Equation of State from Lattice QCD

Prasad Hegde
BNL-Bielefeld-CCNU and HotQCD collaborations

Central China Normal University, Wuhan, China.

Computational Advances in Nuclear and Hadron Physics 2015 (CANHP2015),

Yukawa Institute of Theoretical Physics
Kyoto University, 5th October 2015.
Equation of state

Sole QCD input in the hydrodynamic evolution of the QGP created in heavy ion collisions [see talk by Huichao Song].

Baryochemical potential μ_B negligible (compared to the temperature) at LHC and top RHIC energies.

However, with the advent of the Beam Energy Scan program at RHIC, need an EoS valid up to $\mu_B \sim 500$ MeV.

Resummed perturbation theory [N.Haque et al. JHEP 1405, 027 (2014)] does not work for temperatures below $T\sim 200$ MeV; non-perturbative methods necessary.
Pressure, energy and entropy

Recently, we presented continuum-extrapolated results for the equation of state at $\mu_B = 0$ [HotQCD, Phys.Rev.D90, 054503 (2014)].

Behavior as expected from the crossover nature of the transition i.e. smooth transition from a gaseous hadronic phase to deconfined quarks and gluons.

Around 10% difference from the non-interacting ideal gas limit even at $T \approx 400$ MeV $\approx 2.7 \, T_c$.

p, s and ϵ well-approximated by a gas of non-interacting resonances (Hadron Resonance Gas) at temperatures below T_c.
Parametrization and $\varepsilon(T_c)$

Analytic parametrization of the pressure over the entire temperature range [HotQCD, Phys.Rev.D90, 054503 (2014)].

$$\frac{p}{T^4} = \frac{1 + \tanh \left(c_t(t - t_0) \right)}{2} \times \frac{p_{id} + a_n/\bar{t} + b_n/\bar{t}^2 + c_n/\bar{t}^3 + d_n/\bar{t}^4}{1 + a_d/\bar{t} + b_d/\bar{t}^2 + c_d/\bar{t}^3 + d_d/\bar{t}^4}$$

The energy density at the phase transition is not too different from normal nuclear energy density (~ 0.16 GeV/fm3).
Specific heat and speed of sound

Specific heat not expected to diverge in the chiral limit since the critical exponent $\alpha = -0.21$ for the 3d-O(4) universality class.

For the same reason, the speed of sound $c_s^2 = s/C_v$ will not go to zero but only attain a minimum at the phase transition.

At finite quark mass, significant contribution from regular part of the free energy as well.
Taylor-expanding the pressure

\[\frac{P}{T^4} = \frac{P_0}{T^4} + \frac{1}{2} \left(\frac{\mu_B}{T} \right)^2 + \frac{1}{24} \left(\frac{\mu_B}{T} \right)^4 + O \left(\frac{\mu_B}{T} \right)^6 \]

Sixth-order corrections not more than 1-5% of the second-order corrections
Validity of the expansion

\[\frac{\mu_B}{T} = 2^{nd}, 4^{th} \text{- and } 6^{th}-\text{order contributions are } \sim 20, 23 \text{ and } 25\% \text{ resp. (expansion under control).} \]

\[\frac{\mu_B}{T} = 3^{rd}, 4^{th} \text{- and } 6^{th}-\text{order contributions are } \sim 45, 63 \text{ and } 77\% \text{ resp. (higher orders important)!} \]

At \(T = T_c \approx 154 \text{ MeV}, c_0 \approx 1, c_2 \approx 0.05, c_4/c_2 \approx 1/24, c_6/c_4 \approx 0.1 \). Therefore:
Validity of the expansion

Thus, a 4th-order equation of state may be safely used up to $\mu_B/T = 2$.

At $T \approx T_c = 154$ MeV, $c_0 \approx 1$, $c_2 \approx 0.05$, $c_4/c_2 \approx 1/24$, $c_6/c_4 \approx 0.1$. Therefore:
We found that an exponential+polynomial fit to the susceptibilities worked very well. From the derivatives of the ansatz, we could calculate the corrections energy and entropy densities as well.
The freeze-out curve is a phenomenological curve obtained from fitting hadron yields at different beam energies to an HRG model.

Using $T(s_{_{NN}})$ and $\mu_B(s_{_{NN}})$ as obtained from Cleymans et al. we found that ϵ remained approximately constant along the curve.

Similarly, we may also calculate “lines of constant physics” i.e. constant ϵ or p, as a function of T and μ_B. J. Cleymans et al. Phys. Rev. C73, 034905 (2006)
The equation of state is an important input in modelling heavy-ion collisions at RHIC/LHC through hydrodynamics.

The $\mu_B=0$ equation of state is useful at the LHC and at RHIC top energies, while the finite-μ_B equation of state is necessary for the Beam Energy Scan program at RHIC.

Recently, we presented continuum-extrapolated results for the $\mu_B=0$ equation of state. We have also begun working towards a finite-density equation of state that will be valid for the range of energies covered by the Beam Energy Scan program at RHIC.

Towards this end, we presented preliminary results for a fourth-order equation of state that would be valid for $\mu_B/T \leq 2$ i.e. beam energies down to ~ 20 GeV.