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Use a probe (ANY probe) to eject the particle we are 
interested to: 

 
 
 
 
 
 
 
 
 
Basic idea: 
•  we know, e, e’ and p  
•  “get” energy and momentum of pi: pi = ke’ + kp – ke 

              Ei = Ee’ + Ep - Ee 

�12!76#���.�3�5%�
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p q,ω 

pi 

Better to choose 
 large transferred 

momentum and weak 
probes!!!�

Spectroscopy via knock out reactions-basic idea 



Concept of correlations 

Em [MeV]  

σred ≈ S(h) 

10-50 
0p1/2 
0p3/2 

0s1/2 

correlations 

Spectral function: distribution of 
momentum (pm) and energies (Em) independent 

particle picture 

Saclay data for 16O(e,e’p) 
[Mougey et al., Nucl. Phys. A335, 35 (1980)]�
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Particle-vibration 
coupling (PV)!

Configuration 
 interaction 
(shell model)!

Understood!for!a!few!stable!closed!shells:!
[CB!and!!W.!H.!Dickhoff,!Prog.!Part.!Nucl.!Phys!52,!377!(2004)]!
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Current Status of low-energy nuclear physics 

neutrons%

pr
ot
on

s%
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I)+Understanding+the+nuclear+force+
QCD"derived;!3"nucleon!forces!(3NFs)!
First!principle!(ab"iniYo)!predicYons!

Composite+system+of+interac(ng+fermions+
Binding!and!limits!of!stability!
Coexistence!of!individual!and!collecYve!behaviors!
Self"organizaYon!and!emerging!phenomena!
EOS!of!neutron!star!ma@er!

Experimental+
programs+

RIKEN,+FAIR,+FRIB+

Unstable+nuclei+

rNprocess!pat
h…!

II)+Nuclear+correla(ons+
Fully!known!for!stable!isotopes!
[C.!Barbieri!and!W.!H.!Dickhoff,!Prog.!Part.!Nucl.!Phys!52,!377!(2004)]!
!

Neutron"rich!nuclei;!Shell!evoluYon!(far!from!stability)!

•  ~3,200!known!isotopes!
•  !~7,000!predicted!to!exist!
•  CorrelaXon!characterised!

in!full!for!~283!stable%!
Nature!473,!25!!(2011);!486,!509!(2012)!

III)+Interdisciplinary+character+
Astrophysics!
Tests!of!the!standard!model!
Other!fermionic!systems:!
!!!ultracold!gasses;!molecules;!



neutron%
removal�

neutron%
addi-on�

scaMering�

56Ni�

W.!Dickhoff,!CB,!Prog.!Part.!Nucl.!Phys.!53,!377!(2004)!
!CB,!M.HjorthNJensen,!Pys.!Rev.!C79,!064313!(2009)!

Sh
ab(!) =

1

⇡
Im gab(!)

56Ni neutron spectral function 



Ab-Initio SCGF approaches 



The FRPA Method in Two Words 
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Particle vibration coupling is the main cause driving the distribution of 
particle strength—on both sides of the Fermi surface…�

n� p�

≡!parYcle! ≡!hole!

…these modes are all resummed 
exactly and to all orders in a  

ab-initio many-body expansion.!

“Extended”!
Hartree!Fock!

R(2p1h) Σ$(ω) = R(2h1p) 

• A complete expansion requires all 
types of particle-vibration coupling 

• The Self-energy Σ$(ω)�yields both 
single-particle states and scattering 

CB et al.,  
Phys. Rev. C63, 034313 (2001) 
Phys. Rev. A76, 052503 (2007) 
Phys. Rev. C79, 064313 (2009) 



Gorkov and symmetry breaking approaches 

%  This!approach!leads!to!the!following!Feynman!diagrams:!

V.!Somà,!CB,!T.!Duguet,!,!Phys.!Rev.!C!89,!024323!(2014)!
V.!Somà,!CB,!T.!Duguet,!Phys.!Rev.!C!87,!011303R!(2013)!
V.!Somà,!T.!Duguet,!CB,!Phys.!Rev.!C!84,!064317!(2011)!
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%  Auxiliary!manyNbody!state!

Introduce!a!“grandNcanonical”!potenXal!

minimizes! under!the!constraint!

%  Ansatz!

Mixes!various!parXcle!numbers!

4

B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (15)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
∑

N ′

|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]

i G11
ab(t, t

′) ≡ ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩ , (20a)

i G12
ab(t, t

′) ≡ ⟨Ψ0|T {aa(t)āb(t′)} |Ψ0⟩ , (20b)

i G21
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)a
†
b(t

′)
}

|Ψ0⟩ , (20c)

i G22
ab(t, t

′) ≡ ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩ , (20d)

where single-particle operators associated with the dual
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is defined as

aa(t) = a(Ω)
a (t) ≡ exp[iΩt] aa exp[−iΩt] , (21a)

a†a(t) =
[

a(Ω)
a (t)

]†

≡ exp[iΩt] a†a exp[−iΩt] . (21b)

Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
gators Gg1g2

ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through

Eq. (14), Gorkov propagators can be expressed as linear
combinations of Green’s functions in the systems with
N,N ± 2, N ± 4, ... particles in the case of G11 and G22

G11
ab(t, t

′) = −i ⟨Ψ0|T
{

aa(t)a
†
b(t

′)
}

|Ψ0⟩

= −i
even
∑

N

c∗NcN ⟨ψN
0 |T

{

aa(t)a
†
b(t

′)
}

|ψN
0 ⟩

≡
even
∑

N

c∗NcN G11 (N,N)
ab (t, t′) , (22)

G22
ab(t, t

′) = −i ⟨Ψ0|T
{

ā†a(t)āb(t
′)
}

|Ψ0⟩

= −i
even
∑

N

c∗NcN ⟨ψN
0 |T

{

ā†a(t)āb(t
′)
}

|ψN
0 ⟩

≡
even
∑

N

c∗NcN G22 (N,N)
ab (t, t′) , (23)
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ā†a(t)āb(t
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Besides the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propa-
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ab carry two additional labels g1 and g2 that
span Gorkov’s space. When g1 = 1 (g1 = 2) a particle is
annihilated in the block of a (created in the block of ā)
and vice versa for g2; i.e. g2 = 1 (g2 = 2) corresponds to
a second particle created in the block of b (annihilated
in the block of b̄). Green’s functions G11 and G22 are
called normal propagators while off-diagonal ones, G12

and G21, are denoted as anomalous propagators.
Expanding the bra and the ket in Eq. (20) through
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combinations of Green’s functions in the systems with
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B. Auxiliary many-body problem

In the presence of pairing effects one can develop an al-
ternative expansion method that accounts in a controlled
fashion for the appearance and destruction of condensed
nucleonic pairs.
Instead of targeting the actual ground state |ΨN

0 ⟩ of
the system, one considers a symmetry breaking state |Ψ0⟩
defined as a superposition of the true ground states of the
(N − 2)-, N -, (N + 2)-, ... particle systems, i.e.

|Ψ0⟩ ≡
even
∑

N

cN |ψN
0 ⟩ , (14)

where cN denote complex coefficients. The sum over even
particle number is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential Ω = H−µN ,
with µ being the chemical potential and N the particle-
number operator, in place of H [26]. The state |Ψ0⟩ is
chosen to minimize

Ω0 = ⟨Ψ0|Ω|Ψ0⟩ (15)

under the constraint

N = ⟨Ψ0|N |Ψ0⟩ , (16)

i.e. it is not an eigenstate of the particle number operator
but it has a fixed number of particle on average. Equation
(15), together with the normalization condition

⟨Ψ0|Ψ0⟩ =
even
∑

N

|cN |2 = 1 , (17)

determines coefficients cN , while Eq. (16) fixes the chem-
ical potential µ.
By choosing |Ψ0⟩ as the targeted state the initial prob-

lem of solving the many-body system with N nucleons is
replaced with another problem, whose solution approxi-
mates the initial one. The validity of such an approxi-
mation resides in the degeneracy which characterizes the
ground state of the system. The presence of a condensate
(ideally) implies that pairs of nucleons can be added or
removed from the ground-state of the system with the
same energy cost, independently of N . Such an hypoth-
esis translates into the fact that the binding energies of
the systems with N,N±2, N±4, ... particles differ by 2µ;
i.e. the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the
system with N nucleons by removing or adding pairs of
particles are degenerate eigenstates of Ω such that their
binding energies fulfill

... ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ ... ≈ 2µ , (18)

with µ independent of N . If the assumption is valid,
the energy obtained by solving the auxiliary many-body
problem provides the energy of the initial problem as

Ω0 =
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|cN ′ |2ΩN ′

0 ≈ EN
0 − µN , (19)

which follows from Eqs. (15) and (18).

C. Gorkov propagators

In order to access all one-body information contained
in |Ψ0⟩, one must generalize the single-particle propaga-
tor defined in (11) by introducing additional objects that
take into account the formation and destruction of pairs.
One introduces a set of four Green’s functions, known

as Gorkov propagators [27]
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Inclusion of NNN forces  

- Third order PT diagrams with 3BFs: 6
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(o) (p) (q)

FIG. 5. 1PI, skeleton and interaction irreducible self-energy diagrams appearing at 3rd-order in perturbative expansion (7),
making use of the e↵ective hamiltonian of Eq. (9).

this boils down to the equation of motion of the operators
in interaction picture [6]:

i~ @
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aI
↵

(t) = [aI
↵

(t), Ĥ
0

] = "
↵

aI
↵

(t) . (18)

By taking the derivative of G(0) and using Eq. (18), we
arrive at

⇢
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� "
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�

G(0)
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0(t � t0) = �(t � t0)�
↵↵

0 , (19)

where the delta functions come from the derivative of the
step-function decomposition of the time-ordered product
in. Eq. (19) gives the inverse operator of G(0).

The same procedure applied to the exact propagator,
G(t� t0), requires the time-derivative of the annihilation
operators in the Heisenberg picture. For the hamiltonian

- Second order PT 
diagrams with 3BFs: 
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In Eq. (10), the two-time two-particle/two-hole propaga-
tor

GII
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(t � t0) = G4�pt

�⌘,�✏

(t+, t; t0, t0+) (12)

is an appropriate time ordering of Eq. (3) and the con-
tracted propagators yield the exact 1B and 2B reduced
density matrices:

⇢1B
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The e↵ective Hamiltonian (9) not only regroups Feyn-
man diagrams in a more e�cient way but it also allow
to extract the e↵ective 1B and 2B terms from higher or-
der interactions. Averaging the 3BF over one and two
spectator particles in the medium is expected yield the
most important contributions to the many-body dynam-
ics [27, 30]. We note that Eqs. (10) and (11) are exact
and are derived rigorously from the pertubative expan-
sion. Details of the proof are discussed in App. B. As
long as only interaction irreducible diagrams are used to-
gether with eH, this gives a systematic way to generate
e↵ective in medium interactions, it ensures that symme-
try factors are correct and no diagram is over counted.

This approach can be seen as a generalisation of the
normal ordering of the Hamiltonian with respect to the
reference state |�N

0

i, that has already been used in nu-
clear physic applications with 3BFs [27, 30, 39]. If the
unperturbed propagators G(0) and GII,(0) were used in

Eqs. (10) and (11), the e↵ective operators
b

eU and
b

eV would
trivially reduced to the contracted 1B and 2B terms of
normal ordering. In the present case, however, the con-
traction is performed with respect to the exact correlated
density matrices and the e↵ective Hamiltonian eH can be
thought as reordered with respect the the many-body
ground-state | N

0

i, which takes into account the correla-
tions of the system. Note that, following the procedure of
App. B, the full contraction of the original hamiltonian,
H, will yield to the exact ground state energy

E
g.s.
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in accordance with our analogy between the eH = H
0

+ eH
1

and the usual normal ordered hamiltonian. In the latter,

(a) (b)

FIG. 3. 1PI, skeleton and interaction irreducible self-energy
diagrams appearing at 2nd-order in the perturbative expan-
sion of Eq. (7), making use of the e↵ective hamiltonian of
Eq. (9).

the 0B contraction part is simply the expectation value
of H with respect to the reference state.

A. Self-energy expansion up to third order

For a 2B Hamiltonian, the only possible interaction
reducible contribution is the extended Hartree-Fock dia-
gram. This is the second term on the right hand side of
Eq. (10) and Fig. (1). It appears only at first order in
any SCGF expansion and it is routinely included in most
GF calculations with 2B forces. Thus, regrouping dia-
grams in terms of e↵ective interactions, such as Eqs. (10)
and (11), becomes useful only when 3BF or higher terms
are present. Here, we are interested in the new diagrams
that need to be considered when one includes 3BFs. To
this purpose we derive and list all interaction irreducible
contributions to the proper self-energy, up to third order
in perturbation theory.

At first order, only one interaction irreducible contri-
bution is present which exactly corresponds to eU :

⌃?,(1)

↵�

= eU
↵�

, (16)

Being a self-energy insertion itself, eU will not appear in
any other skeleton diagram. In spite of the fact that
it only contributes to Eq. (16), the e↵ective 1B poten-
tial is very important because it defines in full the en-
ergy independent part of the self energy, hence it rep-
resents the (static) mean field seen by every particle.
Through Eq. (10), we see that this potential incorpo-
rates three separate terms, including the Hartree-Fock
potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
propagates two-particle–one-hole (2p1h) and two-hole–
one-particle (2h1p) states. Fig. 3b is the new diagram
arising from explicit 3BF interactions, which may ex-
pected to be less important: this describes contributions
from 3p2h and 3h2p excitations at higher excitation en-
ergies and, moreover, 3BFs are generally weaker than
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potentials due to both 2B and 3BFs and higher order
interaction reducible contributions due to the dressed G
and GII propagators. Thus, the full calculation of ⌃?,(1)

requires an iterative procedure to evaluate these propa-
gators self-consistently.

At second order there are only the two interaction ir-
reducible diagrams shown in Fig. 3. Diagram 3a is the
well known contribution due to only 2BFs that freely
propagates two-particle–one-hole (2p1h) and two-hole–
one-particle (2h1p) states. Fig. 3b is the new diagram
arising from explicit 3BF interactions, which may ex-
pected to be less important: this describes contributions
from 3p2h and 3h2p excitations at higher excitation en-
ergies and, moreover, 3BFs are generally weaker than
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FIG. 15. Diagrammatic representation of the self-energy cor-
rection �⌃?�W� given in Eq. (31).

which is also depicted in Fig. 15. Correspondingly, a
correction Eq. (30) should be considered when evaluation
the total energy through th eKoltun sum rule, Eq. (36).

Clearly, extensions to include 3BFs beyond the e↵ec-
tive eV are a completely virgin territory. And proper in-
vestigations of the problem should be made for those sys-
tems in which 3BFs play an important role, such has nu-
clear physics. The discussions in the above two sections
are certainly a good starting point to foster new initia-
tives to address this problem. [Aranu: MAYBE GOOD
FOR THE CONCLUSIONS???]

IV. GROUND STATE ENERGY

The formal expression of the SP propagator provides us
with the expression of the hole spectral function, which
includes information about the transition amplitude for
the removal of a particle from the many-body system;
through the definition of the theoretical spectroscopic
factor, the hole spectral function represents the direct
link between theory and experiment.

It can be defined as the probability at T = 0 MeV to
remove a particle from the many-body system with given
momentum k minor than the Fermi momentum and a
given energy ! = EN

0

� EN�1

n

, leaving the system in an
excited state with N � 1 particles.

Knowledge of the hole spectral function enables the
computation of the energy of the many-body ground
state by means of the Galitskii-Migdal-Koltun (GMK)
sumrule [44, 45].

While being exact when only 2B interactions are con-
sidered in the hamiltonian of the system, the GMK sum-
rule needs to be revised when including 3B forces, in or-

der to correctly take into account the mean value of both
the 2B and 3B operators which appear in the Hamilto-
nian (see Eq. (1)). The sumrule is obtained solving the
integral [3]
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where T represents in general the 1B part of the hamil-
tonian, which is not necessarily the kinetic operator only.
If we sum over all the SP states ↵ we get

X

↵

I
↵

= h N

0

|T̂ | N

0

i + 2h N

0

|V̂ | N

0

i + 3h N

0
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The expectation value of the 1B operator, T , can also be
extracted from the sole knowledge of the SP propagator:
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To extrapolate the total energy mean value we now need
a third independent linear combination of hT̂ i, hV̂ i and
hŴ i. Depending on which linear combination chosen,
one is left with di↵erent expressions for the energy energy
of the ground state. The simplest thing is to evaluate the
expectation value of either the 2B and 3B parts, which
least to the following two corrections to the GMK sum
rule:
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FIG. 15. Diagrammatic representation of the self-energy cor-
rection �⌃?�W� given in Eq. (31).

which is also depicted in Fig. 15. Correspondingly, a
correction Eq. (30) should be considered when evaluation
the total energy through th eKoltun sum rule, Eq. (36).

Clearly, extensions to include 3BFs beyond the e↵ec-
tive eV are a completely virgin territory. And proper in-
vestigations of the problem should be made for those sys-
tems in which 3BFs play an important role, such has nu-
clear physics. The discussions in the above two sections
are certainly a good starting point to foster new initia-
tives to address this problem. [Aranu: MAYBE GOOD
FOR THE CONCLUSIONS???]

IV. GROUND STATE ENERGY

The formal expression of the SP propagator provides us
with the expression of the hole spectral function, which
includes information about the transition amplitude for
the removal of a particle from the many-body system;
through the definition of the theoretical spectroscopic
factor, the hole spectral function represents the direct
link between theory and experiment.

It can be defined as the probability at T = 0 MeV to
remove a particle from the many-body system with given
momentum k minor than the Fermi momentum and a
given energy ! = EN

0

� EN�1

n

, leaving the system in an
excited state with N � 1 particles.

Knowledge of the hole spectral function enables the
computation of the energy of the many-body ground
state by means of the Galitskii-Migdal-Koltun (GMK)
sumrule [44, 45].

While being exact when only 2B interactions are con-
sidered in the hamiltonian of the system, the GMK sum-
rule needs to be revised when including 3B forces, in or-

der to correctly take into account the mean value of both
the 2B and 3B operators which appear in the Hamilto-
nian (see Eq. (1)). The sumrule is obtained solving the
integral [3]
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where the hamiltonian we are working with is the one
given in Eq. (1); evaluation of the last term on the right
side of Eq.32 gives
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where T represents in general the 1B part of the hamil-
tonian, which is not necessarily the kinetic operator only.
If we sum over all the SP states ↵ we get
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The expectation value of the 1B operator, T , can also be
extracted from the sole knowledge of the SP propagator:
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To extrapolate the total energy mean value we now need
a third independent linear combination of hT̂ i, hV̂ i and
hŴ i. Depending on which linear combination chosen,
one is left with di↵erent expressions for the energy energy
of the ground state. The simplest thing is to evaluate the
expectation value of either the 2B and 3B parts, which
least to the following two corrections to the GMK sum
rule:
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FIG. 15. Diagrammatic representation of the self-energy cor-
rection �⌃?�W� given in Eq. (31).

which is also depicted in Fig. 15. Correspondingly, a
correction Eq. (30) should be considered when evaluation
the total energy through th eKoltun sum rule, Eq. (36).

Clearly, extensions to include 3BFs beyond the e↵ec-
tive eV are a completely virgin territory. And proper in-
vestigations of the problem should be made for those sys-
tems in which 3BFs play an important role, such has nu-
clear physics. The discussions in the above two sections
are certainly a good starting point to foster new initia-
tives to address this problem. [Aranu: MAYBE GOOD
FOR THE CONCLUSIONS???]

IV. GROUND STATE ENERGY

The formal expression of the SP propagator provides us
with the expression of the hole spectral function, which
includes information about the transition amplitude for
the removal of a particle from the many-body system;
through the definition of the theoretical spectroscopic
factor, the hole spectral function represents the direct
link between theory and experiment.

It can be defined as the probability at T = 0 MeV to
remove a particle from the many-body system with given
momentum k minor than the Fermi momentum and a
given energy ! = EN

0

� EN�1

n

, leaving the system in an
excited state with N � 1 particles.

Knowledge of the hole spectral function enables the
computation of the energy of the many-body ground
state by means of the Galitskii-Migdal-Koltun (GMK)
sumrule [44, 45].

While being exact when only 2B interactions are con-
sidered in the hamiltonian of the system, the GMK sum-
rule needs to be revised when including 3B forces, in or-

der to correctly take into account the mean value of both
the 2B and 3B operators which appear in the Hamilto-
nian (see Eq. (1)). The sumrule is obtained solving the
integral [3]
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where T represents in general the 1B part of the hamil-
tonian, which is not necessarily the kinetic operator only.
If we sum over all the SP states ↵ we get
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The expectation value of the 1B operator, T , can also be
extracted from the sole knowledge of the SP propagator:
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To extrapolate the total energy mean value we now need
a third independent linear combination of hT̂ i, hV̂ i and
hŴ i. Depending on which linear combination chosen,
one is left with di↵erent expressions for the energy energy
of the ground state. The simplest thing is to evaluate the
expectation value of either the 2B and 3B parts, which
least to the following two corrections to the GMK sum
rule:
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FIG. 15. Diagrammatic representation of the self-energy cor-
rection �⌃?�W� given in Eq. (31).

which is also depicted in Fig. 15. Correspondingly, a
correction Eq. (30) should be considered when evaluation
the total energy through th eKoltun sum rule, Eq. (36).

Clearly, extensions to include 3BFs beyond the e↵ec-
tive eV are a completely virgin territory. And proper in-
vestigations of the problem should be made for those sys-
tems in which 3BFs play an important role, such has nu-
clear physics. The discussions in the above two sections
are certainly a good starting point to foster new initia-
tives to address this problem. [Aranu: MAYBE GOOD
FOR THE CONCLUSIONS???]

IV. GROUND STATE ENERGY

The formal expression of the SP propagator provides us
with the expression of the hole spectral function, which
includes information about the transition amplitude for
the removal of a particle from the many-body system;
through the definition of the theoretical spectroscopic
factor, the hole spectral function represents the direct
link between theory and experiment.

It can be defined as the probability at T = 0 MeV to
remove a particle from the many-body system with given
momentum k minor than the Fermi momentum and a
given energy ! = EN

0

� EN�1

n

, leaving the system in an
excited state with N � 1 particles.

Knowledge of the hole spectral function enables the
computation of the energy of the many-body ground
state by means of the Galitskii-Migdal-Koltun (GMK)
sumrule [44, 45].

While being exact when only 2B interactions are con-
sidered in the hamiltonian of the system, the GMK sum-
rule needs to be revised when including 3B forces, in or-

der to correctly take into account the mean value of both
the 2B and 3B operators which appear in the Hamilto-
nian (see Eq. (1)). The sumrule is obtained solving the
integral [3]
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where T represents in general the 1B part of the hamil-
tonian, which is not necessarily the kinetic operator only.
If we sum over all the SP states ↵ we get
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|Ŵ | N

0

i .

(34)
The expectation value of the 1B operator, T , can also be
extracted from the sole knowledge of the SP propagator:
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To extrapolate the total energy mean value we now need
a third independent linear combination of hT̂ i, hV̂ i and
hŴ i. Depending on which linear combination chosen,
one is left with di↵erent expressions for the energy energy
of the ground state. The simplest thing is to evaluate the
expectation value of either the 2B and 3B parts, which
least to the following two corrections to the GMK sum
rule:
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FIG. 15. Diagrammatic representation of the self-energy cor-
rection �⌃?�W� given in Eq. (31).

which is also depicted in Fig. 15. Correspondingly, a
correction Eq. (30) should be considered when evaluation
the total energy through th eKoltun sum rule, Eq. (36).

Clearly, extensions to include 3BFs beyond the e↵ec-
tive eV are a completely virgin territory. And proper in-
vestigations of the problem should be made for those sys-
tems in which 3BFs play an important role, such has nu-
clear physics. The discussions in the above two sections
are certainly a good starting point to foster new initia-
tives to address this problem. [Aranu: MAYBE GOOD
FOR THE CONCLUSIONS???]

IV. GROUND STATE ENERGY

The formal expression of the SP propagator provides us
with the expression of the hole spectral function, which
includes information about the transition amplitude for
the removal of a particle from the many-body system;
through the definition of the theoretical spectroscopic
factor, the hole spectral function represents the direct
link between theory and experiment.

It can be defined as the probability at T = 0 MeV to
remove a particle from the many-body system with given
momentum k minor than the Fermi momentum and a
given energy ! = EN

0

� EN�1

n

, leaving the system in an
excited state with N � 1 particles.

Knowledge of the hole spectral function enables the
computation of the energy of the many-body ground
state by means of the Galitskii-Migdal-Koltun (GMK)
sumrule [44, 45].

While being exact when only 2B interactions are con-
sidered in the hamiltonian of the system, the GMK sum-
rule needs to be revised when including 3B forces, in or-

der to correctly take into account the mean value of both
the 2B and 3B operators which appear in the Hamilto-
nian (see Eq. (1)). The sumrule is obtained solving the
integral [3]
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where T represents in general the 1B part of the hamil-
tonian, which is not necessarily the kinetic operator only.
If we sum over all the SP states ↵ we get
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The expectation value of the 1B operator, T , can also be
extracted from the sole knowledge of the SP propagator:
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To extrapolate the total energy mean value we now need
a third independent linear combination of hT̂ i, hV̂ i and
hŴ i. Depending on which linear combination chosen,
one is left with di↵erent expressions for the energy energy
of the ground state. The simplest thing is to evaluate the
expectation value of either the 2B and 3B parts, which
least to the following two corrections to the GMK sum
rule:
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FIG. 15. Diagrammatic representation of the self-energy cor-
rection �⌃?�W� given in Eq. (31).

which is also depicted in Fig. 15. Correspondingly, a
correction Eq. (30) should be considered when evaluation
the total energy through th eKoltun sum rule, Eq. (36).

Clearly, extensions to include 3BFs beyond the e↵ec-
tive eV are a completely virgin territory. And proper in-
vestigations of the problem should be made for those sys-
tems in which 3BFs play an important role, such has nu-
clear physics. The discussions in the above two sections
are certainly a good starting point to foster new initia-
tives to address this problem. [Aranu: MAYBE GOOD
FOR THE CONCLUSIONS???]

IV. GROUND STATE ENERGY

The formal expression of the SP propagator provides us
with the expression of the hole spectral function, which
includes information about the transition amplitude for
the removal of a particle from the many-body system;
through the definition of the theoretical spectroscopic
factor, the hole spectral function represents the direct
link between theory and experiment.

It can be defined as the probability at T = 0 MeV to
remove a particle from the many-body system with given
momentum k minor than the Fermi momentum and a
given energy ! = EN

0

� EN�1

n

, leaving the system in an
excited state with N � 1 particles.

Knowledge of the hole spectral function enables the
computation of the energy of the many-body ground
state by means of the Galitskii-Migdal-Koltun (GMK)
sumrule [44, 45].

While being exact when only 2B interactions are con-
sidered in the hamiltonian of the system, the GMK sum-
rule needs to be revised when including 3B forces, in or-

der to correctly take into account the mean value of both
the 2B and 3B operators which appear in the Hamilto-
nian (see Eq. (1)). The sumrule is obtained solving the
integral [3]
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where T represents in general the 1B part of the hamil-
tonian, which is not necessarily the kinetic operator only.
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The expectation value of the 1B operator, T , can also be
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To extrapolate the total energy mean value we now need
a third independent linear combination of hT̂ i, hV̂ i and
hŴ i. Depending on which linear combination chosen,
one is left with di↵erent expressions for the energy energy
of the ground state. The simplest thing is to evaluate the
expectation value of either the 2B and 3B parts, which
least to the following two corrections to the GMK sum
rule:
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Eqs. (36) and (37) are both exact. Which one should be
emploied in actual calculations mostly depend on the ac-
curacy with which one can evaluate the expectation val-
ues of h N

0

|bV | N

0

i and h N

0

|cW | N

0

i. In general the latter
is a smaller contribution, which makes the overall error
smaller for Eq. (37). This was the approach recently used
in both finite nuclei and infinite nucleon clatter [31, 32].

There it was found that evaluating h N

0

|cW | N

0

i at first
order in terms of dressed propagators leads to satisfac-
tory results. However, accuracy is lost if free propaga-
tors, G(0) are used instead. Eq. (36) may become useful
in calculation of infinite matter, in which the �4�pt is cal-
culated non perturbatively, and thus expectation values
of 2B operators might be obtained to good accuracy.

V. CONCLUSIONS

We have presented an extended version of the self-
consistent Green’s functions approach to consistently in-
clude 3B interactions. Through the correct definition of
e↵ective potentials, we demonstrated how the inclusion of
the 3B interaction has to be performed in a di↵erent man-
ner between the 1B and 2B e↵ective terms. The e↵ective
operators, built through an inspired improved version of
normal ordering of the many-body hamiltonian, greatly
improve the enumeration of diagrams in the perturba-
tive expansion of the SP propagator. Furthermore they
prove to be strongly useful when rewriting the equation
for the 1B propagator in terms of the interaction � vertex
functions. We observed how these e↵ective operators fa-
cilitate the perturbative expansion of the SP propagator
grouping di↵erent contributions in single diagrams.

Solving the EOM for the SP propagator allowed us
to encounter a complete expression for the proper self-
energy including consistently 1B, 2B and 3B forces, which
correctly counts terms in the dressing of the SP propa-
gator when performing the iterative Dyson’s equation.
Through the hierarchy of EOM, we encountered a com-
plete expression for the 4-point � vertex function, which
embodies all higher order interacting contributions be-
yond the mean-field. Truncation to second order of this
function, together with a second order expression for the
6-point � function, provides the third order approxima-
tion for the irreducible self-energy, which proved to cor-
respond to diagrams obtained perturbatively in the dia-
grammatic expansion of the SP propagator.

We presented corrections for the energy of the many-
body ground state computed via means of the GMK sum-
rule. Two possible approaches have been proposed, which

require calculation of either the 2B or 3B operator mean-
value in the many-body ground state of the system. Cal-
culation performed using this extended SCGF formalism
have been presented recently. The inclusion of 3B nuclear
forces turn out to be crucial at the hour of calculating
ground state energies for nitrogen, oxygen and fluorine
isotopic chains [31]; the importance of 3B nuclear forces
have proved to be necessary not only in finite systems,
but even more in infinite systems, providing the neces-
sary repulsion for nuclear matter to get to saturation at
consistent values of energy/densities [32].

This expanded approach gives further credit to the
study of nuclear systems from a Green’s functions point
of view. The power embodied in this formalism lies in
the possibility of obtaining from one single many-body
approach, many relevant quantities for the description of
a quantum many-body system, from binding energies, to
thermodynamical behavior, to the description of trans-
port quantities, or pairing.

We consider this expanded approach an interesting tool
to study quantum many-body systems from an ab-initio

microscopic point of view, which can grasp the correlated
non perturbative behavior of the system.
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Appendix A: Feynman diagrams rules for 2- and
3-body interactions

Non trivial symmetry factors can arise in diagrams
that include many-body interaction terms. This ap-
pendix reviews the corresponding Feynman rules both
in time and energy formulation, and gives some specific
examples.

The perturbartion formula of Eq. (7) is trivially gener-
alized to the one for p-body propagators, such as Eqs. (3)
and (4). At k-th order in perturbation theory, any con-
tribution from the time-ordered product in Eq. (7)—or
from its generalisation—is represented as a diagram with
2p external points and to k interacting vertexes all con-
nected by means of oriented lines. This lines arise from
contractions between annihilator and creator operators:
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Applying the Wick’s theorem results in the following
Feynman rules.

Rule 1: Draw all, topologically distinct and connected
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examples.
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FIG. 15. Diagrammatic representation of the self-energy cor-
rection �⌃?�W� given in Eq. (31).

which is also depicted in Fig. 15. Correspondingly, a
correction Eq. (30) should be considered when evaluation
the total energy through th eKoltun sum rule, Eq. (36).

Clearly, extensions to include 3BFs beyond the e↵ec-
tive eV are a completely virgin territory. And proper in-
vestigations of the problem should be made for those sys-
tems in which 3BFs play an important role, such has nu-
clear physics. The discussions in the above two sections
are certainly a good starting point to foster new initia-
tives to address this problem. [Aranu: MAYBE GOOD
FOR THE CONCLUSIONS???]

IV. GROUND STATE ENERGY

The formal expression of the SP propagator provides us
with the expression of the hole spectral function, which
includes information about the transition amplitude for
the removal of a particle from the many-body system;
through the definition of the theoretical spectroscopic
factor, the hole spectral function represents the direct
link between theory and experiment.

It can be defined as the probability at T = 0 MeV to
remove a particle from the many-body system with given
momentum k minor than the Fermi momentum and a
given energy ! = EN
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, leaving the system in an
excited state with N � 1 particles.

Knowledge of the hole spectral function enables the
computation of the energy of the many-body ground
state by means of the Galitskii-Migdal-Koltun (GMK)
sumrule [44, 45].

While being exact when only 2B interactions are con-
sidered in the hamiltonian of the system, the GMK sum-
rule needs to be revised when including 3B forces, in or-

der to correctly take into account the mean value of both
the 2B and 3B operators which appear in the Hamilto-
nian (see Eq. (1)). The sumrule is obtained solving the
integral [3]
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where T represents in general the 1B part of the hamil-
tonian, which is not necessarily the kinetic operator only.
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The expectation value of the 1B operator, T , can also be
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To extrapolate the total energy mean value we now need
a third independent linear combination of hT̂ i, hV̂ i and
hŴ i. Depending on which linear combination chosen,
one is left with di↵erent expressions for the energy energy
of the ground state. The simplest thing is to evaluate the
expectation value of either the 2B and 3B parts, which
least to the following two corrections to the GMK sum
rule:

EN

0

=
1

3
h N

0

|bV | N

0

i (36)

1

3⇡

Z

✏

�
F

�1
d!

X
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(2T
↵�

+ !�
↵�

)ImG
�↵

(!)
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and

EN

0

= �1

2
h N

0

|cW | N

0

i (37)

1

2⇡

Z

✏

�
F

�1
d!

X

↵�

(T
↵�

+ !�
↵�

)ImG
�↵

(!) .

Eqs. (36) and (37) are both exact. Which one should be
emploied in actual calculations mostly depend on the ac-
curacy with which one can evaluate the expectation val-
ues of h N

0

|bV | N

0

i and h N

0

|cW | N

0

i. In general the latter
is a smaller contribution, which makes the overall error
smaller for Eq. (37). This was the approach recently used
in both finite nuclei and infinite nucleon clatter [31, 32].

There it was found that evaluating h N

0

|cW | N

0

i at first
order in terms of dressed propagators leads to satisfac-
tory results. However, accuracy is lost if free propaga-
tors, G(0) are used instead. Eq. (36) may become useful
in calculation of infinite matter, in which the �4�pt is cal-
culated non perturbatively, and thus expectation values
of 2B operators might be obtained to good accuracy.

V. CONCLUSIONS

We have presented an extended version of the self-
consistent Green’s functions approach to consistently in-
clude 3B interactions. Through the correct definition of
e↵ective potentials, we demonstrated how the inclusion of
the 3B interaction has to be performed in a di↵erent man-
ner between the 1B and 2B e↵ective terms. The e↵ective
operators, built through an inspired improved version of
normal ordering of the many-body hamiltonian, greatly
improve the enumeration of diagrams in the perturba-
tive expansion of the SP propagator. Furthermore they
prove to be strongly useful when rewriting the equation
for the 1B propagator in terms of the interaction � vertex
functions. We observed how these e↵ective operators fa-
cilitate the perturbative expansion of the SP propagator
grouping di↵erent contributions in single diagrams.

Solving the EOM for the SP propagator allowed us
to encounter a complete expression for the proper self-
energy including consistently 1B, 2B and 3B forces, which
correctly counts terms in the dressing of the SP propa-
gator when performing the iterative Dyson’s equation.
Through the hierarchy of EOM, we encountered a com-
plete expression for the 4-point � vertex function, which
embodies all higher order interacting contributions be-
yond the mean-field. Truncation to second order of this
function, together with a second order expression for the
6-point � function, provides the third order approxima-
tion for the irreducible self-energy, which proved to cor-
respond to diagrams obtained perturbatively in the dia-
grammatic expansion of the SP propagator.

We presented corrections for the energy of the many-
body ground state computed via means of the GMK sum-
rule. Two possible approaches have been proposed, which

require calculation of either the 2B or 3B operator mean-
value in the many-body ground state of the system. Cal-
culation performed using this extended SCGF formalism
have been presented recently. The inclusion of 3B nuclear
forces turn out to be crucial at the hour of calculating
ground state energies for nitrogen, oxygen and fluorine
isotopic chains [31]; the importance of 3B nuclear forces
have proved to be necessary not only in finite systems,
but even more in infinite systems, providing the neces-
sary repulsion for nuclear matter to get to saturation at
consistent values of energy/densities [32].

This expanded approach gives further credit to the
study of nuclear systems from a Green’s functions point
of view. The power embodied in this formalism lies in
the possibility of obtaining from one single many-body
approach, many relevant quantities for the description of
a quantum many-body system, from binding energies, to
thermodynamical behavior, to the description of trans-
port quantities, or pairing.

We consider this expanded approach an interesting tool
to study quantum many-body systems from an ab-initio

microscopic point of view, which can grasp the correlated
non perturbative behavior of the system.
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Appendix A: Feynman diagrams rules for 2- and
3-body interactions

Non trivial symmetry factors can arise in diagrams
that include many-body interaction terms. This ap-
pendix reviews the corresponding Feynman rules both
in time and energy formulation, and gives some specific
examples.

The perturbartion formula of Eq. (7) is trivially gener-
alized to the one for p-body propagators, such as Eqs. (3)
and (4). At k-th order in perturbation theory, any con-
tribution from the time-ordered product in Eq. (7)—or
from its generalisation—is represented as a diagram with
2p external points and to k interacting vertexes all con-
nected by means of oriented lines. This lines arise from
contractions between annihilator and creator operators:

a
�

(t)a†
�

(t0) ⌘ h�N

0

|T
⇥

a
�

(t)a†
�

(t0)
⇤

|�N

0

i = i~G(0)

��

(t� t0) .

Applying the Wick’s theorem results in the following
Feynman rules.

Rule 1: Draw all, topologically distinct and connected

or!

(Galitskii-Migdal-Boffi-) Koltun sumrule 
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FIG. 2: Single-particle energies of the neutron d5/2, s1/2 and
d3/2 orbitals measured from the energy of 16O as a function of
neutron number N . (a) SPE calculated from a G matrix and
from low-momentum interactions Vlow k. (b) SPE obtained
from the phenomenological forces SDPF-M [14] and USD-
B [15]. (c,d) SPE including contributions from 3N forces due
to∆ excitations and chiral EFT 3N interactions at N2LO [26].
The changes due to 3N forces based on ∆ excitations are
highlighted by the shaded areas.

sures N = 8, 14, 16, and 20. The evolution of the SPE
is due to interactions as neutrons are added. For the
SPE based on NN forces in Fig. 2 (a), the d3/2 orbital
decreases rapidly as neutrons occupy the d5/2 orbital,
and remains well-bound from N = 14 on. This leads
to bound oxygen isotopes out to N = 20 and puts the
neutron drip-line incorrectly at 28O. This result appears
to depend only weakly on the renormalization method
or the NN interaction used. We demonstrate this by
showing SPE calculated in the G matrix formalism [11],
which sums particle-particle ladders, and based on low-
momentum interactions Vlow k [12] obtained from chiral
NN interactions at next-to-next-to-next-to-leading order
(N3LO) [13] using the renormalization group. Both cal-
culations include core polarization effects perturbatively
(including diagram Fig. 3 (d) with the ∆ replaced by a
nucleon and all other second-order diagrams) and start
from empirical SPE [14] in 17O. The empirical SPEs con-
tain effects from the core and its excitations, including
effects due to 3N forces.
We next show in Fig. 2 (b) the SPE obtained from the

phenomenological forces SDPF-M [14] and USD-B [15]
that have been fit to reproduce experimental binding en-

ergies and spectra. This shows a striking difference com-
pared to Fig. 2 (a): As neutrons occupy the d5/2 orbital,
with N evolving from 8 to 14, the d3/2 orbital remains
almost at the same energy and is not well-bound out to
N = 20. The dominant differences between Figs. 2 (a)
and (b) can be traced to the two-body monopole compo-
nents, which determine the average interaction between
two orbitals. The monopole components of a general two-
body interaction V are given by an angular average over
all possible orientations of the two nucleons in orbitals lj
and l′j′ [16],

V mono
j,j′ =

∑

m,m′

⟨jm j′m′|V |jm j′m′⟩
/

∑

m,m′

1 , (1)

where the sum over magnetic quantum numbers m and
m′ can be restricted by antisymmetry (see [17, 18] for
details). The SPE of the orbital j is effectively shifted by
V mono
j,j′ multiplied by the occupation number of the orbital

j′. This leads to the change in the SPE and determines
shell structure and the location of the drip-line [17–20].
The comparison of Figs. 2 (a) and (b) suggests that the

monopole interaction between the d3/2 and d5/2 orbitals
obtained from NN theories is too attractive, and that the
oxygen anomaly can be solved by additional repulsive
contributions to the two-neutron monopole components,
which approximately cancel the average NN attraction
on the d3/2 orbital. With extensive studies based on NN
forces, it is unlikely that such a distinct property would
have been missed, and it has been argued that 3N forces
may be important for the monopole components [21].
Next, we show that 3N forces among two valence neu-

trons and one nucleon in the 16O core give rise to repul-
sive monopole interactions between the valence neutrons.
While the contributions of the FM 3N force to other
quantities can be different, the shell-model configurations
composed of valence neutrons probe the long-range parts
of 3N forces. The repulsive nature of this 3N mechanism
can be understood based on the Pauli exclusion princi-
ple. Figure 3 (a) depicts the leading contribution to NN
forces due to the excitation of a ∆, induced by the ex-
change of pions with another nucleon. Because this is
a second-order perturbation, its contribution to the en-
ergy and to the two-neutron monopole components has
to be attractive. This is part of the attractive d3/2-d5/2
monopole component obtained from NN forces.
In nuclei, the process of Fig. 3 (a) leads to a change of

the SPE of the j,m orbital due to the excitation of a core
nucleon to a ∆, as illustrated in Fig. 3 (b) where the ini-
tial valence neutron is virtually excited to another j′,m′

orbital. As discussed, this lowers the energy of the j,m
orbital and thus increases its binding. However, in nuclei
this process is forbidden by the Pauli exclusion princi-
ple, if another neutron occupies the same orbital j′,m′,
as shown in Fig. 3 (c). The corresponding contribution
must then be subtracted from the SPE change due to
Fig. 3 (b). This is taken into account by the inclusion

Chiral EFT for nuclear forces: 

Need at LEAST 3NF!!! 
(“cannot” do RNB physics without…)!

Single particle spectrum at Efermi:!
!

Saturation of nuclear matter:!

[T. Otsuka et al.,
Phys Rev. Lett  105, 
032501 (2010)]

[A. Carbone et al.,  
Phy.s Rev. C 88, 044302!!(2013)]

SYMMETRIC NUCLEAR MATTER WITH CHIRAL THREE- . . . PHYSICAL REVIEW C 88, 044302 (2013)

Note that the N2LO potential yields a poorer reproduction of
the phase shifts for selected partial waves compared to the
richer N3LO force.

Most nuclear matter calculations using chiral forces have
been performed within a perturbative framework starting
from evolved interactions. In Ref. [43], convergence has
been analyzed order by order in many-body perturbation
theory. Results have been obtained up to third order, including
particle-particle and hole-hole propagation [43]. In principle,
the equation of state should be independent of the evolution
scales in the 2NF and the 3NF. Moreover, in the perturbative
regime, results should only be mildly dependent on the order in
perturbation theory. Our nonperturbative calculations include
contributions to all orders and hence are neither limited to the
perturbative regime nor dependent on the order of perturbation
theory. If the diagrammatic summation is complete, it should
lead to scale-invariant results.

We test this hypothesis by performing calculations at
different evolution scales, in both the two- and the three-
body sectors. We evolve the 2NF using a free-space SRG
transformation [37]. The transformation renormalizes the 2NF,
suppressing off-diagonal matrix elements and giving rise to
a universal low-momentum interaction. The SRG evolution
flow also induces many-body forces, which should be taken
into account to keep the calculation complete. Following the
philosophy of Ref. [43], we incorporate the effect of induced
forces through the refitting of the cD and cE LECs to the 3H
binding energy and 4He matter radius. We use the values given
in Table I of [43]. Note that in this process we assume that
the operatorial and momentum structures of the original and
the induced 3NFs are the same. Furthermore, we explore the
dependence of our results on the 3NF cutoff, !3NF, appearing
in the density-dependent 2NF. A more complete calculation
would require running a SRG evolution including the 3NF [41].

We present the results of this exploration in Fig. 8.
Numerical calculations obtained using the SRG on the 2NF
have a saturation point which is much closer to the empirical
value when compared to the original force. Moreover, if
the 2NF has been SRG-evolved, the results are somewhat
independent of the cutoff. Overall, one can say that the
more the 2NF is evolved downward, the more attractive the
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FIG. 8. (Color online) SCGF results for the energy per nucleon
of SNM as a function of the density at a temperature of T = 5 MeV.
Different lines represent different choices of cutoffs for the 2NF, λ,
and the 3NF, !3NF.

saturation curve becomes. This effect is a consequence of the
shift in importance between the 2NF and the induced 3NF
associated with the SRG. There is also a small dependence on
!3NF, but the differences agree well with those presented in
Ref. [43].

The large differences between the results obtained with
evolved and unevolved forces is striking. If correlations and
induced many-body forces had been fully taken into account,
one would have expected a much closer agreement between
the results. This difference might indicate that the assumptions
associated with induced 3NFs are not necessarily robust.
Missing induced three-body forces, which up to now have
not been included in SNM calculations, could resolve this
discrepancy. Alternatively, the difference is also an indication
of missing many-body effects such as, for instance, higher
orders in the treatment of the 3NF. It must be emphasized that
the present way to proceed when applying SRG evolution
in infinite matter should be improved by carrying out the
evolution on a full Hamiltonian with both two- and three-body
forces. Recently, improvements toward the solution of this
problem have been presented for calculations in pure neutron
matter [41], where a full Hamiltonian has been consistently
evolved. All in all, our results seem to contradict the idea that
induced 3NFs can be treated simply in nuclear matter.

In terms of evolved interactions, our nonperturbative
calculations can be used to check whether the perturbative
regime is actually reached. To this end, we compare, in
Fig. 9, our results to the perturbative calculations presented
in Ref. [43]. The BHF and SCGF calculations have been
performed with a SRG-evolved 2NF and a 3NF with the same
cut-offs, λ/!3NF = 2.0/2.0 fm−1. Whereas the Brueckner
results have been obtained with a zero-temperature code, the
SCGF calculations have been extrapolated to zero temperature
by means of a simple procedure. At low temperatures,
the Sommerfeld expansion indicates that the effect of tem-
perature is quadratic and is the same, but with opposite sign,
for the energy and the free energy [47]. Consequently, the
semi-sum of both thermodynamical potentials is an estimate
of the zero-temperature energy. We obtain an extremely
good agreement between both many-body approaches and
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FIG. 9. (Color online) Comparison of results for the energy per
nucleon of SNM obtained with different approaches using the same
SRG-evolved 2NF and a 3NF. Circles correspond to extrapolated
SCGF results, whereas squares are BHF calculations at T = 0 MeV.
Diamonds correspond to the results of Hebeler et al. [43].
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Benchmark of ab-initio methods in 
the oxygen isotopic chain  Benchmarking different ab-initio methods in the 

oxgyen chain
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!   d3/2 raised by genuine 3NF 

!   cf. microscopic shell model [Otsuka 
et al, PRL105, 032501 (2010).]!

Results for the N-O-F chains 
 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 

and   arXiv:1412.3002 [nucl-th] (2014) 



! 3NF crucial for reproducing binding energies and driplines around oxygen 
 
!   cf. microscopic shell model [Otsuka et al, PRL105, 032501 (2010).]!

N3LO (Λ = 500Mev/c) chiral NN interaction evolved to 2N + 3N forces (2.0fm-1) 
N2LO (Λ = 400Mev/c) chiral 3N interaction  evolved (2.0fm-1)!

 A. Cipollone, CB, P. Navrátil, Phys. Rev. Lett. 111, 062501 (2013) 
and Phys. Rev. C 92, 014306 (2015) 

Results for the N-O-F chains 
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! Single particle spectra 
slightly to spread and 

 
!   systematic 

underestimation of radii!

 A. Cipollone, CB, P. Navrátil, Phys. Rev. C 92, 014306 (2015) 
Results for the oxygen chain 
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Fig. 6. One-nucleon knockout schematics. A nucleon is removed from the projectile upon peripherally colliding with
a light target, here 9Be. Gamma-ray spectroscopy in coincidence with the knockout residue serves to identify the final
state. The longitudinal momentum distribution of the residue provides information on the ⌥-value of the knocked-out
nucleon. Adapted with permission from [75].
c⇥ 2003, by Macmillan Publishers Ltd: Nature.

At the NSCL, direct one-nucleon knockout reactions from fast exotic beams have been
developed into a powerful tool to extend the detailed study of the nuclear wave function to short-
lived species [73,74]. In the collision of a fast projectile beam with a light, absorptive target,
typically 9Be, a neutron or proton is removed from the projectile in a single-step, direct reaction:
9Be (AZ, A�1Z + ⇥ )X and 9Be (AZ, A�1Z � 1 + ⇥ )X. The shape of the longitudinal momentum
distribution of the heavy residue carries the information on the orbital angular momentum (⌥-
value) of the knocked-out nucleon – in analogy to the angular distributions in the conventional,
low-energy transfer reactions. Gamma-ray spectroscopy in coincidence with the projectile-like
knockout residue provides the identification of the final state. In comparison to reaction theory,
spectroscopic factors, which relate to the occupation number of single-particle orbitals, can
be derived from measured partial cross sections to individual final states of the residue. One-
nucleon knockout reactions thus provide an identification of single-particle components in the
ground state wave function of the unstable projectile and a measure of the relative separation
and occupation of singe-particle levels. These quantities allow for detailed tracking of changes
in nuclear structure beyond the valley of � stability on the level of the single-particle degree of
freedom. The relative location of single-particle orbits and their occupation by nucleons provide
benchmark tests for modern theories – for ab initio calculations applicable for light nuclei below
mass A = 12 as well as for many-body shell-model approaches that are largely based on effective
interactions.

At intermediate beam energies (⇤50 MeV/nucleon), a theoretical description [76,77] in
the framework of straight-line trajectories (eikonal approach) and sudden approximation is
applicable. Therefore, the model dependence is reduced compared to the classical low-energy
transfer reactions, whose calculation involves the Distorted Wave Born Approximation (DWBA)
or higher-order formalisms, and which depend strongly on entrance- and exit-channel optical
model potentials [78] that have not been established for nuclei with extreme neutron-to-proton
ratios.

One-nucleon knockout reactions at intermediate beam energies have been successfully applied
at rates of less than 1 particle/s. The high sensitivity is tied to the high-beam energy that (i) allows
for the use of thick targets to enable high-luminosity experiments with low beam rates, (ii) leads
to strongly forward-focused reaction residues and (iii) ensures an optimum signal-to-noise ratio
from event-by-event particle tracking in the entrance and all exit channels.

A. GADE et al. PHYSICAL REVIEW C 77, 044306 (2008)

0.2

0.4

0.6

0.8

1.0

-20 -10 0 10 20

RS  (e,e'p): ∆S=Sp-Sn

RS  p-knockout: 
RS  n-knockout: 

R
S =

 σ
ex

p
 / 

σ th

∆S (MeV)

15C

12C

24Si

46Ar

16O

32Ar

34Ar

8B

9C

12C

16O

12C
7Li

16O

30Si

31P
40Ca 48Ca

51V

90Zr

208Pb
24Si

28S

28S∆S=Sp-Sn

∆S=Sn-Sp

FIG. 6. (Color online) Reduction of the measured nucleon knock-
out cross sections (spectroscopic strength) relative to theoretical
values as a function of the difference in separation energies of
the two nucleon species, !S (see text). The data points are from
Refs. [5,13–16,19,24]. Those from the present work, labeled 24Si and
28S, appear on the extreme left- and right-hand sides of the figure.
Only experimental uncertainties are included.

of the differences in separation energies of the deficient and
excess nucleon species in the projectile, !S. For proton
removal we define !S = Sp − Sn and for neutron removal
!S = Sn − Sp, where Sn and Sp are the effective nucleon
separation energies. The quantity !S is a measure of the
asymmetry of the Fermi surfaces in each nucleus. !S takes
on large negative values for reactions where a weakly bound
nucleon of the excess species is removed and large positive
values for reactions where a strongly bound nucleon of the
deficient species is removed.

The plot includes data points from both heavy-ion-induced
one-proton and one-neutron knockout reactions and from
the electron-induced proton removal from stable nuclei.
Unlike the earlier comparisons of the (e, e′p) spectroscopic
strengths with the extreme independent-particle model, that
yield factors Rs ≈ 0.6-0.7, here we compare with shell-model
spectroscopic factors, as was carried out in Ref. [24]. Near
!S = 0 — the stable and well-bound systems — the values
cluster around reduction factors Rs ≈ 0.5–0.7, with heavy-ion
and electron-induced knockout in agreement. At the extremes
of nuclear binding, reduction factors Rs ≈ 0.25–0.40 are
found in the removal of a nucleon of the deficient species [e.g.,
the results from the present study of (24Si,23Si) and (28S,27S),
whereas the reduction factors are much closer to unity, with
Rs ≈ 0.80–1.0, when the removed nucleon is in excess (e.g.,
the results from the present study of (24Si,23Al) and (28S, 27P)].
The results of the present work fit nicely into the existing
systematics and give additional support to the suggestion
that the strength of correlation effects, missing to an (as yet)
unknown extent from effective interaction theories — here the
shell model — depend on the asymmetry of the two nucleon
Fermi surfaces. The present work suggests an enhancement of
the correlation effects experienced by strongly bound valence
nucleons of the deficient type and weakened correlations of
the excess nucleons at the weakly bound Fermi surface.
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FIG. 7. (Color online) Deduced values of Rs for the reactions
9Be(24Si,23Al)X and 9Be(24Si,23Si)X as obtained using different
Skyrme parametrizations as input to the HF calculations used for
the reaction methodology. The Rs factors obtained when using the
Skm∗, Sly4, Bsk9, Skxs15, Skxs20, and Skxs25 interactions agree
within the quoted uncertainties on the value deduced using the SkX
Skyrme parametrization used here. The SkX values are indicated by
the horizontal lines.

Finally, we address the sensitivity of the reaction method-
ology to details of the Skyrme interaction used to constrain
the residue densities and the rms radii rsp of the wave
functions of the removed nucleons. Figure 7 shows the
deduced suppression factors Rs for the reactions 9Be (24Si,
23Al)X and 9Be(24Si, 23Si)X for several different Skyrme
parametrizations, including the SkX model, favored here.

As mentioned in Sec. III, we use the SkX Skyrme inter-
action [35] for the nuclear densities and single-particle rms
radii because it has been extensively tested with regard to size
and binding energy observables [36–38]. But there are other
Skyrme parameter sets available. The main difference between
them can be related to the nuclear-matter incompressibility K
and the slope of the neutron equation-of-state near nuclear-
matter density Pn. Pn is correlated with the neutron-skin
thickness in nuclei with N ̸= Z [52] and hence can be a
source of uncertainty for the densities and single-particle radii
in nuclei far from stability. The SkX interaction has a relatively
large incompressibility, K = 270 MeV, and a neutron skin of
T = rn − rp = 0.16 fm for 208Pb, where rp/n is the rms radius
for protons/neutrons. Thus, we need to test the sensitivity of
our results to reasonable variations in the Skyrme parameters
related to these quantities. The results for one-proton and
one-neutron removal from 24Si are shown in Fig. 7. Skm∗ [53]
is used because it gives a slightly better surface diffuseness for
the charge density [37,54] compared to SkX. This change can
be traced to a smaller nuclear matter incompressibility, which
is smaller for Skm∗ (K = 215 MeV) compared to SkX. The
recent Skxs15, Skxs20, and Skxs25 Skyrme interactions [54]
represent a reasonable variation of neutron-skin thickness in
208Pb [52], with T = 0.15, 0.20, and 0.25 fm, respectively,
and all have K = 200 MeV. We also compare to results
with the widely used Sly4 interaction [55] (K = 230 MeV
and T = 0.16 fm) and with the Bsk9 interaction [56] ob-
tained from a recent global fit to binding energies together
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Quenching of absolute spectroscopic factors�
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Ab-initio calculations explain the Z/N dependence but the 
effect is much lower than suggested by direct knockout 
 
Effects of continuum become important at the driplines 

Spectroscopic factor are strongly 
correlated to p-h gaps: 

Z/N asymmetry dependence of SFs - Theory 
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This term automatically corrects for the zero point motion in
the oscillator basis but it depends explicitly on the number
of particles. In this work, we are interested in transitions to
states with different numbers of nucleons (A ± 1) and aim at
computing directly the differences between the total energies.
Therefore, the above correction should not be employed in
the present case. One may note that the separation of the
center-of-mass motion is an issue related to the choice made for
the model space, rather than the many-body method itself. For
example, expressing the propagators directly in momentum
space would allow an exact separation. In this situation, the
transformation between the center-of-mass and laboratory
frames for systems with a nucleon plus a A-nucleons [or
(A-1)-nucleons] core would also be simple.

A. Choice of κM

Equation (16) introduces a single parameter (κM ) in our
calculations. The reason for this modification is that the spec-
troscopic factors of the valence orbits are strongly sensitive to
the particle-hole gap. This sensitivity is to be expected because
collective modes in the 56Ni core are dominated by excitations
across the Fermi surface. Smaller gaps imply lower excitation
energies and higher probability of admixture with valence
orbits. To extract meaningful predictions for spectroscopic
factors it is therefore necessary to constrain the Fermi gaps
for protons and neutrons to their experimental values.

To investigate this dependency we repeated our calculations
for values of κM in the range 0.4–0.7 MeV. Figure 3 shows
the resulting neutron spectroscopic factors for the valence
p3/2 quasiparticle and f7/2 quasihole. These are plotted
as a function of the calculated particle-hole gap "Eph =
ε+

1p3/2,n=0 − ε−
0f7/2,k=0. The results correspond to model spaces

of different dimensions (eight or ten oscillator shells) and
oscillator frequencies (h̄$ = 10 or 18 MeV). The gap "Eph
increases with κM but the dependence on the model space is
weak. We notice that, once the experimental value of "Eph
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FIG. 3. (Color online) Dependence of neutron spectroscopic
factors (given as a fraction of the independent-particle model value)
for the 1p3/2 and the 0f7/2 valence orbits with respect to the ph gap
"Eph. For each model space, different points correspond to different
choices of κM in the range 0.4–0.7 MeV.

is reproduced, the spectroscopic factors are well defined and
found to be converged with respect to the given model space.

All results reported below were obtained with a fixed value
of κM = 0.57 MeV. In the Nmax = 9 model space and an
oscillator energy h̄$ = 10 MeV, this choice reproduces the
experimental gaps at the Fermi surface for both protons and
neutrons to an error within 70 keV. From Fig. 3 one infers
that the calculated spectroscopic factors are reliable to within
1–2% of the independent-particle model value.

B. Convergence with respect to the model space

Figure 4 shows the dependence of the neutron 1p3/2 particle
and the 0f7/2 hole energies with respect to the oscillator
frequency and the size of the model space. As can be seen
from this figure, the single-particle energies for these two
single-particle states tend to stabilize around eight to ten
major shells. This finding concords both with coupled-cluster
calculations that employ a G matrix as effective interaction
for 16O, see Refs. [71] and [70], and with analogous Green’s
functions studies [31]. It remains, however, to make an
extensive comparison between coupled-cluster theory and the
Green’s functions approach to find an optimal size of the
model space with a given nucleon-nucleon interaction. Finally,
we plot in Fig. 5 the neutron valence single-particle energies
for all the single-particle states in the 1p0f shell. The latter
results were obtained with our largest model space, ten major
shells with Nmax = 9 and the single-particle orbital momentum
l ! 7. As can be seen from this figure, there is still, although
weak, a dependence upon the oscillator parameter. To perform
calculations beyond ten major shells will require nontrivial
extensions of our codes.

-16

-14

-12

-10

-8

-6

ε+ p 3/
2 [M

eV
]

Nmax = 3
Nmax = 5
Nmax = 7
Nmax = 9

8 10 12 14 16 18 20

hΩ [MeV]

-24

-22

-20

-18

-16

-14

ε- f 7/
2 [M

eV
]

3

5

7

9

9

7

5

3

p3/2

f7/2
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Ab-initio calculations explain the Z/N dependence but the 
effect is much lower than observed 
 
Effects of continuum become important at the driplines 

arXiv:1412.3002 [nucl-th] (2014) 
[Hagen et al. 
Phys. Rev. Lett. 107, 032501 (2011)] 

overlap ratios at larger radii comes from the fact that the
p1=2 proton orbital become more and more bound as more
neutrons are added to 16O. For 14O the p1=2 proton is less
bound with respect to 16O, resulting in a bend upward. As
we approach the neutron dripline, the one-neutron emis-
sion thresholds for the oxygen isotopes and their neighbor-
ing nitrogen isotopes get closer to the scattering threshold.
Clearly, the tail of the wave functions will play a more
important role as the outermost neutrons get closer to the
scattering threshold. It is exactly this effect we observe in
our calculations of the SFs for proton removal. Using a HF
basis of purely harmonic oscillator wave functions, the
density in the interior region of the nucleus is overesti-
mated, while the density is shifted towards the tail when
using a basis with correct asymptotic behavior. One should
note that the nitrogen isotopes for a given neutron number
are more loosely bound than their corresponding oxygen
isotones, and this is the essential reason for the reduction.
For 28O and 27N, no experimental values are available but
if 28O exists it will be very loosely bound and we may
assume that 27N is unbound.

Finally, we show in Fig. 3 the SFs of the proton and
neutron states closest to the Fermi surface (for protons
the p1=2-state), as a function of the difference between the
computed proton and neutron separation energies. The
results here agree excellently with similar interpretations
made in Refs. [9,10]. One sees clearly an enhancement of
correlations for the strongly bound, deficient nucleon
species with increasing asymmetry.

In conclusion, we have found a large quenching of the
spectroscopic factors for the deeply-bound proton states
near the Fermi surface in the neutron-rich oxygen isotopes.
This can be ascribed mainly to many-body correlations
arising from a proper treatment of neutron scattering states.
These results agree nicely with the mathematical analysis
performed by Michel et al. [19]. This result for the oxygen

isotopes is similar to what has been inferred from neutron
knockout reaction cross sections for deeply-bound neutron
states near the Fermi surface in proton-rich sd-shell nuclei
[9,10]. Clearly, more work is needed to confirm the con-
nection; experiments for proton knockout from oxygen
should be undertaken and many-body calculations for
proton-rich, heavy nuclei need to be carried out.
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included all single-particle states spanned by 17 major
oscillator shells.

Figure 1 shows the calculated SFs for removing a proton
in the p1=2 and p3=2 partial waves of 14;16;22;24;28O. We
compare our calculations of the SFs to calculations using
an HF basis built entirely from harmonic oscillator basis
functions (HF-OSC, dashed lines). The results are obtained
with an harmonic oscillator energy @! ¼ 30 MeV. Our
calculations of the SFs depend weakly on the harmonic
oscillator frequency, see, for example, Ref. [12]. The p1=2

and p3=2 proton orbitals are close to the Fermi level. In a
traditional shell-model picture we would therefore expect
SFs close to unity for such states. However, we find a
significant quenching of the SFs due to the coupling-to-
continuum degrees of freedom. The calculations done with
a HF-OSC basis show no significant quenching, and illus-
trate clearly the limitation of the harmonic oscillator basis
representation of weakly bound, neutron-rich nuclei. This
observation agrees also nicely with the analysis of Michel
et al. [19]. There, the authors demonstrate that the energy
dependence of SFs due to an opening of a reaction channel
can only be described properly in shell-model calculations
if correlations involving scattering states are treated
properly.

In our calculations the closed-shell oxygen isotopes
14;16;22;24;28O are all bound with respect to neutron emission
(for this particular N3LO interaction with cutoff ! ¼
500 MeV). In particular, we get 28O bound by 3.67 MeV
with respect to one-neutron emission. However, starting
from anN3LO interaction with a cutoff! ¼ 600 MeV, we
get 28O unbound with respect to four-neutron emission and
24O, as seen in Ref. [20]. To judge the theoretical basis for

the demonstrated continuum effect, we also computed SFs
for the proton removal from 14;16;22O using the ! ¼
600 MeV N3LO interaction model. We found similar re-
sults as for the ! ¼ 500 MeV N3LO interaction model,
and conclude that the theoretical uncertainties related to
short-range correlations do not seem to impair the results
reported here.
To further understand the role of correlations beyond

mean-field we compared the SF for p1=2 proton removal
from 24O for three different approximations to jAi and
jA" 1i. To get bound solutions for 24O in simpler calcu-
lation schemes, we softened the N3LO interaction through
similarity renormalization group (SRG) methods [21]. For
each approximation we considered three values of the SRG
flow parameter ! ¼ 3:2, 3.4, 3:6 fm"1. First, in the crudest
approximation, using a mean-field HF solution for jAi and
jA" 1i, the SFs are by definition equal to unity. Secondly,
we used a HF solution for jAi while jA" 1i was approxi-
mated by one-hole and two-hole-one-particle excitations
on the HF ground state jAi. In this case we observed about
15%–20% reduction in the SFs. Finally, our EOM-CC
approach in Eq. (2), gave a reduction of 20%–25% over
the range of ! considered. This clearly shows the impor-
tance of correlations beyond the mean-field. Varying the
SRG flow parameter from 3:2 fm"1 to 3:6 fm"1 we found
that the SFs varied from 0.79 to 0.75, illustrating the role of
short-range correlations.
The shape of the calculated overlap functions reveals

more information. In order to probe the sensitivity of the
tail of the overlap functions as we move towards 28O, we
compute the ratios of the absolute square of the radial
overlap functions to the jh15Njaljj16Oij2 radial overlap
function. These results are shown in Fig. 2 for the p1=2

proton state (the p3=2 proton state shows a very similar
pattern). A notable reduction of these norms towards more
neutron-rich nuclei is seen. The downward dip of the
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We present microscopic coupled-cluster calculations of the spectroscopic factors for proton removal

from the closed-shell oxygen isotopes 14;16;22;24;28O with a chiral nucleon-nucleon interaction at next-to-

next-to-next-to-leading order. We include coupling-to-continuum degrees of freedom by using a Hartree-

Fock basis built from a Woods-Saxon single-particle basis. This basis treats bound and continuum states

on an equal footing. We find a significant quenching of spectroscopic factors in the neutron-rich oxygen

isotopes, pointing to enhanced many-body correlations induced by strong coupling to the scattering

continuum above the neutron emission thresholds.
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The concept of independent particle motion, and mean-
field approaches based thereupon, has played and contin-
ues to play a fundamental role in studies of quantum
mechanical many-particle systems. From a theoretical
standpoint, a single-particle (or quasiparticle) picture of
states near the Fermi surface offers a good starting point for
studies of systems with many interacting particles. For
example, the success of the nuclear shell model rests on
the assumption that the wave functions used in nuclear
structure studies can be approximated by Slater determi-
nants built on various single-particle states. The nuclear
shell model assumes thus that protons and neutrons move
as independent particles with given quantum numbers,
subject to a mean field generated by all other nucleons.
Deviations from such a picture have been interpreted as a
possible measure of correlations. Indeed, correlations are
expected to reveal important features of both the structure
and the dynamics of a many-particle system beyond the
mean-field picture.

In a field like nuclear physics, where the average density
in nuclei is high and the interaction between nucleons is
strong, correlations beyond the independent-particle mo-
tion are expected to play an important role in spectroscopic
observables. Experimental programs in low-energy nuclear
physics aim at extracting information at the limits of
stability of nuclear matter. Correlations which arise when
moving towards either the proton or the neutron dripline
should then provide us with a better understanding of shell
structure and single-particle properties of nuclei. So-called
magic nuclei are particularly important for a fundamental
understanding of single-particle states outside shell clo-
sures, with wide-ranging consequences spanning from our
basic understanding of nuclear structure to the synthesis of
the elements [1,2]. Unfortunately, the correlations in
many-particle systems are very difficult to quantify

experimentally and to interpret theoretically. There are
rather few observables from which clear information on
correlations beyond an independent particle motion in a
nuclear many-body environment can be extracted.
A quantity which offers the possibility to study devia-

tions from a single-particle picture, and thereby provide
information on correlations, is the spectroscopic factor
(SF). From a theoretical point of view they quantify what
fraction of the full wave function can be interpreted as an
independent single-particle or single-hole state on top of a
correlated state, normally chosen to be a closed-shell nu-
cleus. Although not being experimentally observable
[3–5], the radial overlap functions, whose norm are the
SFs, are required inputs to theoretical models for nucleon
capture, decay, transfer and knockout reactions. There is
a wealth of experimental data and theoretical analysis
of such reactions for stable nuclei [1,6,7]. Data from
(e, e0p) experiments on stable nuclei [1] indicate that
proton absolute SFs are quenched considerably with re-
spect to the independent-particle model value, with short-
range and tensor correlations assumed to be an important
mechanism. Adding long-range correlations as well from
excitations around the Fermi surface, one arrives at a
quenching of 30%–40%, see, for example, Ref. [8].
Nuclear physics offers therefore a unique possibility,
via studies of quantities like SFs, to extract information
about correlations beyond mean-field in complicated, two-
component, many-particle systems.
Recent data on knockout reactions on nuclei with large

neutron-proton asymmetries indicate that the nucleons of
the deficient species, being more bound, show larger re-
ductions of spectroscopic strength than the less bound
excess species [9,10]. It is the aim of this work to under-
stand which correlations are important when one moves
towards more weakly bound systems. For this, we study the
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fair agreement obtained for the calculation of the 16O rms
radii performed with the SLy4 interaction [31] compared to
the values deduced from 16Oðe; e0pÞ15Ngs and 15N3=2#
analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and

OFs obtained from the single-particle Green’s function in
the third order algebraic diagrammatic construction
method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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FIG. 3 (color online). Radial dependence of (a), (b) the OFs for
WS and microscopic (SCGF) [30] form factors normalized to 1;
(c), (d) the OF difference $ (SCGF#WS).

TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.

RHFB
rms r0 C2Sexp C2Sth Rs C2Sexp C2Sth Rs

Reaction E' (MeV) J% (fm) (fm) (WS) 0pþ 2@! (WS) (SCGF) (SCGF) (SCGF)

14O (d, t) 13O 0.00 3=2# 2.69 1.40 1.69 (17)(20) 3.15 0.54(5)(6) 1.89(19)(22) 3.17 0.60(6)(7)
14O (d, 3He) 13N 0.00 1=2# 3.03 1.23 1.14(16)(15) 1.55 0.73(10)(10) 1.58(22)(2) 1.58 1.00(14)(1)

3.50 3=2# 2.77 1.12 0.94(19)(7) 1.90 0.49(10)(4) 1.00(20)(1) 1.90 0.53(10)(1)
16O (d, t) 15O 0.00 1=2# 2.91 1.46 0.91(9)(8) 1.54 0.59(6)(5) 0.96(10)(7) 1.73 0.55(6)(4)
16O (d, 3He) 15N [19,20] 0.00 1=2# 2.95 1.46 0.93(9)(9) 1.54 0.60(6)(6) 1.25(12)(5) 1.74 0.72(7)(3)

6.32 3=2# 2.80 1.31 1.83(18)(24) 3.07 0.60(6)(8) 2.24(22)(10) 3.45 0.65(6)(3)
18O (d, 3He) 17N [21] 0.00 1=2# 2.91 1.46 0.92(9)(12) 1.58 0.58(6)(10)
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analyses [5], both states with large SFs. We thus adopted
the HFB radii calculated for the 0p wave functions for 14O
and 18O and deduced the corresponding values of r0. The
same calculation was done with other Skyrme interactions,
always in fair agreement with the 16Oðe; e0pÞ results, from
which we deduced a variance for r0.

The calculated angular distributions were normalized to
the data by a factor C2Sexp, which defines a so-called
experimental SF. C2Sexp are mainly sensitive to the most
forward angles, and so little sensitive to the details of the
nuclear potentials. C2Sexp strongly depend on radii with
!SF=SF $ 6!rrms=rrms in the 14Oðd; tÞ analysis.

We first reanalyzed published data for single nucleon
pickup reactions at about the same incident energy in direct
kinematics [19–21] on 16O and 18O targets. The angular
distributions were well reproduced in all cases by CRC
calculations. For 16Oðd; 3HeÞ at 14 and 26 MeV=nucleon,
we obtained same C2Sexp, which confirms the energy in-
dependence of the analysis. For the 14O (d, 3He) and
14O (d; t) transfers, the shape of the angular distributions

is nicely reproduced (Fig. 2) by the CRC calculations
assuming a !l ¼ 1 transferred angular momentum, as
expected from the transfer of a 0p nucleon.
In the second approach, we employed ab initio SFs and
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method [ADC(3)] [14,32]. Calculations were based on
chiral two-body next-to-next-to-next-to leading order
(N3LO) [33] plus three-body next-to-next-to leading order
(N2LO) [34] interactions evolved to a cutoff ! ¼
1:88 fm#1, as introduced in Ref. [35]. All microscopic
OFs were further rescaled in coordinate space by the
same factor (i.e., introducing only one phenomenological
correction) to account for differences of predicted [30] and
experimental rms radius of 16O. The OFs corresponding to
the removal of main peaks at large and small nucleon
separation energies are shown in Figs. 3(a) and 3(b),
respectively, and compared to the Wood-Saxon prescrip-
tion. We note very little radial difference in the removal of
the strongly bound neutron in 14O.
We give in Table I the normalizations C2Sexp for the two

kinds of OFs. From theoretical SFs inputs, either micro-
scopic ab initio SFs [30] or shell-model SFs, we obtain a
theoretical value "thð#Þ and the reduction factor Rs ¼
"expð#Þ="thð#Þ. For shell-model SFs, we performed two
calculations with different valence space and interaction:
(i) in the 0pþ 2@! valence space with Oxbash [36] and
the WBT interaction [37] shown in Table I (here the active
orbitals are 0p3=2 and 0p1=2 and only 2p2h excitations
toward the sd orbitals are allowed), and (ii) in the
0p1s0d valence space with Nushellx [38] and a new inter-
action [39]. With the WBT interaction, we find good
agreement for the energies of the listed states, while with
the new interaction the energies of excited states in 13N and
15N disagree by several MeV. Finally, we show the reduc-
tion factor Rs, also plotted in Figs. 4(a) and 4(b), for WS
and microscopic OFs, respectively. In the total uncertainty,
we set apart in a box the uncertainties originating from the
analysis: (i) imperfect knowledge of entrance and exit
potentials, and (ii) the variance in the calculation of rms
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TABLE I. The normalization C2Sexp for two OFs, phenomenological (WS) and microscopic (SCGF) [30]. For the WS OF, the
r0 values were chosen to reproduce RHFB

rms , except for
16O for which Rrms was taken from (e, e0p) data (see text). The SFs C2Sth are

obtained from shell-model calculations with the WBT interaction. In the second part, the analysis was performed with microscopic
OFs and SFs. The two errors for C2Sexp and Rs are the experimental and analysis errors.
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! Analysis of 14O(d,t)13O and 14O(d,3He)13N transfer reactions @ SPIRAL!

-  Overlap functions and strengths from GF 

-  Rs independent of asymmetry!

[F. Flavigny et al, PRL110, 122503 (2013)] 

radii (and consequently of r0) due to different Skyrme
interactions, provided the rms radii of 15N extracted from
(e, e0p) [5] are reproduced. All the other experimental
uncertainties are accounted for by the error bars displayed
on Fig. 4. A rather flat trend is found without the need
for the large asymmetry dependence suggested by inter-
mediate energy knockout data analyzed with the eikonal
formalism [10]. For a quantitative evaluation, we fitted
the reduction factor with a linear dependence Rs¼
!"!Sþ". We obtained mean values for ! and " with
associated errors from a minimization over the 48 data sets,
considering (i) eight combinations of optical potentials for
the entrance and exit channels, (ii) three Skyrme interac-
tions to calculate the rms radii, and (iii) the two above-
mentioned shell-model calculations.

For the WS OF, the reduction factor Rs ¼ 0:538ð28Þð18Þ
(for !S ¼ 0 nuclei) is in agreement with Ref. [9] and the
slope parameter ! ¼ 0:0004ð24Þð12Þ MeV&1, therefore
consistent with zero. The first standard error obtained
over one data set depends on the experimental uncertain-
ties; the second one comes from the distribution over the 48
data sets. Within the error bars, the data do not contradict
the weak dependence found by ab initio calculations, with
!0 ¼ &0:0039 MeV&1 between the two 14O points in
Ref. [7], although the calculated !S is much reduced
compared to the experimental value.

Despite different OFs and SFs, the analysis
performed with the ab initio OF [30] provides very
similar results with Rsð!S¼0Þ¼0:636ð34Þð42Þ and !¼
&0:0042ð28Þð36ÞMeV&1, with calculated !S¼17:6MeV
[Fig. 4(b)].
In summary, we measured exclusive differential cross

sections at 18 MeV=nucleon for the 14Oðd; tÞ13O and
14Oðd; 3HeÞ13N transfer reactions and elastic scattering.
WS OFs with a constraint on HF radii and microscopic
OFs (obtained from SCFG theory) have been compared for
the first time for symmetric and very asymmetric nuclei
and gave similar results. We extracted the reduction factors
Rs over a high asymmetry range, !S ¼ '18:5 MeV, for
oxygen isotopes. From the good agreement between the
CRC calculations and the set of transfer data highlighted in
our work, the asymmetry dependence is found to be non-
existent (or weak), within the error bars. This result is in
agreement with ab initio Green’s function and coupled-
cluster calculations [7,14], but contradicts the trend
observed in nucleon knockout data obtained at incident
energies below 100 MeV=nucleon and analyzed with the
sudden-eikonal formalism. The disagreement of the two
systematic trends from knockout and transfer calls for a
better description of so-called direct reaction mechanisms
in order that a consistent picture of nuclear structure
emerges from measurements at different incident energies.
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tected in the High-Resolution Array (HiRA) [22] in coin-
cidence with the recoil residues detected in the S800 focal
plane [23]. An array of 16 HiRA telescopes [22] was
placed at 35 cm from the target where they subtended polar
angles of 6! " !lab " 45!. Each telescope contained
65 "m thick !E and 1500 "m thick E silicon strip de-
tectors, backed by 3.9 cm thick CsI(Tl) crystals. The strips
in these telescopes effectively subdivided each telescope
into 1024 pixels of 2 mm# 2 mm area. Detailed descrip-
tions of experimental setup can be found in Ref. [20].

Deuterons were identified in HiRAwith standard energy
loss techniques using the energy deposited in the!E and E
Silicon strip and CsI detectors. Reaction residues were
identified in the S800 spectrometer using the energy loss
and the time-of-flight (TOF) information of the focal plane
detectors [23]. Figures 1(a)–1(c) show the Q value spectra
for deuterons that stop in the thick Si detector for
pð34;36;46Ar; dÞ33;35;45Ar. The observed resolutions of 500,
470, and 410 keV FWHM for the transitions to the ground
states of 33;35;45Ar, respectively, agree with the expectation
from GEANT4 [24] simulations taking into account the finite
beam spot size, the energy resolution of the Si detectors,
energy loss, and angular straggling in the target.
Measurements using a 1:7 mg=cm2 carbon target reveal
that the background from reactions on carbon is negligible
when both deuteron and the heavy recoil are detected. The
absolute normalization of the cross section was achieved to
within 10% by directly counting the beam particles with a
microchannel plate detector [25] placed&10 cm upstream
of the target. This also provided the start TOF signal for
particles detected by the S800 spectrometer.

Figures 1(d)–1(f) show the differential cross sections for
the ground state transition of pð34Ar; dÞ33Ar,
pð36Ar; dÞ35Ar, and pð46Ar; dÞ45Ar, respectively. The solid
circles in the lower panels denote the data from present
measurements, and the open squares in Fig. 1(e) denote
previous 36Ar ðp; dÞ35Ar data in normal kinematics at
33:6 MeV=nucleon [21]. The agreement between the mea-
sured cross sections from the present work and Ref. [21]
for the first excited state is also very good [20]. For
pð46Ar; dÞ45Ar reaction, the ground state (f7=2) and the
first excited state (542 keV, p3=2) were not resolved for
center-of-mass angles larger than 8!. Fortunately, the l
values for the ground state (l ¼ 3) and first excited state
(l ¼ 1) are different, resulting in very different angular
distributions. Specifically, the angular distribution for the
excited state exhibits a deep minimum near !c:m: ¼

20!–27!, close to a factor of 100 smaller than that of
ground state; therefore, the cross sections for the ground
state could be unambiguously extracted [20].
The dashed curves in Figs. 1(d)–1(f) show the ADWA

calculations using the CH89 potential with the conven-
tional neutron bound-state Woods Saxon potential. The
solid lines in Figs. 1(d)–1(f) show the ADWA calculations
using the JLM microscopic potential and the bound-state
neutron potential, which have been constrained by Hartree-
Fock calculations. Both calculations reproduce the shape
of experimental angular distributions. Normalizing the
ADWA model calculations to the data results in the SF
values listed in Table I. Similar to previous analyses,
SFðJLMþ HFÞ values are about 30% smaller than the SF
(CH89) values. The ground state neutron SF’s for 34Ar and
36Ar were calculated in the sd-shell model space using
USDB effective interaction [26]. The ground state neutron
SF for 46Ar was calculated in the sd-pf model space using
the interaction of Nummela et al. [27].

TABLE I. Experimental and theoretical neutron spectroscopic factors (SF) and reduction factors (Rs) for ground state 34Ar, 36Ar and
46Ar.

(theo.) (expt.) (expt.)
Isotopes lj# Sn(MeV) !S (MeV) SF(LB-SM) SFðJLMþ HFÞ RsðJLMþ HFÞ SF(CH89) RsðCH89Þ

34Ar s1=2þ 17.07 12.41 1.31 0:85) 0:09 0:65) 0:07 1:10) 0:11 0:84) 0:08
36Ar d3=2þ 15.25 6.75 2.10 1:60) 0:16 0:76) 0:08 2:29) 0:23 1:09) 0:11
46Ar f7=2* 8.07 *10:03 5.16 3:93) 0:39 0:76) 0:08 5:29) 0:53 1:02) 0:10

FIG. 2 (color online). Reduction factors Rs ¼
SFðexptÞ=SFðLB-SMÞ as a function of the difference between
neutron and proton separation energies, !S. The solid and open
circles represent Rs deduced in JLMþ HF and CH89 approach
using the present transfer reaction data, respectively. The open
triangles denote the Rs from knockout reactions [11]. The
dashed line is the best fit of Rs of 32;34;46Ar from knockout
reactions. The use of different !S values from the present work
and knockout reactions in Ref. [11] is explained in Ref. [28].
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clei with 3 ! Z ! 28 [13,14]. For most excited states of
stable nuclei with 3 ! Z ! 24, the agreement is slightly
worse, but within 30% [14]. If one uses a different optical
model potential, developed by Jeukenne, Lejeune, and
Mahaux (JLM) [16] with conventional scale factors of
!V ¼ 1:0 and !W ¼ 0:8 for the real and imaginary parts,
and constrains the geometry of these potentials and that of
the transferred-neutron bound state by Hartee-Fock calcu-
lations [17], one observes an overall reduction #30% in
the measured ground state spectroscopic factors [18]. This
implies reduction factors Rs $ ðexperimentalSFÞ=ðLB'
SM SFÞ of 30% in the latter approach, similar to the
reductions in proton SF’s extracted from (e, e0p) measure-
ments [19].

Regardless of the choice of optical model potential or
the geometry of the mean-field potential for the transferred
neutron, systematic analyses of neutron transfer reactions
display no strong dependence of the reduction factor Rs on
the neutron-proton asymmetry of the nuclei [13,14,18].
However, systematic uncertainties inherent in comparing
SF’s from different experiments published over a period of
more than 40 years reduce the sensitivity of such studies.

The available transfer reaction data include very few
neutron-rich or neutron-deficient nuclei. To explore more

extreme asymmetries, we extracted the ground state neu-
tron SF’s for 34Ar and 46Ar from (p, d) reactions using
proton-rich 34Ar and neutron-rich 46Ar beams in inverse
kinematics. SF’s from knockout reactions on these nuclei
have been published, and a significant reduction of the
neutron SF for 34Ar has been reported [11]. The difference
between the neutron and proton separation energy (!S),
which characterizes the relative shift of neutron and proton
Fermi energies in these nuclei, is 12.41 and '10:03 MeV
for 34Ar and 46Ar, respectively. In previous studies of
transfer reactions, there were no nuclei with j!Sj (
7 MeV [13,18].
In the present experiments, the deuteron angular distri-

butions from pð34Ar; dÞ 33Ar and pð46Ar; dÞ45Ar transfer
reactions were measured using radioactive secondary
beams of 34Ar and 46Ar at 33 MeV=nucleon at the
National Superconducting Cyclotron Laboratory at
Michigan State University [20]. The pð36Ar; dÞ35Ar reac-
tion was also measured using a degraded 36Ar primary
beam at 33 MeV=nucleon to compare with data previously
measured in normal kinematics [21]. These beams were
transported and focused on polyethylene targets ðCH2Þn
targets with areal densities of 7:10 mg=cm2 for 34;36Ar
and 2:29 mg=cm2 for 46Ar reactions. Deuterons were de-

FIG. 1 (color online). Q-value spectrum [(a)–(c), top panels] and ground state deuteron angular distributions [(d)–(f), bottom panels]
of pð34;36;46Ar; dÞ33;35;46Ar. The open squares in panel (e) are data from previous normal kinematics experiments [21]. The solid and
dashed lines represent the calculations using JLMþ HF and CH89 approach, respectively.
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!  induced and full 3NF investigated 
! genuine (N2LO) 3NF needed to reproduce the energy curvature and S2n 

! N=20 and Z=20 gaps overestimated! 
! Full 3NF give a correct trend but over bind! 
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Neighbouring Ar, K, Ca, Sc, and Ti chains 

Works well in 
the pf shell!
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For the NN + 3N -induced Hamiltonian shown in Fig. 1(a),
we overbind the Ca isotopes for the considered values of λSRG.
However, the ground-state energies vary significantly with the
resolution scale λSRG due to the omitted induced beyond-3N
forces. Other sources, such as the E3max truncation and
NO2B approximation, can be ruled out because they are only
weakly sensitive to λSRG variations [2,10–12]. Furthermore,
the λSRG dependence of MR-IM-SRG(2) and CR-CC(2,3) is
comparable despite their different many-body content, which
implies that missing many-body effects cannot be its primary
source, either.

In Fig. 1(b), we show that the inclusion of an initial 3N
force reduces the λSRG dependence drastically. As discussed
in Ref. [2], this is a result of cancellations between induced
forces from the initial NN and 3N interactions. With this
reduced dependence on λSRG we find an overbinding that is
robust under variations of λSRG and slowly increasing from
8% for 36Ca to 12% for 54Ca.

We now consider the two-neutron separation energies S2n

shown in Fig. 2. Such differential quantities filter out global
energy shifts due to missing induced many-body forces, as well
as many-body and basis truncations. For instance, the absolute
variation of the S2n with λSRG in the NN + 3N -induced case
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FIG. 2. (Color online) Two-neutron separation energies of the
Ca isotopes for the (a) NN + 3N -induced and (b) NN + 3N -full
Hamiltonian with "3N = 350 and 400 MeV/c, for a range λSRG =
1.88 fm−1 (open symbols) to 2.24 fm−1 (solid symbols). Panel (c)
compares MR-IM-SRG(2) and second-order GGF [6–8] results with
the same input Hamiltonian, but slightly different SRG evolution [54].
Experimental values (black bars) are taken from [26,50].

is much weaker than the variation of the ground-state energies
in Fig. 1(a).

The S2n for the NN + 3N -induced Hamiltonian in Fig. 2(a)
show a pronounced shell closure at 40Ca, with S2n dropping
by more than 20 MeV. The 48Ca shell closure is weak
in comparison, albeit close to experimental data, and there
are even weaker hints of shell closures in 52,54Ca (the
reference states exhibit pairing in both cases). The S2n

increase notably from 42Ca to 48Ca, and weakly from 50Ca
to 52Ca. This is an indication that interaction components
which are being accessed as neutrons are added to the pf
shell are too attractive, which is consistent with the observed
overbinding. However, shell structure effects clearly also play
a role, because the overbinding becomes less severe around
48Ca before increasing again with the neutron number N ,
while the S2n are always decreasing between shell closures
beyond 52Ca.

The NN + 3N -induced Hamiltonian produces a distinct
drip-line signal in Figs. 1(a) and 2(a): 62Ca is consistently
unbound by 5–6 MeV with respect to 60Ca for our range of
λSRG. The change in S2n is much larger than the uncertainties
due to many-body and basis truncations, or missing induced
forces (see below). The inclusion of continuum effects in
Ref. [19] reduced the energy of low-lying unbound states only
by about 2 MeV, which is insufficient to bind isotopes with
N > 40 with respect to 60Ca. Without the inclusion of initial
3N forces, the drip line is therefore expected at N = 40.

In Fig. 2(b), we show S2n for NN + 3N -full Hamiltonians
with "3N = 350 and 400 MeV/c. The N = 20 shell closure
is weakened by the 3N forces, although the calculated S2n are
still larger than experimental data. As before, we observe an
increase of the separation energies for 42−48Ca and 50−52Ca,
but we note that the overbinding consistently increases with
N in this case [Fig. 1(b)]. Interestingly, the S2n trends in these
nuclei are flatter for "3N = 350 MeV/c than for 400 MeV/c,
which suggests a change in the shell structure of these nuclei.
Overall, the S2n are consistent under this variation of the 3N
cutoff. In contrast to the NN + 3N -induced case, both 52Ca
and 54Ca exhibit magicity, in agreement with experimental and
shell model results [24–26,55,56].

For large neutron numbers, the trends shown in Figs. 1(b)
and 2(b) are different from the NN + 3N -induced case.
56−60Ca are unbound with respect to 54Ca by a mere 1–2 MeV
(also see [19]). Consequently, these isotopes are sensitive to
continuum effects and details of the interaction, which could
lead to phenomena like neutron halos as proposed in [57].
Figure 2(b) also shows that the flat plateau of the S2n for
56−60Ca in the vicinity of zero is remarkably robust under the
variation of the cutoff of the initial 3N interaction from 400 to
350 MeV/c.

The Ca isotopes were also studied recently with the second-
order Gor’kov Green’s function (GGF) method. The S2n

published in Ref. [8] were obtained with the same NN + 3N -
full Hamiltonian with "3N = 400 MeV/c, but a smaller 3N
Jacobi HO model space was used for the SRG evolution than in
our calculations. While the S2n systematics remain the same,
we show updated GGF results [54] in Fig. 2(c) to allow a more
quantitative comparison with our MR-IM-SRG(2) separation
energies. The two methods agree well for mid-shell Ca

041302-3

! Large J in free space SRG matter (must pay attention to its convergence) 
! Overall conclusions regarding over binding and S2n remain but details change 
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!   Error bar in predictions are 
from extrapolating the many-

body expansion to convergence 
of the model space. 

Two-neutron separation energies 
for neutron rich K isotopes 

Measurements  
           @ ISOLTRAP !

The top panel in Fig. 5 shows the experimental and
computed HFB S2n values for the potassium and calcium
isotopic chains. The theoretical S2n are computed for nuclei
of even neutron number. Self-consistent quasiparticle
blocking of the odd protons is performed for the potassium
isotopes, by using the procedure described in Ref. [27].
A strength of the pairing interaction of −200 MeV fm3

reproduces the very smooth S2n trend observed in Ref. [11].
It describes correctly the experimental values on average
but underestimates the drop at the crossing of the magic
neutron numbers. A reduction of the strength of the pairing
interaction (solid lines) leads to a significant improvement
of the description of the experimental S2n trend. The
addition of the tensor term with the SLy5 interaction leads
to a change in the wrong direction. However, a recent
work [28] has shown that the effect of the tensor term in
mean-field calculations strongly depends on the way it is
constrained to experimental data.
In addition to the empirical HFB approach, it is now

possible to perform calculations up to the medium mass
region using ab initio methods (see, e.g., Refs. [29–36]).

Thus, new mass calculations have been performed in the
ab initio GGF framework [31,37,38] that allow for the
study of open-shell nuclei. This method is particularly
suited for the present purpose due to the ease of calculating
odd-even systems, which also makes it a unique tool to
investigate neighboring isotopic chains.
In our calculations, the only input are two- and three-

body interactions fitted to properties of systems with
A ¼ 2, 3, and 4, without any further adjustments of the
parameters. GGF calculations have recently addressed
the region around Z ¼ 20 [31] and are extended here for
the first time beyond N ¼ 32 for potassium.
The present calculations made use of two- and three-

nucleon forces derived within chiral effective field theory at
next-to-next-to- and next-to-next-to-next-to-leading order
(N2LO and N3LO), respectively [39,40], extended to the
low-momentum scale λ ¼ 2.0 fm−1 by means of free-space
similarity renormalization-group techniques. The many-
body treatment is set by a second-order truncation in the
GGF self-energy expansion [37]. Model spaces up to 14
harmonic oscillator shells were employed, and three-body
interactions were restricted to basis states with E3max ≤ 16.
Infrared extrapolations of the calculated ground state
energies were subsequently performed following
Ref. [41]. We note that, in the present case, this procedure
is formally defective due to the different truncations of one-
and three-body model spaces. Nevertheless, we find that
the trend expected from Ref. [41] is qualitatively repro-
duced, although with larger extrapolation uncertainties.
This is in agreement with other calculations [35]. As an
example, we obtain binding energies of 439.52(0.71) MeV
for 51K and 443.31(0.85) MeV for 53K. This overbinding of
about 0.7 MeV=A is a general feature of currently available
chiral interactions, and it is a constant effect through-
out the whole isotopic chain that cancels in separation
energies [31,35,36].
GGF results for S2n of 47;49;51;53K and 48;50;52;54Ca are

shown in the bottom panel in Fig. 5 and are all resulting
from the infrared extrapolation. Different sources of
uncertainty affect the present theoretical results (see
Refs. [31,38] for a detailed discussion). In particular, this
method breaks particle-number symmetry (like HFB
theory) and generates the correct expectation values for
the proton and neutron numbers only on average, with a
finite variance. However, the associated errors are expected
to cancel with good accuracy for energy differences (such
as S2n). The uncertainties indicated in Fig. 5 are uniquely
those originating from the extrapolation fit and range
between 0.4 and 1.5 MeV with increasing mass number.
In general, GGF calculations are in fair agreement with
measured S2n, with the mismatch at 53K being on the order
of the truncation error. The significant drop from 51K to 53K
is qualitatively reproduced but overestimated by theory,
which also leads to an overestimation of the empirical shell
gap for potassium. In contrast to the N ¼ 28 gap, which is
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FIG. 5 (color online). Two-neutron separation energies for the
isotopic chains of potassium (left axes) and calcium (right axes);
note the shifted scales. Open symbols, data from Ref. [21]; filled
symbols, calcium data from Ref. [11] and new mass data from
this work. Top: With S2n values from HFB calculations using the
SLy4 (green lines) and the SLy5 (red lines) interaction, with
volume-type delta pairing of strength V0 ¼ −150 MeV fm3

(solid lines) or V0 ¼ −200 MeV fm3 (dashed lines). Bottom:
With S2n values obtained from ab initio Gorkov-Green function
theory (see the text for details).
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Theory tend to overestimate the 
gap at N=34, but overall good!
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imental data on the energy of the first-excited state is
needed to further test the validity of both models.

Very recently, ab initio calculations of open-shell nu-
clei have become possible in the Ca region [48] on the
basis of the self-consistent Gorkov-Green‘s function for-
malism [49]. State-of-the-art chiral two- (NN) [50, 51]
and three-nucleon (3N) [52] interactions adjusted to two-
, three- and four-body observables (up to 4He) are em-
ployed, without any further modification, in the com-
putation of systems containing several tens of nucleons.
We refer to Ref. [48] for further details. In the present
study, Gorkov-Green’s function calculations of the low-
est 1/2+ and 3/2+ states in 43�51K have been performed
by removing a proton from 44�52Ca. Similarly to Fig. 5,
the upper panel of Fig. 6 compares the results to exper-
imental data. The inversion of the states at N = 28 is
not obtained in the calculation, because odd-A spectra
are systematically too spread out [48]. This shortcom-
ing actually correlates with the systematic overbinding of
neighboring even-A ground-states. Still, one observes the
correct relative evolution of the 1/2+ state with respect to
the 3/2+ when going from 43K to 47K and then from 47K
to 49K. As a matter of fact, rescaling the theoretical re-
sults to the experimental ones at, e.g. 47K, demonstrates
that the relative evolution of the two states is quantita-
tively well reproduced. This result is very encouraging for
those first-ever systematic ab initio calculations in mid-
mass nuclei. Indeed, it allows one to speculate that cor-
recting in the near future for the systematic overbinding
produced in the Ca region by currently available chiral
EFT interactions, and thus the too spread out spectra of
odd-A systems, might bring the theoretical calculation in
good agreement with experiment. Although this remains
to be validated, it demonstrates that systematic spec-
troscopic data in mid-mass neutron-rich nuclei provide
a good test case to validate/invalidate specific features
of basic inter-nucleon interactions and innovative many-
body theories.

To complement the above analysis, the lower panel
of Fig. 6 provides the evolution of proton 1d

3/2 and
2s

1/2 shells. These two e↵ective single-particle energies
(ESPEs) recollects [49] the fragmented 3/2+ and 1/2+

strengths obtained from one-proton addition and removal
processes on neighboring Ca isotones. Within the present
theoretical description, the evolution of the observable
(i.e. theoretical-scheme independent) lowest-lying 1/2+

and 3/2+ states does qualitatively reflect the evolution
of the underlying non-observable (i.e. theoretical-scheme
dependent) single-particle shells. As such, the energy gap
between the two shells decreases from 4.81MeV in 43K to
2.39MeV in 47K, which is about 50% reduction. Adding
4 neutrons in the ⌫2p

3/2 causes the energy di↵erence to
increase again to 4.49MeV.

FIG. 6. (color online) Upper panel: energy di↵erence between
the lowest 1/2+ and 3/2+ states obtained in 43�51K from ab
initio Gorkov-Green‘s function calculations and experiment.
Lower panel: ⇡d

3/2 and ⇡s
1/2 e↵ective single-particle energies

in 43�51K.

B. Even-A

The configuration of the even-K isotopes arises from
the coupling between an unpaired proton in the sd shell
with an unpaired neutron. Di↵erent neutron orbits are
involved: starting from 38K where a hole in the ⌫1d

3/2

is expected, then gradually filling the ⌫1f
7/2 and finally,

the ⌫2p
3/2 for 48,50K.

In order to investigate the composition of the ground-
state wave functions of the even-K isotopes, we first com-
pare the experimental magnetic moments to the empiri-
cal values. Based on the additivity rule for the magnetic
moments (g factors) and assuming a weak coupling be-
tween the odd proton and the odd neutron, the empirical
magnetic moments can be calculated using the following
formula [53]: µ

emp

= g
emp

· I, with

g
emp

= g(j⇡)+g(j⌫)
2

+ g(j⇡)�g(j⌫)
2

j⇡(j⇡+1)�j⌫(j⌫+1)

I(I+1)

, (5)

where g(j⇡) and g(j⌫) are the g factors of the nuclei with
an odd proton or neutron from the corresponding orbit
and I the total spin. The calculations were performed
using the measured g factors of the neighboring isotopes
with the odd-even and even-odd number of particles in j⇡
and j⌫ , respectively. For the empirical values of unpaired
protons, results from Table III were used. The g factors
for the odd neutrons were taken from the corresponding
Ca isotones [54–57]. The obtained results with the list of
isotopes used for di↵erent configurations are presented in
Table VI.
A comparison between the experimental and empiri-

cal g factors is shown in Fig. 7. For 38K, the empirical
value calculated from 39K and 39Ca provides excellent

J. Papuga, et al., Phys. Rev. Lett. 110, 172503 (2013);  
Phys. Rev. C 90, 034321 (2014) 

Change in separation described by chiral NN+3NF:!

AK isotopes!

(Gorkov calculations at 2nd order)!ESPE: “centroid” energies!

Laser spectroscopy @ ISOLDE!
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discussed by Smirnova et al. in Ref. [11], where a degen-
eracy of the ⇡2s

1/2 and ⇡1d
3/2 levels is predicted to occur

at N = 28 and returns to a ”normal” ordering (⇡2s
1/2

below ⇡1d
3/2) approaching N = 40 (Fig 1(c) in Ref. [11]).

The reordering of the orbitals is driven by the monopole
part of the proton-neutron interaction, which can be de-
composed into three components: the central, vector and
tensor. Initially Otsuka et al. [12] suggested that the
evolution of the ESPEs is mainly due to the tensor com-
ponent. However, in more recent publications [11, 13, 14]
several authors have shown that both the tensor term as
well as the central term have to be considered.

Regarding the shell model, potassium isotopes are ex-
cellent probes for this study, with only one proton less
than the magic number Z = 20. Nevertheless, little
and especially conflicting information is available so far
for the neutron-rich potassium isotopes. Level schemes
based on the tentatively assigned spins of the ground
state were provided for 48K [15] and 49K [16]. In addi-
tion, an extensive discussion was presented by Gaudefroy
[17] on the energy levels and configurations of N = 27, 28
and 29 isotones in the shell-model framework and com-
pared to the experimental observation, where available.
However, the predicted spin of 2� for 48K, is in contra-
diction with I⇡ = (1�) proposed by Królas et al. [15].
In addition, the nuclear spin of the ground state of 50K
was proposed to be 0� [18, 19] in contrast to the recent
� decay studies where it was suggested to be 1� [20].
The ground state spin-parity of 49K was tentatively as-
signed to be (1/2+) by Broda et al. [16], contrary to
the earlier tentative (3/2+) assignment from beta-decay
spectroscopy [21]. For 51K, the nuclear spin was tenta-
tively assigned to be (3/2+) by Perrot et al. [19].

Our recent hyperfine structure measurements of potas-
sium isotopes using the collinear laser spectroscopy tech-
nique provided unambiguous spin values for 48�51K and
gave the answer to the question as to what happens with
the proton sd orbitals for isotopes beyond N = 28. By
measuring the nuclear spins of 49K and 51K to be 1/2 and
3/2 [22] respectively, the evolution of these two states in
the potassium isotopes is firmly established. This is pre-
sented in Fig. 1 for isotopes from N = 18 up to N = 32
where the inversion of the states is observed at N = 28
followed by the reinversion back at N = 32. In addition,
we have confirmed a spin-parity 1� for 48K and 0� for
50K [26]. The measured magnetic moments of 48�51K
were not discussed in detail so far and will be presented
in this article. Additionally, based on the comparison
between experimental data and shell-model calculations,
the configuration of the ground-state wave functions will
be addressed as well. Finally, ab initio Gorkov-Green’s
function calculations of the odd-A isotopes will be dis-
cussed.
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FIG. 1. (color online) Experimental energies for 1/2+ and
3/2+ states in odd-A K isotopes. Inversion of the nuclear spin
is obtained in 47,49K and reinversion back in 51K. Results are
taken from [16, 23–25]. Ground-state spin for 49K and 51K
were established [22].
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FIG. 2. (color online) Schematic representation of the setup
for collinear laser spectroscopy at ISOLDE.

II. EXPERIMENTAL PROCEDURE

The experiment was performed at the collinear
laser spectroscopy beam line COLLAPS [27] at
ISOLDE/CERN. The radioactive ion beam was produced
by 1.4-GeV protons (beam current about 1.7µA) im-
pinging on a thick UC

x

target (45 g/cm2). Ionization of
the resulting fragments was achieved by the surface ion
source. The target and the ionizing tube were heated to
around 2000 0C. The accelerated ions (up to 40 kV) were
mass separated by the high resolution separator (HRS).
The gas-filled Paul trap (ISCOOL) [28, 29] was used
for cooling and bunching of the ions. Multiple bunches
spaced by 90ms were generated after each proton pulse.
The bunched ions were guided to the setup for collinear
laser spectroscopy where they were superimposed with
the laser. A schematic representation of the beam line
for collinear laser spectroscopy is shown in Fig. 2.
A cw titanium:sapphire (Ti:Sa) laser was locked to the

4s 2S
1/2 ! 4p 2P

1/2 transition at 769.9 nm, providing
around 1mW power into the beam line. An applied
voltage of ±10 kV on the charge exchange cell (CEC)
provided the Doppler tuning for the ions, which were
neutralized through the collisions with potassium vapor.
Scanning of the hfs was performed by applying an addi-
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Why%should%we%inves-gate%LQCD%interac-ons?%
%

!"!It!gives!complimentary!insight!to!the!EFT!approach:!
!!"!Allows!to!approach!physical!interacYon!from!heavy!quark!masses!
!(opposite!direcYon!than!the!chiral!limit).!
!"!Can!study!implicaYons!of!SU(3)!limit.!

"!No!need!to!fit!to!experiment.!No!LEC!constants.!
"!Provides!consistent!interacYons!in!the!Hyperon!sector.!
!
"!It!is!very!fundamental!approach!(QCD),!and!an!alternaYve!to!Chiral"EFT.!

Challenges%and%limita-ons:%
!

"!Mostly!LO!terms!of!the!NN!force!exploited!so!far!(but!being!improved).!
"!Physical!pion!mass!limit!requires!efforts!(but!underway).!
"!NNN!only!barely!addressed.!
"!Strong!short"range!repulsion!is!a!challenge!to!ab"iniYo!approaches.!
!
!
!



Lattice QCD 

8

L=−
1

4
Gμν
a
Ga

μ ν + q̄ γμ (i∂μ − g ta Aμ
a )q−mq̄q

Lattice QCD

gluons U = e 
i a Aµ

on the links

a

L

quarks q
on the sites

4-dim

Euclid

Lattice

Well defined (reguralized)
Manifest gauge invariance 

〈O(q̄ , q ,U )〉

=∫ dU d q̄ d q e−S (q̄ , q ,U )
O(q̄ , q ,U )

=∫ dU detD(U )e−SU (U )
O(D−1(U ))

= lim
N →∞

1

N
∑
i=1

N

O(D−1(Ui))

Vacuum expectation value

 { Ui } : ensemble of gauge conf. U
 generated w/ probability det D(U) e −SU(U)

path integral

quark propagator

Fully non-perturvative
Highly predictive

Slide,%courtesy%of%T.%Inoue%(see%Oct.%8th%talk)%
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HAL method

[ − ∇2

2μ ]ϕ k⃗ ( r⃗ ) +∫d3 r⃗ ' U ( r⃗ , r⃗ ')ϕ
k⃗
( r⃗ ' ) = E

k⃗
ϕ
k⃗
( r⃗ )

[2MB − ∇2

2μ ]ψ( r⃗ , t) + ∫d3 r⃗ ' U ( r⃗ , r⃗ ' )ψ( r⃗ ' , t) =− ∂
∂ t

ψ( r⃗ , t)

V ( r⃗ ) =
1

2μ
∇2ψ( r⃗ , t)
ψ( r⃗ , t )

−

∂
∂ t

ψ( r⃗ , t)

ψ( r⃗ , t)
− 2MB

U ( r⃗ , r⃗ ') = δ( r⃗− r⃗ ')V ( r⃗ ,∇) = δ( r⃗− r⃗ ')[V ( r⃗ ) + ∇ + ∇ 2
...]

Define a common potential U  for all E eigenstates by a “Schrödinger” eq.

NBS wave function

Non-local but
energy independent
below inelastic threshold

Therefor, in 
the leading

N. Ishii etal. [HAL QCD coll.]  Phys. Lett. B712 , 437 (2012)

S. Aoki, T. Hatsuda, N. Ishii, Prog. Theo. Phys. 123 89 (2010)

ϕ
k⃗
( r⃗ )= ∑⃗

x

〈0∣Bi( x⃗+ r⃗ , t)B j( x⃗ , t)∣B=2, k⃗ 〉

Measure 4-point function in LQCD

∇ expansion
& truncation

ψ( r⃗ , t) = ∑⃗
x

⟨0|Bi( x⃗+ r⃗ , t)Bj( x⃗ , t) J (t 0)|0⟩ = ∑⃗
k

Ak⃗ϕ k⃗ ( r⃗ )e
−W k⃗ (t−t0) + ⋯

S.!Aoki,!T.!Hatsuda,!N.!Ishii,!Prog.!Theo.!Phys.!123!89!(2010)!!
N.!Ishii!etal.![HAL!QCD!coll.]!Phys.!Led.!B712!,!437!(2012)!!
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Multi-hadron in LQCD
● Direct ： utilize energy eigenstates (eigenvalues)

● Lüscher's finite volume method for a phase-shift
● Infinite volume extrapolation for a bound state

● HAL  ： utilize a potential V(r) + ...  of interaction

● Advantages
● No need to separate E eigenstate.

Just need to measure
● Then, potential can be extracted.
● Demand a minimal lattice volume.

No need to extrapolate to V=∞.
● Can output more observables.

We can attack large nuclei too!!

Need to check validity
of the leading term V(r)

V ( r⃗ ) =
1

2μ
∇ 2ψ( r⃗ , t)
ψ( r⃗ , t )

−

∂
∂ t

ψ( r⃗ , t)

ψ( r⃗ , t)
− 2MB

ψ( r⃗ , t) : 4-point function

contains NBS w.f.

ψ( r⃗ , t)

Advantages: 
  

#  No need to separate E eigenstate. !Just 
need to measure!

#  Then, potential can be extracted. !
#  Demand a minimal lattice volume. No 

need to extrapolate to V=∞. !
#  Can output more observables.  
#  One can address large nuclei too!! !
!
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Two-Nucleon HAL potentials 
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NN potentials from QCD

● Left:  NN potentials in partial waves at the lightest mq.
● Repulsive core & attractive pocket & strong tensor force.
● Similar to phenomenological potentials qualitatively.
● Least χ2 fit of data which give central value of observable.
● Higher orders in velocity expansions are not available yet.

We restrict us to these leading order potentials.

● Right:  Quark mass dependence of V(r) of NN 1S0.
● Potentials become stronger as mq decrease.

e.g.  AV18



Two-Nucleon HAL potentials 
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Quark mass dependence

● Quark mass dependence of potentials in NN 3S1

● All components get bigger as quark mass decrease.



Application of microscopic (Ab-
Initio) SCGF to potentials  

with hard cores. 

How!do!we!do!it??! ! !!!!! ! !!With!a!G"matrix!!



Analysis of Brueckner HF 
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Sca@ering!of!two!nucleon!in!free!space:!
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Analysis of Brueckner HF 
Sca@ering!of!two!nucleons!outside!the!Fermi!sea!("BHF):!

G(!) = V +

Z
dkadkbV

Q̂

! � "(ka)� "(kb) + i⌘
G(!)

"(
k)

⇠ k
2 /2

m

$!

%!

?

G(ω) 
+ = 

G(ω) 

continuum  
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Mixed SCGF–Brueckner approach 
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Solve!full!many"body!dynamics!in!model!space!(P+Q’)!and!the!Goldstone’s!
!!!!!ladders!outside!it!(i.e.!in!Q’’!only):!
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Different levels of approximation: 
Goldstone’s!ladders!outside!the!
model!space!(i.e.!in!Q’’!only):!

G’’(ω) 
+ 

+ ADC(3) 

All!ladders!inside!and!outside!the!
mod.!sp.!(analogous!to!BHF):!

G’’(ω) 
+ 

Full!many"body!dynamics![at!ADC(3)]!

G’’(ω) 
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Γ(ω) 
+ 
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Sensitivity of BHF of the ε(k) spectrum 
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Ladders!calculated!inside!and!outside!the!model!are!NOT!
equivalent!because!of!the!different!ε(k)!spectrum:!
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Treating short-range corr. with a G-matrix  

•  The short-range core can be treated by summing 
ladders outside the model space: 

G(ω) 
= 

Two contributions to the derivative: 
-                  is due to scattering to (high-k) states in the Q space 
-                  accounts for low-energy (long range) correlations 



Benchmark on 4He 
Can!benchmark!the!Gmtx+ADC(3)!
method!on!light!4He,!where!exact!
soluYons!are!possible:!
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HALQCD!@!
mπ=469MeV!

4.7(2)!MeV! 5.09!MeV1!

Argonne!v8’! 25(1)!MeV! 25.91!MeV2!

"!Can!expect!accuracy!on!binding!energies!at!about!10%!!!

1H.!Nemura!et!al.,!Int.!J.!Mod.!Phys.!E!23,!1461006!(2014)!
2H.!Kamada!et!al.,!Phys.!Rev.!C64!044001!(2001).!!



Binding of 16O and 40Ca: 
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Binding!energies!are!~15!MeV!16O!and!70N75MeV!for!40Ca.!Possibly!being!underesXmated!by!10%!!
!
"!16O!at!mπ=!469!MeV!!is!!unstable!toward!4Nα!breakup!!



Spectral strength in 16O and 40Ca: 
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ParXcleNhole!gaps!
!
16O ! ! !!
mπ=!469!MeV:!!!~8!MeV!
Expt!(phys!mπ):!!11.5!MeV!
!
40Ca! ! !!
mπ=!469!MeV:!!!~10!MeV!
Expt!(phys!mπ):!!!7.5!MeV!
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Matter distribution of 16O and 40Ca: 
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Nucleon densities for MPS = 469 MeV

Calculated!mader!radii!at!mπ=!469!MeV!
are:!

! ! !!!16O! ! !!!40Ca!
!
“BHF”! ! !2.33!fm ! !2.78!fm!
!
ADC(3) ! !2.60!fm ! !2.97!fm!
!
rcharge!(expt.)!! !2.73!fm! ! !3.48!fm!

"!Radii!discrepancy!worsens!with!increasing!A!



Infinite matter 

Finite"T!results!by!A.!Carbone,!priv.!comm.!
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Pure!Neutron!Ma@er! Symmetric!Nuclear!Ma@er!

T.!Inoue!et!al.,!Phys.!Rev.!Led.!111!112503!(2013).!
PNM!unbound!as!usual,!but!less!sYff!
!

SNM!saturates!at!469!MeV!but!under!
bound!and!at!higher!densiYes!that!physical.!



SCGF in infinite SNM @ mπ=469MeV 

Results!by!A.!Carbone,!priv.!comm.!
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Single!parYcle!spectral!distribuYon!behaves!as!
usual.!
!

BHF!results!and!binding!remain!confirmed!in!
SCGF!calculaYons.!



Mid-masses and chiral interactions: 

!   Leading order 3NF are crucial to predict many important features that  
are observed experimentally (drip lines, saturation, orbit evolution, etc…) 

!   Experimental binding is predicted accurately up to the lower sd shell 
(A≈30) but deteriorates for medium mass isotopes (Ca and above) with 
roughly 1 MeV/A over binding. 

 
 
HALQCD Nuclear forces: 

!   Approaching the physical pion mass quickly 
 

!   Strong short range repulsion requires new ideas in  
ab-initio many-body methods. Diagram resummation 
through G-matrix is a workable approach (to be extended) 

!   At mπ=469MeV, closed shell 4He, 16O and 40Ca are bound. But oxygen is 
unstable toward 4-! break up, calcium stays bound. Underestimation of radii 
increases with A do to large saturation density (as for EM(500)+NLO3NF). 

 
 
 
 
 

Conclusions  



NNLO-sat : a global fit up to A≈24 
RAPID COMMUNICATIONS
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FIG. 1. (Color online) Ground-state energy (negative of binding
energy) per nucleon (top), and residuals (differences between com-
puted and experimental values) of charge radii (bottom) for selected
nuclei computed with chiral interactions. In most cases, theory
predicts too-small radii and too-large binding energies. References:
a [40,41], b [24], c [23], d [22], e [42], f [43], g [44], h [45], i [46].
The red diamonds are NNLOsat results obtained in this work.

to low-energy observables (as opposed to the traditional
adjustment of two-nucleon forces to NN scattering data at
higher energies). Third, the impact of many-body effects
entering at higher orders (e.g., higher-rank forces) might be
reduced if heavier systems, in which those effects are stronger,
are included in the optimization.

Besides these theoretical arguments, there is also one
practical reason for a paradigm shift: predictive power and
large extrapolations do not go together. In traditional ap-
proaches, where interactions are optimized for A = 2,3,4,
small uncertainties in few-body systems (e.g., by forcing a
rather precise reproduction of the A = 2,3,4 sectors at a
rather low order in the chiral power counting) get magnified
tremendously in heavy nuclei; see, for example, Ref. [24].
Consequently, when aiming at reliable predictions for heavy
nuclei, it is advisable to use a model that performs well for
light- and medium-mass systems. In our approach, light nuclei
are reached by interpolation while medium-mass nuclei by a
modest extrapolation. In this context, it is worth noting that the
most accurate calculations for light nuclei with A ! 12 [59]
employ NNN forces adjusted to 17 states in nuclei with
A ! 8 [60]. Finally, we point out that nuclear saturation can
be viewed as an emergent phenomenon. Indeed, little in the
chiral EFT of nuclear forces suggest that nuclei are self-bound
systems with a central density (or Fermi momentum) that is
practically independent of mass number. This viewpoint makes
it prudent to include the emergent momentum scale into the
optimization, which is done in our case by the inclusion of
charge radii for 3H, 3,4He, 14C, and 16O. This is similar in spirit
to nuclear mean-field calculations [61] and nuclear density
functional theory [62,63] where masses and radii provide key
constraints on the parameters of the employed models.

Optimization protocol and model details. We seek to
minimize an objective function to determine the optimal set
of coupling constants of the chiral NN + NNN interaction
at NNLO. Our dataset of fit-observables includes the binding
energies and charge radii of 3H, 3,4He, 14C, and 16O, as well

TABLE I. Binding energies (in MeV) and charge radii (in fm)
for 3H, 3,4He, 14C, and 16,22,23,24,25O employed in the optimization of
NNLOsat.

Eg.s. Expt. [69] rch Expt. [65,66]

3H 8.52 8.482 1.78 1.7591(363)
3He 7.76 7.718 1.99 1.9661(30)
4He 28.43 28.296 1.70 1.6755(28)
14C 103.6 105.285 2.48 2.5025(87)
16O 124.4 127.619 2.71 2.6991(52)
22O 160.8 162.028(57)
24O 168.1 168.96(12)
25O 167.4 168.18(10)

as binding energies of 22,24,25O as summarized in Table I.
To obtain charge radii rch from computed point-proton radii
rpp we use the standard expression [64]: ⟨r2

ch⟩ = ⟨r2
pp⟩ +

⟨R2
p⟩ + N

Z
⟨R2

n⟩ + 3!2

4m2
pc2 , where 3!2

4m2
pc2 = 0.033 fm2 (Darwin–

Foldy correction), R2
n = −0.1149(27) fm2 [65], and Rp =

0.8775(51) fm [66]. In this work we ignore the spin-orbit
contribution to charge radii [67]. From the NN sector, the
objective function includes proton-proton and neutron-proton
scattering observables from the SM99 database [68] up to
35 MeV scattering energy in the laboratory system as well
as effective range parameters, and deuteron properties (see
Table II). The maximum scattering energy was chosen such
that an acceptable fit to both NN scattering data and many-
body observables could be achieved.

In the present optimization protocol, the NNLO chiral
force is tuned to low-energy observables. The comparison
with the high-precision chiral NN interaction N3 LOEM [49]
and experimental data presented in Table II demonstrates the
quality of NNLOsat at low energies.

The results for 3H and 3,4He (and 6Li) were computed
with the no-core shell model (NCSM) [6,10] accompanied
by infrared extrapolations [75]. The NNN force of NNLOsat
yields about 2 MeV of binding energy for 4He. Heavier nuclei

TABLE II. Low-energy NN data included in the optimization.
The scattering lengths a and effective ranges r are in units of fm. The
proton-proton observables with superscript C include the Coulomb
force. The deuteron binding energy (ED , in MeV), structure radius
(rD , in fm), and quadrupole moment (QD , in fm2) are calculated
without meson-exchange currents or relativistic corrections. The
computed d-state probability of the deuteron is 3.46%.

NNLOsat N3 LOEM [49] Expt. Ref.

aC
pp −7.8258 −7.8188 −7.8196(26) [70]

rC
pp 2.855 2.795 2.790(14) [70]

ann −18.929 −18.900 −18.9(4) [71]
rnn 2.911 2.838 2.75(11) [72]
anp −23.728 −23.732 −23.740(20) [73]
rnp 2.798 2.725 2.77(5) [73]
ED 2.22457 2.22458 2.224566 [69]
rD 1.978 1.975 1.97535(85) [74]
QD 0.270 0.275 0.2859(3) [73]

051301-2

A.!Ekström!et!al.!Phys.!Rev.!C91,!051301(R)!(2015)!

A.!Cipollone,!CB,!P.!NavráXl,!Phys.!Rev.!Led.!111,!062501!(2013)!
V.!Somà,!CB!et!al.!Phys.!Rev.!C89,!061301R!(2014)!

V2NN3LO(500)!!+!!W3NNNLO(400MeV/c)!w/!SRG!at!2.0!fmN1!

NNLOsat!(V2!+!W3)!!NN!!Grkv!2nd!ord.!

From!SCGF:+

- Constrain NN phase shifts 

- Constrain radii and energies 
up to A≤24 
 
" Provides saturation up to 
large masses! 
 



BE and charge radii in ACa 
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BE and charge radii in ACa 
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BE and charge radii in ANi 
Similar quality of Ni isotopes 
 
Up to A=78 
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