Numerical simulations in high energy nuclear collisions

Yasushi Nara (Akita International Univ.)

- Event generators for high energy nuclear collisions
- Recent development for hadronic transport model for phase transition region (with Akira Ohnishi (YITP,Kyoto U.)
- Results for directed flow.

CANHP 2015 at YITP Kyoto U., Japan, Oct. 5th 2015

High energy heavy ion collisions

Numerical approaches are essential tools for nuclear collisions

Gluon production based on CGC

• x-evolution + Solving classical Yang-Mills equation

CYM + IP-sat model, Schenke, Tribedy, Venugopalan CYM+JIMWLK evolution, Lappi, Phys.Lett.B703(2011)325

rcBK evolution + Based on kt-factorization formula

Albacete, Armesto, Mihano, Salgado 2009 for HERA fit $\frac{dN_g}{d^2 x_t dy} = \frac{4 \pi N_c}{N_c^2 - 1} \int \frac{d^2 p_t}{p_t^2} \int d^2 k_t \alpha_s \varphi(x_1, k_t^2) \varphi(x_2, (p_t - k_t)^2)$

Forward particle production: Dumitru Hayashigaki Jalilian-Marian (DHJ) $\frac{dN}{dy_h d^2 p_\perp} = \frac{K}{(2\pi)^2} \sum_{i=q,g} \int_{x_F}^1 \frac{dz}{z^2} x_1 f_{i/p}(x_1, p_\perp^2) N_i(p_\perp/z, x_2) D_{h/i}(z, p_\perp^2)$

RcBK integro- differential equation: 50-170 times faster on GPU

<u>Monte-Carlo Event Generator for DHJ</u> <u>approach</u>

Phys.Rev.D91,014006(2015)

$gg \rightarrow g, \ gq \rightarrow q$ with initial and final state radiations

Gluons and quarks are generated according to the DHJ formula.

$$\frac{dN}{dyd^2p_{\perp}} = \frac{K}{(2\pi)^2} f_{i/p}(x_1, p_{\perp}^2) N_i(p_{\perp}, x_2)$$

Hadrons are produced by the Lund string fragmentation model

How do you simulate x-evolution in MC? SMALLX (CCFM),RAPGAP CASCADE (CCFM evolution) LDC(Linked Dipole Chain), DIPSY

DHJ+LPHD or FF v.s. MC-DHJ

Within kt-factrizaton approach, High pt hadrons are well described by the Fragmentation function,

Low pt hadrons including multiplicity are well described by the parton-padron duality.

More realistic model: event generator version of DHJ describes the data in a unified way.

Phys.Rev.D91,014006(2015)

Comparison of LHCf data

Phys.Rev.D91,014006(2015)

Event generators in high energy physics

HepForge: development environment for high energy physics software https://www.hepforge.org/

PYTHIA, HERWIG++, SHERPA and so on

OSCAR: Open Standard Codes and Routines https://karman.physics.purdue.edu/OSCAR/index.php/Main_Page

Event generators mainly for cosmic ray physics

DPMJET 3 QGSJET II SIBYLL 2.1 EPOS3

<u>Microscopic transport models</u> (event generator for nuclear collisions)

• UrQMD 3.4 Frankfurt public resonance model N*,D*, string pQCD, PYTHIA6.4

- PHSD Giessen (Cassing) upon request D(1232),N(1440),N(1530), string, pQCD, FRITIOF7.02
- GiBUU 1.6 Giessen (Mosel) public resonance model N*,D*, string, pQCD,PYTHIA6.4
- AMPT public HIJING+ZPC+ART
- JAM public

resonance model N*,D*, string, pQCD, PYTHIA6.1

Search for phase transition

<u>Determination of EOS at high density from an</u> <u>anisotropic flow in heavy ion collisions</u>

Fourier decomposition of single particle inclusive spectra:

V1 from hydrodynamics

Y. B. Ivanov and A. A. Soldatov, Phys. Rev. C91, no. 2, 024915 (2015)

PHSD/HSD predictions

V. P. Konchakovski, W. Cassing, Y. B. Ivanov and V. D. Toneev, Phys. Rev. C90, no. 1, 014903 (2014)

<u>UrQMD+hydro+UrQMD results</u>

J. Steinheimer et al. PRC89, 054913(2014)

The values of the slopes are always positive.

Hadronic taransport Approach

Purpose: Effects of hadron mean field potential on the directed flow v1

JAM hadronic cascade model : resonance and string excitation

Mean field by the framework of the Relativistic Quantum Molecular Dynamics

Nuclear cluster formation by phase space coalescence.

Statistical decay of nuclear fragment

Relativistic QMD/Simplified (RQMD/S)

RQMD based on Constraint Hamiltonian Dynamcis

Sorge, Stoecker, Greiner, Ann. Phys. 192 (1989), 266. RQMD/S: Tomoyuki Maruyama, et al. Prog. Theor. Phys. 96(1996),263.

Single particle energy: $p_i^0 = \sqrt{\boldsymbol{p}_i^2 + m_i^2 + 2m_iV_i}$

$$\dot{\boldsymbol{r}}_i = \frac{\boldsymbol{p}_i}{p_i^0} + \sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \boldsymbol{p}_i} \qquad \qquad \dot{\boldsymbol{p}}_i = -\sum_j \frac{m_j}{p_j^0} \frac{\partial V_j}{\partial \boldsymbol{r}_i}$$

Arguments of potential $r_i - r_j$ and $p_i - p_j$ are replaced by the distances in the two-body c.m.

<u>Mean field potential</u>

Skyrme type density dependent + Lorentzian momentum dependent potential

$$V = \sum_{i} V_{i} = \int d^{3}r \left[\frac{\alpha}{2} \left(\frac{\rho}{\rho_{0}} \right)^{2} + \frac{\beta}{\gamma + 1} \left(\frac{\rho}{\rho_{0}} \right)^{\gamma + 1} \right] + \sum_{k} \int d^{3}r d^{3}p d^{3}p' \frac{C_{ex}^{(k)}}{2\rho_{0}} \frac{f(r, p)f(r, p')}{1 + (p - p')^{2}/\mu_{k}^{2}}$$
$$\frac{\text{Type}}{(\text{MeV}) (\text{MeV}) (\text{MeV})} \frac{\alpha}{(\text{MeV})} \frac{\beta}{(\text{MeV}) (\text{MeV})} \frac{C_{ex}^{(1)}}{(\text{MeV}) (\text{MeV})} \frac{C_{ex}^{(2)}}{(\text{meV}) (\text{meV})} \frac{\mu_{1}}{(\text{meV})} \frac{\mu_{2}}{(\text{MeV})} \frac{K}{(\text{MeV})}}{\frac{1}{(\text{MeV})} \frac{1}{(\text{MeV})} \frac{1}{2} \frac{1}{$$

CUDA implementation

Execution time: RQMD/S = CASCADE on GPU

5-14 times faster with GPU

How to treat mean-field for excited matter?

Hadronic resonance dominant

constituent quark dominant due to string

Model 2 JAM/Mq: potentials for quarks inside the pre-formed baryon

Model 3: JAM/Mf: both formed and pre-formed baryons

Collision spectrum

Re-scattering among produced particle is very important

Proton rapidity distributions

Effect of nuclear clustering on the proton distribution was first pointed out by Q. Li, Y. Wang, X. Wnag, C Shen and M. Bleicher, hep-ph 1507.06033. within the UrQMD model.

Coalescence parameter R0=4fm, P0=0.3 GeV/c

Cluster formation reduces proton dN/dy by around 20%. Statistical decay of nuclear cluster is important only at Elab= 2AGeV for the proton rapidity distribution.

Nuclear mean field reduces the pion yield.

Pion yield at mid-rapitiy

Proton distributions

Effect of cluster and its decay on the directed flow

Effect of cluster is 10% on the v1

JAM/RQMD results at AGS energies

Significant mean-field effect on the directed flow

JAM/M at STAR energies

Effect of the nuclear cluster formation is about 15%. No effect of statistical decay of nuclear fragment on v1

<u>Comparison of v1</u>

Effects of potential on the v1 is significant

Hadronic approach does not reproduce the correct beam energy dependence of the directed flow.

Something happens around 10-20GeV?

JAM/M: only formed baryons feel potential forces JAM/Mq: pre-formed hadron feel potential with factor 2/3 for diquark, and 1/3 for quark JAM/Mf: both formed and pre-formed hadrons feel potential forces.

<u>Summary</u>

- Remarkable progress of the models for numerical simulation of high energy nuclear collisions such as CGC + hydro + Boltzmann approach.
- Reliable models for phase transition region must be developed.
- Hadronic transport model JAM with nuclear mean field followed by formation of nuclear cluster and its statistical decay.
 JAM + mean field + nuclear cluster formation + statistical decay
- JAM/M predicts the transition of proton directed flow from positive to negative. However, transition point is inconsistent with the STAR data F<0 at 11.5GeV, but F>0 for JAM/M.

Effects of cluster formation on the net-baryon distribution
Hydrodynamics + Boltzmann(JAM) + mean field approach?

JAM-MF at SPS energies

Hadronic Cross sections in JAM

$$\sigma_{tot}(s) = \sigma_{el}(s) + \sigma_{ch}(s) + \sigma_{ann}(s) + \sigma_{t-R}(s) + \sigma_{s-R}(s) : \text{Resonance} + \sigma_{t-S}(s) + \sigma_{s-S}(s) : \text{String}$$

Resonance production (absorption)

$$\sigma_{t-R}(s): NN \leftrightarrow N\Delta, \quad NN \leftrightarrow N^*\Delta^*, \cdots$$

$$\sigma_{s-R}(s): \pi N \leftrightarrow \Delta, \quad \bar{K}N \leftrightarrow Y^*, \cdots$$

String formation

$$\sigma_{t-S}(s): NN \to \text{String} + \text{String},$$

 $\sigma_{s-S}(s): \pi N \to \text{String}$