.Rev.D90, 054503 (2014)].

Behavior as expected from the crossover nature of the transition *i.e.* smooth transition from a gaseous hadronic phase to deconfined quarks and gluons.



# Parametrization and $\epsilon(T_c)$



The energy density at the phase transition is not too different from normal nuclear energy density (~0.16 GeV/fm<sup>3</sup>).

Analytic parametrization of the pressure over the entire temperature range [HotQCD, Phys.Rev.D90, 054503 (2014)].

$$\begin{split} \frac{p}{T^4} = & \frac{1 + \tanh\left(c_t(t-t_0)\right)}{2} \times \\ & \frac{p_{\rm id} + a_n/\bar{t} + b_n/\bar{t}^2 + c_n/\bar{t}^3 + d_n/\bar{t}^4}{1 + a_d/\bar{t} + b_d/\bar{t}^2 + c_d/\bar{t}^3 + d_d/\bar{t}^4} \end{split}$$



# Specific heat and speed of sound



Specific heat not expected to diverge in the chiral limit since the critical exponent  $\alpha = -0.21$  for the 3d-O(4) universality class.

For the same reason, the speed of sound  $c_s^2 = s/C_v$  will not go to zero but only attain a minimum at the phase transition.

At finite quark mass, significant contribution from regular part of the free energy as well.

## Taylor-expanding the pressure



Sixth-order corrections not more than 1-5% of the second-order corrections



### Validity of the expansion



$$\frac{p}{T^4} = c_0 + c_2 \hat{\mu}^2 \left( 1 + \frac{c_4}{c_2} \hat{\mu}^2 \left( 1 + \frac{c_6}{c_4} \hat{\mu}^2 \right) \right)$$

At  $T=T_c \approx 154 \text{ MeV}$ ,  $c_0 \approx 1$ ,  $c_2 \approx 0.05$ ,  $c_4/c_2 \approx 1/24$ ,  $c_6/c_4 \approx 0.1$ . Therefore:



 $\mu_{\rm B}/T = 2$ : 2<sup>nd</sup>-, 4<sup>th</sup>- and 6<sup>th</sup>-order contributions are ~20, 23 and 25% resp. (expansion under control).

 $\mu_{\rm B}/T = 3: 2^{\rm nd}$ -, 4<sup>th</sup>- and 6<sup>th</sup>-order contributions are ~45, 63 and 77% resp. (higher orders important)!

#### Validity of the expansion



$$\frac{p}{T^4} = c_0 + c_2 \hat{\mu}^2 \left( 1 + \frac{c_4}{c_2} \hat{\mu}^2 \left( 1 + \frac{c_6}{c_4} \hat{\mu}^2 \right) \right)$$

At  $T \approx T_c = 154 \text{ MeV}$ ,  $c_0 \approx 1$ ,  $c_2 \approx 0.05$ ,  $c_4/c_2 \approx 1/24$ ,  $c_6/c_4 \approx 0.1$ . Therefore:



Thus, a 4<sup>th</sup>-order equation of state may be safely used up to  $\mu_{\rm B}/T = 2$ .

#### Energy and entropy densities



We found that an exponential+polynomial fit to the susceptibilities worked very well. From the derivatives of the ansatz, we could calculate the corrections energy and entropy densities as well.

# The freeze-out curve and lines of constant physics



The freeze-out curve is a phenomenological curve obtained from fitting hadron yields at different beam energies to an HRG model.

Using T(s<sub>NN</sub>) and  $\mu_B(s_{NN})$  as obtained from Cleymans *et al.* we found that  $\varepsilon$  remained approximately constant along the curve.

Similarly, we may also calculate "lines of constant physics" *i.e.* constant  $\epsilon$  or p, as a function of T and  $\mu_{\rm B}$ .





#### Conclusions

The equation of state an important input in modelling heavy-ion collisions at RHIC/LHC through hydrodynamics.

The  $\mu_B$ =0 equation of state is useful at the LHC and at RHIC top energies, while the finite- $\mu_B$  equation of state is necessary for the Beam Energy Scan program at RHIC.

Recently, we presented continuum-extrapolated results for the  $\mu_B$ =0 equation of state. We have also begun working towards a finite-density equation of state that will be valid for the range of energies covered by the Beam Energy Scan program at RHIC.

Towards this end, we presented preliminary results for a fourth-order equation of state that would be valid for  $\mu_B/T \le 2$  i.e. beam energies down to ~20 GeV.