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Combination of Understanding and Using Nuclei
to Probe Neutrino Physics

Understanding Nuclei:
Nuclear Interactions
Neutron-Rich Nuclei

                   Electroweak Processes

Using Nuclei to Probe Fundamental Physics:
    Neutrino Scattering

                    Neutrinoless Double Beta Decay



Neutrinos

Neutrinos proposed by Pauli in 1930 to conserve energy, momentum, and 
angular momentum in nuclear beta decay.

In 1956 Reines and Cowan detected anti-neutrinos from
Savannah River reactors:

⌫̄e + p ! n+ e+

n ! p+ e� + ⌫̄e

through coincidence of e+e- gamma rays and neutron capture.
Reines was a LANL T-division employee at the time.

Reines and Cowan were awarded the Nobel Prize in 1995.

They discovered the electron (anti-) neutrino, 
later Lederman, Schwartz and Steinberger detected 
muon neutrino, receiving the 1998 Nobel Prize.
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Supernovae and Astrophysical Neutrinos
Different Sources, time dependence, different epochs

Kepler Supernova
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Neutrino scattering and flavor transformation in supernovae
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We argue that the small fraction of neutrinos that undergo direction-changing scattering outside of
the neutrinosphere could have significant influence on neutrino flavor transformation in core-collapse
supernova environments. We show that the standard treatment for collective neutrino flavor trans-
formation is adequate at late times, but could be inadequate in the crucial shock revival/explosion
epoch of core-collapse supernovae, where the potentials that govern neutrino flavor evolution are
a↵ected by the scattered neutrinos. Taking account of this e↵ect, and the way it couples to entropy
and composition, will require a new paradigm in supernova modeling.

PACS numbers: 05.60.Gg,13.15.+g,14.60.Pq,26.30Hj,26.30Jk,26.50+x,97.60.Bw

In this letter we point out a surprising feature of neu-
trino flavor transformation in core-collapse supernovae.
These supernovae have massive star progenitors which
form cores which collapse to nuclear density and pro-
duce proto-neutron stars. The gravitational binding en-
ergy released, eventually some ⇠ 10% of the rest mass
of the neutron star, is emitted as neutrinos of all fla-
vors in a time window of a few seconds. Diverting a
small fraction of this neutrino energy into heating can
drive revival of the stalled core bounce shock [1–7] creat-
ing a supernova explosion and setting the conditions for
the synthesis of heavy elements [4, 6–9]. However, the
way neutrinos interact in this environment depends on
their flavors, necessitating calculations of neutrino flavor
transformation. These calculations show that neutrino
flavor transformation has a rich phenomenology, includ-
ing collective oscillations [10–38], which can a↵ect im-
portant aspects of supernova physics [15, 16, 19–23, 27–
29, 31, 32, 39–43]. For example, neutrino-heated heavy
element r-process nucleosynthesis [44–48] and potentially
supernova energy transport above the core and the ex-
plosion itself [11, 37, 49] could be a↵ected.

All collective neutrino flavor transformation calcula-
tions employ the “Neutrino Bulb” model, where neutrino
emission is sourced from a “neutrinosphere”, taken to be
a hard spherical shell from which neutrinos freely stream.
This seems like a reasonable approximation because well
above the neutrinosphere scattered neutrinos comprise
only a relatively small fraction of the overall neutrino
number density. However, this optically thin “halo” of
scattered neutrinos nonetheless may influence the way
flavor transformation proceeds. This result stems from a
combination of the geometry of supernova neutrino emis-
sion, as depicted in Fig. 1, and the neutrino intersection
angle dependence of neutrino-neutrino coupling.

Neutrinos are emitted in all directions from a neutri-
nosphere of radius R⌫ , but those that arrive at a loca-
tion at radius r, and su↵er only forward scattering, will
be confined to a narrow cone of directions (dashed lines
in Fig. 1) when r � R⌫ . In contrast, a neutrino which
su↵ers one or more direction-changing scattering events
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FIG. 1: Supernova neutrino emission geometry.

could arrive at the same location via a trajectory that
lies well outside this cone.
Following neutrino flavor evolution in the presence of

scattering, in general, requires a solution of the quan-
tum kinetic equations [50–52]. However, the rare na-
ture of the scattering that generates the halo suggests
a separation between the scattering-induced and coher-
ent aspects of neutrino flavor evolution. In the coherent
limit the neutrino-neutrino Hamiltonian, Ĥ⌫⌫ , couples
the flavor histories for neutrinos on intersecting trajec-
tories [33, 44, 50, 53]. As shown in Fig. 1, a neutrino
⌫
i

leaving the neutrinosphere will experience a potential
given by a sum over neutrinos and antineutrinos located
at the same point as neutrino ⌫

i

:
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)n⌫̄,a | ⌫̄,ai h ⌫̄,a|, (1)

where the flavor state of neutrino ⌫
a

is represented by
| ⌫,ai, and ✓

ia

is the angle of intersection between ⌫
i

and neutrino or antineutrino ⌫
a

/⌫̄
a

. Here n⌫,a is the lo-
cal number density of neutrinos in state a, and the 1 �
cos ✓

ia

factor disfavors small intersection angles, thereby
suppressing the potential contribution of the forward-
scattered-only neutrinos [10, 11]. Direction-altered scat-
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FIG. 3: Left: Color scale indicates the density within the shock front in a 15 M� progenitor core-collapse supernova 500 ms
after core bounce, during the shock revival epoch [57]. Right: E↵ect of the scattered neutrino halo for the matter distribution
at Left. Color scale indicates the ratio of the sum of the maximum (no phase averaging) magnitudes of the constituents of the
neutrino-neutrino Hamiltonian, |Ĥbulb

⌫⌫ | + |Ĥhalo

⌫⌫ |, to the contribution from the neutrinosphere |Ĥbulb

⌫⌫ |.

(e.g., the red curve in Fig. 2), in general, exhibit an av-
erage density profile that is / r�(2 to 3), which means
that |Ĥhalo

⌫⌫ |/|Ĥbulb

⌫⌫ | is expected to increase with radius.
Note, however, that though the relative contribution of
the halo may grow with radius, at su�ciently large dis-
tance from the proto-neutron star the neutrino-neutrino
potential ceases to be physically important.

Matter inhomogeneity, an essential feature of super-
nova explosion models [4–7, 57, 62, 63], adds complexity
to this issue. To study this e↵ect we use the 2D mat-
ter density distribution, Fig. 3, taken from a supernova
model derived from a 15M� progenitor [57]. This snap-
shot corresponds to 500ms after core bounce, during the
shock revival epoch, after the onset of the SASI [4, 5].
We mock up a full 3D density profile by cloning the 2D
profile into a 3D data cube. Starting with an initial flux
of neutrinos from the neutrinosphere [64], and taking all
baryons to be free nucleons, we use the full energy de-
pendent neutral current neutrino-nucleon scattering cross
sections [65] to calculate the number flux of neutrinos
scattered out of each spatial zone and into every other
spatial zone (retaining the necessary information about
relative neutrino trajectories between zones). We com-
pute the magnitude of |Ĥhalo

⌫⌫ | at each location in the 2D
slice that comprises the original density distribution.

In this example calculation the scattered halo is taken
to be composed of neutrinos which have su↵ered only a
single direction-changing scattering. Because the halo re-

gion is optically thin for neutrinos, multiple scatterings
become increasingly rare with radius and do not have a
geometric advantage in their contribution to |Ĥhalo

⌫⌫ | rel-
ative to singly-scattered neutrinos. Neutrinos which ex-
perience direction-changing scattering that takes them
into the same cone of directions as neutrinos forward
scattering from the neutrinosphere are counted as con-
tributing to the halo (these neutrinos contribute ⇠ 10�6

of the halo potential). As before, we neglect the e↵ects
of neutrino flavor oscillations. Fig. 3 shows the results
of this calculation out to a radius of r = 2000 km. Dis-
turbingly, neutrinos from the scattered halo in this 2D
model nowhere contribute a maximum magnitude less
than 14% of the neutrino-neutrino potential magnitude,
and in many places contribute 90% or more of the total.
Fig. 3 shows that matter inhomogeneities generate large
corresponding scattered halo inhomogeneities.

The inhomogeneity of the scattered halo is increased
by several scattering processes which have been omitted
from this illustrative calculation. We did not include
neutrino-electron scattering. This scattering process has
smaller cross sections and relatively forward peaked an-
gular distributions and therefore produces a subdominant
contribution to |Ĥhalo

⌫⌫ |. What is more important is that
our calculation leaves out what is likely the dominant
source of neutrino direction-changing scattering in the
low entropy regions of the supernova envelope: coherent
neutrino-nucleus neutral current scattering.

Coherent Oscillations, MSW in turbulent regime, …
Can we make r-process nuclei in supernovae ?
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quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.

191Benhar, Day, and Sick: Inclusive quasielastic electron-nucleus …
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Inclusive electron scattering,
measure electron kinematics only



Inclusive quasielastic electron-nucleus scattering

Omar Benhar*

INFN, Sezione di Roma, I-00185 Roma, Italy
and Dipartimento di Fisica, Università “La Sapienza,” I-00185 Roma, Italy

Donal Day†

Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA

Ingo Sick‡

Departement für Physik und Astronomie, Universität Basel, CH-4056 Basel, Switzerland

!Published 2 January 2008"
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I. INTRODUCTION

The energy spectrum of high-energy leptons !elec-
trons in particular" scattered from a nuclear target dis-
plays a number of features. At low energy loss !"",

peaks due to elastic scattering and inelastic excitation of
discrete nuclear states appear; a measurement of the
corresponding form factors as a function of momentum
transfer #q# gives access to the Fourier transform of
nuclear !transition" densities. At larger energy loss, a
broad peak due to quasielastic electron-nucleon scatter-
ing appears; this peak—very wide due to nuclear Fermi
motion—corresponds to processes by which the electron
scatters from an individual, moving nucleon, which, after
interaction with other nucleons, is ejected from the tar-
get. At even larger ", peaks that correspond to excita-
tion of the nucleon to distinct resonances are visible. At
very large ", a structureless continuum due to deep in-
elastic scattering !DIS" on quarks bound in nucleons ap-
pears. A schematic spectrum is shown in Fig. 1. At mo-
mentum transfers above approximately 500 MeV/c, the
dominant feature of the spectrum is the quasielastic
peak.

*benhar@roma1.infn.it
†dbd@virginia.edu
‡ingo.sick@unibas.ch

FIG. 1. Schematic representation of inclusive cross section as a
function of energy loss.
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Why are ‘local’ properties enough?
Simple view of Nuclei: inclusive scattering

Charge distributions of different Nuclei:

figure from faculty.virginia.edu/ncd
based on work of Hofstadter, et al.: Nobel Prize 1961

Inclusive scattering measures properties at
distances ~ π / q  ≲  1 fm

9

to |q| ⇠ 1 GeV.data at fixed kinematics, all A:
excellent scaling of 2d kind, occurs at all q

valid out to large |�0|FIG. 9 (color online) Illustration of scaling of second kind,
or superscaling. The scaling functions for nuclei with mass
number 12  A  197, obtained from the data of Day et al.

(1987) at beam energy Ee = 3.6 GeV and electron scattering
angle ✓e = 16 deg, corresponding to |q| ⇠ 1 GeV, are shown
as a function of the variable  0 = y/kF (Donnelly and Sick,
1999).

Besides allowing to identify the dominant reaction
mechanism, the occurrence of superscaling can be ex-
ploited to predict the nuclear cross section for kinemat-
ical regions and targets not covered by the available
data, although the contributions of mechanisms leading
to large scaling violations, such as final state interaction
and MEC, can only be described within a specific nuclear
model. The universal scaling function extracted from
electron scattering data has been extensively used to ob-
tain both charged- and neutral-current neutrino-nucleus
cross sections (Amaro et al., 2007; Mart́ınez et al., 2008).

D. Two-nucleon currents and 2p2h final states

In addition to NN correlations in the initial and fi-
nal states, interactions involving electromagnetic two-
nucleon currents, arising from processes in which the pho-
ton couples to a meson exchanged between two nucleons,
also lead to the excitation of 2p2h final states. As an
example, the simplest such processes contributing to the
electron scattering cross section are depicted in Fig. 10.

The two-body currents are linked to the potential de-
scribing NN interactions through the continuity equation
(3), establishing a relation between the nuclear hamilto-
nian H and the longitudinal component of the current
Jµ. As a consequence, the operator Jµ can be separated
into model-dependent and model-independent contribu-
tions, the latter being determined from the NN potential
(Riska, 1989).

As pointed out above, in the regime of low to mod-
erate momentum transfer the nuclear matrix element of

the two-nucleon current can be evaluated using realis-
tic nuclear wave functions, obtained within the frame-
work of NMBT, and a non relativistic reduction of the
current operator, based on the expansion in powers of
|q|/m (Carlson and Schiavilla, 1998). The model-de-
pendent component of the current, being transverse in
nature, is not determined by the NN potential. Exist-
ing calculations typically take into account the isoscalar
⇢⇡� and isovector !⇡� transition currents, as well as the
isovector current associated with excitation of intermedi-
ate �-isobar resonances. The two-body charge operators
include the ⇡-, ⇢-, and !-meson exchange charge oper-
ators, the (isoscalar) ⇢⇡� and (isovector) !⇡� couplings
and the single-nucleon Darwin-Foldy and spin-orbit rel-
ativistic corrections (Schiavilla et al., 1990).

(a) (b) (c)

FIG. 10 Diagrams depicting processes contributing to the
electromagnetic two-nucleon current. Oriented lines corre-
spond to nucleons, while the wavy and dashed lines are asso-
ciated with photons and exchanged mesons, respectively.

The role of the two nucleon current in electron scat-
tering is best illustrated by comparing the longitudinal
and transverse contributions to the scaling function F (y),
discussed in Section III.C.

It is important to recall that the occurrence of scal-
ing provides a strong handle on the identification of the
reaction mechanism, while the observation of scaling vi-
olations reveals the role played by processes beyond the
IA. In this context, valuable information is provided by
the scaling analysis of the longitudinal (L) and trans-
verse (T) contributions to the measured cross sections
(see Eq. (10)).

Figure 11 shows the y-dependence of the L and T scal-
ing functions obtained by Finn et al. (1984) using the
corresponding carbon responses, extracted from the cross
sections measured by Barreau et al. (1983). The onset of
scaling is manifest in the region of the quasi free peak,
corresponding to y ⇠ 0, where the data points at di↵er-
ent momentum transfer tend to sit on top of one another
as |q| increases. On the other hand, large scaling vio-
lations, mainly arising from non QE processes, such as
resonance production, are clearly visible in the transverse
channel at y > 0, corresponding to ! > !

QE

. In addi-
tion, the T scaling function turns out to be significantly
enhanced, with respect to the L one, while within the
IA picture—neglecting the small convection terms in the
nucleon current—the L and T responses are predicted to
be identical.

The results of highly accurate calculations carried out
for light nuclei in the non relativistic regime strongly sug-
gest that in the quasi elastic region single nucleon knock-

Scaling (2nd kind) different nuclei

Donnelly and Sick, 1999

➯



excited to the continuum. The correlation ridge at E
!k2 /2m "see Eq. #28$% is clearly visible. Note that, in the
absence of interactions, the surface shown in Fig. 3 col-
lapses to a collection of !-function peaks distributed
along the line &E & =k2 /2m, with &k & "kF'250 MeV/c.

The proton spectral functions of nuclei with A#4
have been modeled using the local density approxima-
tion #LDA$ #Benhar et al., 1994$, in which the experi-
mental information obtained from nucleon knock-out
measurements is combined with theoretical calculations
of the nuclear matter S#k ,E$ at different densities.

The kinematic region corresponding to low missing
energy and momentum, where shell-model dynamics
dominates, has been studied extensively by coincidence
#e ,e!p$ experiments. The spectral function extracted
from the data is usually written in the factorized form
"compare to Eq. #27$%

SMF#k,E$ = (
n!)F*

Zn&$n#k$&2Fn#E − En$ , #30$

where the spectroscopic factor Zn"1 and the function
Fn#E−En$, describing the energy width of the nth state,
account for the effects of residual interactions not in-
cluded in the mean-field picture. In the Zn→1 and
Fn#E−En$→!#E−En$ limit, Eq. #30$ reduces to Eq. #27$.

The correlation contribution to the nuclear matter
spectral function has been calculated using CBF pertur-
bation theory for a wide range of density values #Benhar
et al., 1994$. Within the LDA scheme, these results can
be used to obtain the corresponding quantity for a finite
nucleus of mass number A from

Scorr#k,E$ =+ d3r%A#r$Scorr
NM„k,E ;% = %A#r$… , #31$

where %A#r$ is the nuclear density distribution and
Scorr

NM#k ,E ;%$ is the correlation part of the spectral func-
tion of uniform nuclear matter at density %. The corre-
lation part of the nuclear matter spectral function can be
easily singled out at zeroth order of CBF, being associ-
ated with two-hole–one-particle intermediate states. At
higher orders, however, one-hole and two-hole–one-
particle states are coupled, and the identification of the
correlation contributions becomes more involved. A full
account of the calculation of Scorr

NM#k ,E$ can be found in
Benhar et al. #1994$.

The full LDA spectral function is written in the form

SLDA#k,E$ = SMF#k,E$ + Scorr#k,E$ , #32$

the spectroscopic factors Zn of Eq. #30$ being con-
strained by the normalization requirement

+ d3kdESLDA#k,E$ = 1. #33$

A somewhat different implementation of LDA has
also been proposed #Van Neck et al., 1995$. Within this
approach, the nuclear matter spectral function is only
used at k#kF#r$, kF#r$ being the local Fermi momen-
tum, whereas the correlation background at k"kF#r$ is

incorporated in the generalized mean-field contribution.
Comparison between the resulting oxygen momentum
distribution and that obtained by Benhar et al. shows
that they are in almost perfect agreement.

The LDA scheme is based on the premise that short-
range nuclear dynamics are unaffected by surface and
shell effects. The validity of this assumption is supported
by the results of theoretical calculations of the nucleon
momentum distribution

n#k$ =+ dE"ZSp#k,E$ + #A − Z$Sn#k,E$% , #34$

showing that for A&4 the quantity n#k$ /A becomes
nearly independent of A at large &k& #'300 MeV/c$. This
feature, illustrated in Fig. 4, suggests that the correlation
part of the spectral function also scales with the target
mass number, so that Scorr

NM#k ,E$ can be used to approxi-
mate Scorr#k ,E$ at finite A.

A direct measurement of the correlation component
of the spectral function of 12C, from the #e ,e!p$ cross
section at missing momentum and energy up to
!800 MeV/c and !200 MeV, respectively, was carried
out by the JLab E97-006 Collaboration #Rohe, 2004$.
The data from the preliminary analysis appear to be
consistent with the theoretical predictions based on
LDA.

D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. #18$ and #19$ describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of had-
rons other than protons and neutrons, one has to replace
w1

N and w2
N given by Eqs. #23$ and #24$ with the inelastic

nucleon structure functions extracted from the analysis
of electron-proton and electron-deuteron scattering data
#Bodek and Ritchie, 1981$. The resulting IA cross sec-

FIG. 4. Calculated momentum distribution per nucleon in 2H,
4He, 16O, and uniform nuclear matter #Schiavilla et al., 1986;
Benhar et al., 1993$.
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Momentum Distributions and Spectral Functions

Schiavilla, et al 1986, Benhar, et al 1993

n, En is the corresponding energy eigenvalue, and the
sum is extended to all occupied states belonging to the
Fermi sea !F".

The results of electron- and hadron-induced nucleon
knock-out experiments have provided overwhelming
evidence of the inadequacy of the independent-particle
model to describe the full complexity of nuclear dynam-
ics. While the peaks corresponding to knock-out from
shell-model orbits can be clearly identified in the mea-
sured energy spectra, the corresponding strengths turn
out to be consistently and sizably lower than expected,
independent of the nuclear mass number.

This discrepancy is mainly due to the effect of dy-
namical correlations induced by the nucleon-nucleon
#NN$ force, whose effect is not taken into account in the
independent-particle model. Correlations give rise to
scattering processes, leading to the virtual excitation of
the participating nucleons to states of energy larger than
the Fermi energy, thus depleting the shell-model states
within the Fermi sea. As a result, the spectral function
acquires tails extending to the region of large energy and
momentum, where SSM#k ,E$ of Eq. #27$ vanishes.

The typical energy scale associated with NN correla-
tions can be estimated considering a pair of correlated
nucleons carrying momenta k1 and k2 much larger than
the Fermi momentum #%250 MeV/c$. In the nucleus
rest frame, where the remaining A−2 particles carry low
momenta, k1&−k2=k. Hence, knock-out of a nucleon of
large momentum k leaves the residual system with a par-
ticle in the continuum and requires an energy

E & Ethr + k2/2m , #28$

much larger than the typical energies of shell-model
states #%30 MeV$. The above equation, where Ethr de-
notes the threshold for two-nucleon removal, shows that
large removal energy and large nucleon momentum are
strongly correlated.

Realistic theoretical calculations of the spectral func-
tion have been carried out within NMBT, according to
which the nucleus consists of a collection of A nucleons
whose dynamics are described by the nonrelativistic
Hamiltonian

H = '
i=1

A ki
2

2m
+ '

j!i=1

A

vij + '
k!j!i=1

A

Vijk. #29$

In the above equation, ki is the momentum of the ith
constituent and vij and Vijk describe two- and three-
nucleon interactions, respectively. The two-nucleon po-
tential, which reduces to the Yukawa one-pion-exchange
potential at large internucleon distance, is obtained from
an accurate fit to the available data on the two-nucleon
system, i.e., deuteron properties and %4000 NN scatter-
ing data #Wiringa et al., 1995$. The additional three-body
term Vijk has to be included in order to account for the
binding energies of the three-nucleon bound states #Pud-
liner et al., 1995$ and the empirical saturation properties
of uniform nuclear matter #Akmal and Pandharipande,
1997$; this term results from the fact that non-nucleonic
constituents #such as "’s$ have been excluded.

The many-body Schrödinger equation associated with
the Hamiltonian of Eq. #29$ can be solved exactly, using
stochastic methods, for nuclei with mass number A
#12. The resulting energies of the ground and low-lying
excited states are in excellent agreement with the ex-
perimental data #Pieper and Wiringa, 2001$. Accurate
calculations can also be carried out for uniform nuclear
matter, exploiting translational invariance and using ei-
ther a variational approach based on cluster expansion
and chain summation techniques #Akmal and Pandhari-
pande, 1997$ or G-matrix perturbation theory #Baldo et
al., 2000$.

Nonrelativistic NMBT has been employed to obtain
the spectral functions of the three-nucleon systems #Die-
perink et al., 1976; Ciofi degli Atti et al., 1980; Meier-
Hajduk et al., 1983$, oxygen #Geurts et al., 1996; Polls et
al., 1997$, and symmetric nuclear matter, having A→$
and Z=A /2 #Benhar et al., 1989; Ramos et al., 1989$.
Calculations based on NMBT but involving some simpli-
fying assumptions have also been carried out for 4He
#Ciofi degli Atti et al., 1990; Morita and Suzuki, 1991;
Benhar and Pandharipande, 1993$.

As an example, Fig. 3 shows the results of a nuclear
matter calculation2 carried out using correlated basis
function #CBF$ perturbation theory #Benhar et al., 1989$.
In addition to the peaks corresponding to single-particle
states, i.e., to bound one-hole states of the
#A−1$-nucleon system, the resulting SN#k ,E$ exhibits a
broad background, extending up to E%200 MeV and
(k ( %800 MeV/c, associated with n-hole #n−1$-particle
#A−1$-nucleon states in which at least one nucleon is

2As in symmetric nuclear matter Sp#k ,E$=Sn#k ,E$, the spec-
tral function shown corresponds to an isoscalar nucleon.

FIG. 3. Nuclear matter spectral function calculated using cor-
related basis function perturbation theory. From Benhar et al.,
1989.
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quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.
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Longitudinal/Transverse separation 
in electron scattering: 12C

from Benhar, Day, Sick, RMP 2008
Benhar, arXiv: 1501.06448

data Finn, et al 1984

10

FIG. 11 (color online) y-dependence of the longitudinal (L)
and transverse (T) scaling functions of Carbon at |q| = 400,
500, and 600 MeV (Finn et al., 1984), obtained from the anal-
ysis of the data of Barreau et al. (1983). Note that y is given
in units of the nucleon mass, m, and that the scaling function
is multiplied by m, to obtain a dimensionless quantity.

out processes are dominant in the longitudinal channel,
while one- and two-nucleon mechanisms provide compa-
rable contributions in the transverse channel.

The role of the two-body currents in determining the
sum rules of the L and T responses, defined as

S
L

(|q|) =
1

Z

Z
1

!th

d!R
L

(|q|,!) , (34)

and

S
T

(|q|) =
2

Zµ
p

+ Nµ
n

m2

|q|2
Z

1

!th

d!R
T

(|q|,!), (35)

has been thoroughly analysed by Carlson et al. (2002)
using the Green’s Function Monte Carlo (GFMC) ap-
proach. In the above equations, R

L

and R
T

are the
response functions defined in Eq.(10), µ

p

and µ
n

are
the proton and neutron magnetic moments, respectively,
and the lower integration limit, !

th

, corresponds to the
threshold of inelastic scattering.

The numerical results of the study of Carlson et al.

(2002), including the L and T sum rules of 3He, 4He
and 6Li at momentum transfer 300  |q|  700 MeV,
indicate that two-nucleon currents are responsible for a
⇠ 20 � 40% enhancement of of the T sum rule, while the
typical contribution to S

L

is a ⇠ 5% decrease.
As pointed out above, owing to the presence of NN cor-

relations 2p2h final states can be excited in processes in-
volving both one- and the two-body currents. Within the
IA scheme, the contribution of the one-body current can
be taken into account using spectral functions derived
from realistic nuclear models, in which the ground state
has non vanishing overlaps with the two hole-one particle
states of the residual system (Benhar et al., 1989). On
the other hand, the discussion of Section III.B implies

FIG. 12 (color online) Sum rule of the electromagnetic
response of carbon in the transverse channel, defined by
Eq. (35). The dashed line shows the results obtained including
the one-nucleon current only, while the solid line corresponds
to the full calculation. The dot-dash line represents the sum
rule computed neglecting interference terms, the contribution
of which is displayed by the dotted line. The results are nor-
malised so that the dashed line approaches unity as |q| ! 1
(Benhar et al., 2013).

that all models based on the mean field approximation
fail to meet this requirement.

A consistent treatment of the one- and two-nucleon
contributions to the nuclear cross section in the 2p2h sec-
tor requires that interference between the corresponding
amplitudes—including the one associated with the exci-
tation of 2p2h final states in the aftermath of a rescatter-
ing of the knocked out particle, to be discussed below—be
carefully taken into account.

The role of interference terms in determining the trans-
verse electromagnetic response of 12C has been recently
analysed within the GFMC approach. The results of this
study, displayed in Fig. 12, clearly show that interference
is the source of a sizeable fraction of the sum rule. At mo-
mentum transfer |q| >

⇠

300 MeV, its contribution turns
out to be comparable to—in fact even larger than—the
one arising from the squared matrix element of the two-
nucleon current (Benhar et al., 2013).

A fully consistent description of one- and two-body
current contributions to the nuclear cross sections in the
region in which the non relativistic approximation is ex-
pected to break down involves non trivial problem. Ex-
isting calculations have been carried out using diagram-
matic approaches, based on simplified descriptions of the
the nuclear initial and final states, obtained from either
the RFGM or more advanced implementations of the
mean field approximation (De Pace et al., 2003; Meucci
et al., 2002).

A novel approach, recently proposed by Benhar and
Rocco (2013) is based on a generalisation of the factori-
sation ansatz described in Section III.A. The 2p2h final
state is written in the form (compare to Eq. (13))

|Xi = |pp0i ⌦ |n
A�2

,p
n

i , (36)



(e, e′) Inclusive Response: Scaling Analysis

Donnelly and Sick (1999)

3He 4He

Scaling variables: ψ′ ≃ y/kF and fL,T = kF RL,T /GL,T

Data at variance with PWIA expectation that fL ≃ fT

Excess strength, especially for 4He, in transverse response

14

Single nucleon couplings factored out
Momenta of order inverse internucleon spacing:
Large enhancement of transverse over longitudinal response
     in all nuclei
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quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
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2
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where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.

191Benhar, Day, and Sick: Inclusive quasielastic electron-nucleus …

Rev. Mod. Phys., Vol. 80, No. 1, January–March 2008

electron scattering

Full Response:  Ground State (Hamiltonian)
                      Currents
                      Final states



RL,T (q,⇥) =
X

f

�(⇥ + E0 + Ef ) | � f |OL,T | 0 ⇥ |2

What we can compute reliably?
(given the interaction/ current model)

Sum Rules: `easy’ to calculate 
ground-state observable

S(q) =

Z
d� R(q,�) = �0|O†(q) O(q)|0⇥

Tells us about ground-state structure:
enhancements/depletions tells us about

currents and correlations



Experimental Data on Sum Rules

The excess of transverse strength is particularly large for 4He. It exceeds the longitudi-
nal strength at all momentum transfers, and does not seem to be limited to the“dip”region,
but affects the whole quasi-elastic peak region, extending below the π-production thresh-
old. The transverse strength in the dip, which increases with increasing q, is related to
the growing overlap between the high-energy side of the quasi-elastic peak and the tail of
the ∆-peak.

In order to study the A-dependence of this excess, we can look at the longitudinal
and transverse responses integrated over ψ′ — those for 12C, 40Ca, and 56Fe have been
determined in Ref. [12]. We have integrated these responses over the region of ψ′ that
essentially covers the quasi-elastic peak (|ψ′| < 1.2). When limiting the integration range
to |ψ′| < 0.5 much of the contribution from the tail of the ∆ is eliminated, at least for
the light nuclei. The ratio of transverse to longitudinal integrated strength is shown in
Fig. 4.

Figure 4 makes it clear that: i) the excess of transverse strength rises very rapidly
between 3He and 4He, and is indeed largest for 4He; ii) it is already large at the lowest q,
the increase at the larger q for the heavier nuclei is mainly due to the fact that the tail of
the ∆ peak contributes appreciably despite the restricted range of integration in ψ′.

Figure 4: Ratio of transverse to longitudinal integrated strength for 3He, 4He, 12C, 40Ca,
and 56Fe: 300 MeV/c: x and +, 400 MeV/c: ✸ and ✷, 600 MeV/c: ∗ and ◦. Points at
the same q are joined by lines. The integrations are over the indicated ranges of ψ′.
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Figure 9: The ratios ST (q)/SL(q), obtained with one-body currents only and both one-
and two-body currents, as function of momentum transfer q.

small, particularly in light nuclei where Pauli correlations are unimportant. Dropping the
last term corresponds to considering only incoherent scattering from pairs of nucleons.

This simple expectation is indeed borne out by a direct calculation, the results of
which are listed for 4He in Table 4. Thus the transverse sum rule appears to be saturated
by the one- and two-body terms in the expansion for j†j above.

q(MeV/c) 1 1+2 1+2-reduced
300 0.915 1.65 1.70
400 0.980 1.59 1.59
500 1.01 1.53 1.51
600 1.01 1.47 1.45
700 1.01 1.41 1.39

Table 4: The 4He transverse sum rule: effect of three- or four-nucleon terms.

Thirdly, the transverse strength associated with two-body currents is almost entirely

27

Transverse to Longitudinal Sum Rules for Light Nuclei

Carlson,  Jourdan, Schiavilla, Sick, PRC, 2002



Contributions to Sum Rules

Ground State (low-momentum piece): 
external momentum is large ( ≧ Fermi momentum)

12C

For a large momentum transfer to have an important matrix element,
need contribution from pion-exchange interaction (correlations) or currents



Correlations and Sum Rules:
Two-Nucleon Momentum Distributions
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FIG. 6 VMC proton momentum distributions in T = 0 light
nuclei.

tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

Two-nucleon momentum distributions, i.e., the proba-
bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can
be formulated analogously to Eqs. (66,68), and projected
with total pair spin-isospin ST , or as pp, np, and nn
pairs. Again, a large collection of VMC results has been
published (Wiringa et al., 2014) and figures and tables
are available on-line (Wiringa, 2014b).

Experiments to search for evidence of short-range cor-
relations have been a recent focus of activity at Je↵er-
son Laboratory. In an (e, e0pN) experiment on 12C at
JLab, a very large ratio ⇠ 20 of pn to pp pairs was
observed at momenta q=1.5–2.5 fm�1 for back-to-back
(Q = 0) pairs (Subedi et al., 2008). VMC calculations
for ⇢pN (q,Q = 0) are shown in Fig. 7 as blue diamonds
for pn pairs and red circles for pp pairs for T = 0 nuclei
from 4He to 12C (Schiavilla et al., 2007; Wiringa et al.,
2014). The pp back-to-back pairs are primarily in 1S0

states and have a node near 2 fm�1, while the pn pairs
are in deuteron-like 3S1 �3 D1 states where the D-wave
fills in the S-wave node. Consequently, there is a large
ratio of pn to pp pairs in this region. This behavior is
predicted to be universal across a wide range of nuclei.
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FIG. 7 VMC pn (blue diamonds) and pp (red circles) back-
to-back (Q = 0) i pair momentum distributions for T = 0
nuclei.
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FIG. 8 VMC proton-proton momentum distributions in 4He
averaged over the directions of q and Q as a function of q for
several fixed values of Q from 0 to 1.25 fm�1.

As Q increases, the S-wave node in pp pairs will gradu-
ally fill in, as illustrated for 4He in Fig. 8, where ⇢pp(q,Q)
is shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast,
the deuteron-like distribution in pn pairs is maintained
as Q increases, as shown in Fig. 9, with only a gradual
decrease in magnitude because there are fewer pairs at
high total Q. Recently, these momentum distributions
for 4He have been tested in new JLab experiments and
found to predict the ratio of pp to pn pairs at higher
missing momentum very well (Korover et al., 2014).

np vs. pp momentum
distributions

Carlson, et al, arXiv:1412.3081
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np pairs dominate over nn and pp

2

tions is well documented (see Refs. [10, 11] and references
therein), as is the quality of the AV18/UIX Hamiltonian
in quantitatively accounting for a wide variety of light
nuclei properties, such as elastic and inelastic electro-
magnetic form factors [12], and low-energy capture re-
actions [13]. However, it is important to stress that the
large effect of tensor correlations on two-nucleon momen-
tum distributions and the resulting isospin dependence of
the latter remain valid, even if one uses a semi-realistic
Hamiltonian model. This will be shown explicitly below.

The double Fourier transform in Eq. (1) is computed
by Monte Carlo (MC) integration. A standard Metropo-
lis walk, guided by |ψJMJ

(r1, r2, r3, . . . , rA)|2, is used to
sample configurations [11]. For each configuration a two-
dimensional grid of Gauss-Legendre points, xi and Xj , is
used to compute the Fourier transform. Instead of just
moving the ψ′ position (r′12 and R′

12) away from a fixed
ψ position (r12 and R12), both positions are moved sym-
metrically away from r12 and R12, so Eq. (1) becomes

ρTMT
(q,Q) =

A(A − 1)

2 (2J + 1)

∑
MJ

∫
dr1 dr2 dr3 · · ·drA dx dXψ†

JMJ
(r12+x/2,R12+X/2, r3, . . . , rA)

× e−iq·x e−iQ·X PTMT
(12)ψJMJ

(r12−x/2,R12−X/2, r3, . . . , rA) . (3)

Here the polar angles of the x and X grids are also
sampled by MC integration, with one sample per pair.
This procedure is similar to that adopted most recently
in studies of the 3He(e, e′p)d and 4He(e⃗, e′p⃗ )3H reac-
tions [14], and has the advantage of very substantially re-
ducing the statistical errors originating from the rapidly
oscillating nature of the integrand for large values of q
and Q. Indeed, earlier calculations of nucleon and cluster
momentum distributions in few-nucleon systems, which
were carried out by direct MC integration over all coordi-
nates, were very noisy for momenta beyond 2 fm−1, even
when the random walk consisted of a very large number
of configurations [2].

The present method is, however, computationally in-
tensive, because complete Gaussian integrations have to
be performed for each of the configurations sampled in
the random walk. The large range of values of x and X
required to obtain converged results, especially for 3He,
require fairly large numbers of points; we used grids of
up to 96 and 80 points for x and X , respectively. We
also sum over all pairs instead of just pair 12.

The np and pp momentum distributions in 3He, 4He,
6Li, and 8Be nuclei are shown in Fig. 1 as functions of the
relative momentum q at fixed total pair momentum Q=0,
corresponding to nucleons moving back to back. The
statistical errors due to the Monte Carlo integration are
displayed only for the pp pairs; they are negligibly small
for the np pairs. The striking features seen in all cases
are: i) the momentum distribution of np pairs is much
larger than that of pp pairs for relative momenta in the
range 1.5–3.0 fm−1, and ii) for the helium and lithium
isotopes the node in the pp momentum distribution is
absent in the np one, which instead exhibits a change of
slope at a characteristic value of p ≃ 1.5 fm−1. The nodal
structure is much less prominent in 8Be. At small val-
ues of q the ratios of np to pp momentum distributions
are closer to those of np to pp pair numbers, which in

3He, 4He, 6Li, and 8Be are respectively 2, 4, 3, and 8/3.
Note that the np momentum distribution is given by the
linear combination ρTMT =10+ρTMT =00, while the pp mo-
mentum distribution corresponds to ρTMT =11. The wave
functions utilized in the present study are eigenstates of
total isospin (1/2 for 3He, and 0 for 4He, 6Li, and 8Be),
so the small effects of isospin-symmetry-breaking inter-
actions are ignored. As a result, in 4He, 6Li, and 8Be
the ρTMT

is independent of the isospin projection and,
in particular, the pp and T = 1 np momentum distribu-
tions are the same.

The excess strength in the np momentum distribution
is due to the strong correlations induced by tensor com-
ponents in the underlying NN potential. For Q=0, the
pair and residual (A–2) system are in a relative S-wave.
In 3He and 4He with uncorrelated wave functions, 3/4 of
the np pairs are in deuteron-like T, S=0,1 states, while
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FIG. 1: (Color online) The np (lines) and pp (symbols) mo-
mentum distributions in various nuclei as functions of the
relative momentum q at vanishing total pair momentum Q.
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Contributions to Sum Rules

2

tions according to (see, e.g., Ref. [13])

J

µ

A

=
X

i

j

µ

i

+
X

j>i

j

µ

ij

. (1)

The one-body operator j

µ

i

describes interactions involv-
ing a single nucleon, and can be expressed in terms of
the vector and axial-vector form factors. The two-body
current jµ

ij

, on the other hand, accounts for processes in
which the beam particle couples to the currents arising
from meson exchange between two interacting nucleons.

It is very important to realise that, in scattering pro-
cesses involving interacting many-body systems, 2p2h fi-
nal states can be produced through the action of both

one- and two-nucleon currents. Within the IPM, how-
ever, in which interaction e↵ects are described in terms
of a mean field, 2p2h states can only be excited by two-
body operators, such as those describing MEC. In order
for the the matrix element of a one-body operator be-
tween the target ground state and a 2p2h final state to be
non vanishing, the e↵ects of dynamical nucleon-nucleon
(NN) correlations, ignored altogether in the IPM picture,
must be included in the description of the nuclear wave
functions.

Correlations give rise to virtual scattering between tar-
get nucleons, leading to the excitation of the participat-
ing particles to continuum states. The ISC contribution
to the 2p2h amplitude arises from processes in which the
beam particle couples to one of these high-momentum
nucleon. The FSC contribution, on the other hand, orig-
inates from scattering processes involving the struck nu-
cleon and one of the spectator particles, that also result
in the appearance of 2p2h final states.

In the kinematical region corresponding to moderate
momentum transfer, typically |q| < 400 MeV, in which
non relativistic approximations are expected to be appli-
cable, ISC, FSC and MEC can be consistently described
within advanced many-body approaches based on real-
istic models of nuclear dynamics, strongly constrained
by the properties of the exactly solvable two- and three-
nucleon systems [13]. The results of non relativistic cal-
culations, while not being directly comparable to exper-
imental data at large momentum transfer, can provide
valuable insight on the interplay of the di↵erent mecha-
nisms leading to the excitation of 2p2h final states.

The authors of Ref. [14] have recently reported the
results of an accurate calculation of the sum rules of the
electromagnetic response of carbon in the longitudinal
and transverse channels, carried out within the Green’s
Function Monte Carlo (GFMC) computational scheme.
Exploiting the completeness of the set of final states en-
tering the definition of the nuclear inclusive cross section,
these sum rules can be easily related to the energy-loss
integrals of the longitudinal and transverse components
of the tensor describing the target response to electro-
magnetic interactions [8].

Choosing the z-axis along the direction of the momen-
tum transfer, q, the transverse sum rule can be written

in the form

S

T

(q) =

Z
d!S

T

(q,!) , (2)

where

S

T

(q,!) = S

xx(q,!) + S

yy(q,!) , (3)

with (↵, � = 1, 2, and 3 label the x- y- and z-component
of the current, respectively)

S

↵� =
X

N

h0|J↵

A

|NihN |J�

A

|0i�(E0 + ! � E

N

) . (4)

In the above equation, |0i and |Ni denote the initial and
final nuclear states, the energies of which are E0 and E

N

.
The generalisation of Eqs. (2)-(4) to the case of charged
current weak interactions is discussed in Ref. [15].
We have employed the approach of Ref. [14] to pin

down the contribution of the terms arising from inter-
ference between correlations and MEC to the transverse
sum rule, which is long known to be strongly a↵ected by
processes involving two-nucleon currents.

FIG. 1: Sum rule of the electromagnetic response of carbon
in the transverse channel. The dashed line shows the results
obtained including the one-nucleon current only, while the
solid line corresponds to the full calculation. The dot-dash
line represents the sum rule computed neglecting interference
terms, the contribution of which is displayed by the dotted
line. The results are normalised so that the dashed line ap-
proaches unity as |q| ! 1. Monte Carlo errors bars are not
visible on the scale of the figure.

The results of numerical calculations, displayed in
Fig. 1, clearly show that interference terms provide a
sizeable fraction of the sum rule. At momentum trans-
fer |q| >⇠ 300 MeV, their contribution turns out to be
comparable to – in fact even larger than – that obtained
squaring the matrix element of the two-nucleon current.
Within the approach of Refs. [10, 11], based on the

IPM description of the nuclear initial and final states,

12C transverse channel

Single Nucleon

Full
j1† j1 + j2† j2

Interference

Lovato and Benhar, 2013
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duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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Euclidean Response

˜R(q, ⌧) = h0| j† exp[�(H�E0 � q2/(2m))⌧ ] j |0i >
short `time’ τ - high energy

exp[�H⌧ ] ⇡ exp[�V ⌧/2] exp[�T ⌧ ] exp[�V ⌧/2]

 Exact given a model of interactions, currents
 Full final-state interactions
`Local’ Operator
 Can apply to any nucleus; no assumptions about final states
 All contributions - elastic, low-lying states, quasi elastic, …

    are included



Operator Dependence is Very Important

Carlson and Schiavilla, RMP 1998
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For each coupling r

a

one obtains an associated re-
sponse, which we normalize such that Ē

a

(q!` ,t50)
51. These responses are shown in the a particle in Fig.
73, except for Ē

t

, which is a simple weighted average of
the spin-longitudinal and spin-transverse isovector re-
sponses. In the large-t limit, the only contribution to
ĒN ,p is from elastic-scattering, and hence here ĒN

5Ēp/2, given the normalization above. There is no
elastic-scattering contribution to the isovector responses
in the a particle, and hence they are much smaller at
large t . The rapid increase of ĒN ,p at large t and de-
crease of (Ē

stL ,Ē
stT) at small t indicate that there is

substantial response at v,vqe and v.vqe , respec-
tively.

The charge-exchange effect described above occurs in
all isovector responses. Indeed, this effect has been ob-
served in comparisons of quasielastic spectra obtained in
(p ,p8) and (p ,n) reactions (Fig. 74; Chrien et al. 1980;
Taddeucci, 1991; Carlson and Schiavilla, 1994b). More
recent experiments have measured the spin-longitudinal
and spin-transverse responses in heavier nuclei (Tad-
deucci et al., 1994). These experiments find a transverse
response much larger than that obtained in traditional
RPA calculations.

In contrast to a simple interpretation of the experi-
mental results, microscopic calculations find an excess
strength in the spin-longitudinal response, both in sum-
rule calculations in 16O and in the Euclidean response in
the alpha particle (Pandharipande et al., 1994). How-
ever, this enhancement is significantly smaller than those
obtained in RPA calculations. A variety of physics is-
sues, including couplings to more than single nucleons
and multiple-scattering effects, need to be better under-
stood before this situation is satisfactorily resolved. Ex-
periments on several light nuclei could prove extremely
valuable in this regard, as they have in electron scatter-
ing.

Before leaving the subject of nuclear response, we
should also consider recent measurements of inclusive
scattering of polarized electrons from polarized 3He
(Woodward et al., 1990; Thompson et al., 1992; Gao
et al., 1994; Hansen et al., 1995; Milner et al., 1996). By
polarizing the electrons and the target nucleus, one can
obtain additional response functions (Donnelly and
Raskin, 1986). For a spin-1

2 nucleus, the additional re-
sponse functions are RLT8 and RT8 , and the related spin-
dependent asymmetry is

A52
cosu!vT8 RT8 12sinu

!cosf!vTLRTL8

vLRL1vTRT
, (11.29)

where the vK are again kinematic factors and f

! and u

!

are the polar and azimuthal angles of the target spin
with respect to the three-momentum transfer q.

The initial motivation for these experiments was to try
to extract the neutron electric and magnetic form factors
by exploiting the fact that in 3He the neutron is largely
polarized parallel to the spin of the nucleus (the two
protons coupling to spin-0). This idea was first investi-
gated by Blankleider and Woloshyn (1984) in a closure
approximation, and then by Friar et al. (1990b). Later,
impulse-approximation calculations were performed by
Ciofi degli Atti, Pace, and Salmè (1992) and Schulze and
Sauer (1993). These calculations use realistic spin-
dependent spectral functions to calculate the asymme-
try, but do not include the effects of final-state interac-
tions or two-body currents. Gao et al. (1994) extracted a
value of the neutron magnetic form factor at Q250.19
GeV/c2 that is consistent with the dipole parametriza-
tion. Given the substantial effects of exchange currents

FIG. 73. Scaled Euclidean response for a variety of idealized
single-nucleon couplings in the a-particle.

FIG. 74. Peak position measured for quasielastic scattering
with different experiments. The solid line is the free-particle
peak position.
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An ab initio calculation of the sum rules of the neutral weak response functions in 12C is reported,
based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic cur-
rents, consisting of one- and two-body terms. We find that the sum rules of the response functions
associated with the longitudinal and transverse components of the (space-like) neutral current are
largest and that a significant portion (' 30%) of the calculated strength is due to two-body terms.
This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data
on nuclei.

PACS numbers: 21.60.De, 25.30.Pt

In recent years, there has been a surge of interest in
inclusive neutrino scattering o↵ nuclear targets, mostly
driven by the anomaly observed in the MiniBooNE quasi-
elastic charge-changing scattering data on 12C [1], i.e.,
the excess, at relatively low energy, of measured cross sec-
tion relative to theoretical calculations. Analyses based
on these calculations have led to speculations that our
present understanding of the nuclear response to charge-
changing weak probes may be incomplete [2], and, in
particular, that the momentum-transfer dependence of
the axial form factor of the nucleon may be rather dif-
ferent from that obtained from analyses of pion electro-
production data [3] and measurements of neutrino and
anti-neutrino reactions on protons and deuterons [4–7].

The accurate calculation of the weak inclusive response
of a nucleus like 12C is a challenging quantum many-body
problem. Its di�culty is compounded by the fact that the
energy of the incoming neutrinos is not known (in con-
trast, for example, to inclusive (e, e0) scattering where the
initial and final electron energies are precisely known).
The observed cross section for a given energy and angle of
the final lepton results from a folding with the energy dis-
tribution of the incoming neutrino flux and, consequently,
may include contributions from energy- and momentum-
transfer regions of the nuclear response where di↵erent
mechanisms are at play: the threshold region, where the
structure of the low-lying energy spectrum and collective
e↵ects are important; the quasi-elastic region, which is
(naively, see below) expected to be dominated by scatter-
ing o↵ individual nucleons; and the � resonance region,
where one or more pions are produced in the final state.

In recent years, a number of studies have attempted
to provide a description of the nuclear weak response
in this wide range of energy and momentum transfers.
They typically rely on a relativistic Fermi gas [8, 9] or
relativistic mean field [10, 11] picture of the nucleus.
Some, notably those of Ref. [12, 13], include correlation
e↵ects in the random-phase approximation induced by

e↵ective particle-hole interactions in the N -N , �-N , N -
� and �-� sectors, use various inputs from pion-nucleus
phenomenology, and lead to predictions for electromag-
netic and strong spin-isospin response functions of nuclei,
as measured, respectively, in inclusive (e, e0) scattering
and in pion and charge-exchange reactions, in reasonable
agreement with data.
In the present manuscript, we report on a study of

the neutral weak response of 12C, based on a dynami-
cal framework in which nucleons interact among them-
selves with two- and three-body forces and with exter-
nal electroweak probes via one- and two-body currents—
elsewhere [14], we have referred to this framework as the
standard nuclear physics approach (SNPA). While SNPA
allows for an ab initio treatment of the nuclear response
in the threshold and quasi-elastic regions and, as such,
constitutes a significant improvement over the far more
phenomenological approaches mentioned above, it has
nevertheless severe limitations: it cannot describe—at
least, in its present formulation—the �-excitation peak
region, since no mechanisms for (real) single- and multi-
pion production are included in it. However, the above
proviso notwithstanding, the sum rules of weak neutral
response functions, which we consider here, should pro-
vide useful insights into the nature of the strength seen
in the quasi-elastic region and, in particular, into the role
of two-body terms in the electroweak current.
The di↵erential cross section for neutrino (⌫) and an-

tineutrino (⌫) inclusive scattering o↵ a nucleus—the pro-
cesses A(⌫

l

, ⌫

0
l

) and A(⌫
l

, ⌫

0
l

) induced by the neutral weak
current (NC)—can be expressed in terms of five response
functions as follows [15]
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where G

F

= 1.1803 ⇥ 10�5 GeV�2 is the Fermi con-
stant [16] and the � (+) sign in the last term applies to
the ⌫ (⌫) reaction. The neutrino initial and final four-
momenta are k

µ = (✏,k) and k

µ 0 = (✏0,k0), and its en-
ergy and momentum transfers are defined as ! = ✏ � ✏

0

and q = k�k0. The scattering angle and four-momentum
transfer are denoted by ✓ and Q

2, respectively, with
Q

2 = q

2 � !

2
> 0. The nuclear response functions are

schematically given by (explicit expressions are listed in
Eqs. (2.5)–(2.9) of Ref. [15])

R

↵�

(q,!) ⇠
X

i

X

f

�(!+m

A

�E

f

)hf | j↵(q,!) | ii

⇥hf | j�(q,!) | ii⇤ ,

where | ii and | fi represent the initial ground state
and final scattering state of the nucleus of energies m

A

and E

f

=
q
q

2 +m

2
f

; here, m
A

and m

f

denote, respec-

tively, the rest mass and internal excitation energy (in-
cluding the masses of the constituent nucleons). The
three-momentum transfer q is taken along the z-axis (i.e.,
the spin-quantization axis), and j

µ(q,!) is the NC time
component for µ = 0 or space component for µ = x, y, z.
Lastly, an average over the initial nuclear spin projections
is implied.

The NC is given by

j

µ = �2 sin2✓
W

j

µ

�,S

+ (1� 2 sin2✓
W

) jµ
�,V

+ j

µ5
V

,

where ✓

W

is the Weinberg angle (sin2✓
W

= 0.2312 [17]),
j

µ

�,S

and j

µ

�,V

denote, respectively, the isoscalar and
isovector components of the electromagnetic current, and
j

µ5
V

denotes the isovector component of the axial current.
Isoscalar contributions to j

µ associated with strange
quarks are ignored, since experiments at Bates [18–20]
and JLab [21–23] have found them to be very small.

Explicit expressions for the nuclear electromagnetic
current j

µ

�

are reported in Ref. [15] and were used in
our recent study of the charge form factor and longitudi-
nal and transverse sum rules of electromagnetic response
functions in 12C [14]. In the SNPA they lead to a sat-
isfactory description of a variety of electro- and photo-
nuclear observables in systems with A  12, ranging from
static properties (charge radii, quadrupole moments, and
M1 transition widths) to charge and magnetic form fac-
tors to low-energy radiative capture cross sections and to
inclusive (e, e0) scattering in quasielastic kinematics at
intermediate energies [14, 24–28].

A realistic model for the axial weak current j

µ5
V

in-
cludes one- and two-body terms (see Ref. [15] for a recent
overview). The former follow from a non-relativistic ex-
pansion of the single-nucleon four-current, in which cor-
rections proportional to 1/m2 (m is the nucleon mass)
are retained. The time component of the two-body axial
current includes the pion-exchange term whose structure
and strength are determined by soft-pion theorem and

current algebra arguments [29]. Its space components
consist of contributions associated with ⇡- and ⇢-meson
exchanges, the axial ⇢⇡ transition mechanism, and a �
excitation term (treated in the static limit). The values
for the ⇡- and ⇢-meson coupling constants are taken from
the CD-Bonn one-boson-exchange potential [30]. Two
di↵erent sets of cuto↵ masses ⇤

⇡

and ⇤
⇢

are used to reg-
ularize the r-space representation of these operators [15]:
in the first set (Set I) the ⇤

⇡

and ⇤
⇢

values (⇤
⇡

=⇤
⇢

=1.2
GeV) are in line with those extracted from the e↵ective
⇡-like and ⇢-like exchanges implicit in the Argonne v18

(AV18) two-nucleon potential [31], while in the second
set (Set II) they are taken from the CD-Bonn potential
(⇤

⇡

=1.72 GeV and ⇤
⇢

=1.31 GeV). In the N to � cur-
rent, the value for the transition axial coupling constant
(g⇤

A

) is determined by fitting the Gamow-Teller matrix
element of tritium �-decay in a calculation [32, 33] based
on 3H/3He wave functions corresponding to the AV18
and Urbana IX (UIX) three-nucleon [34] potentials and
on the present model for the axial current (g⇤

A

=0.614 g

A

with Set I and g

⇤
A

=0.371 g

A

with Set II).
The !-dependence in the current jµ enters through the

dependence on Q

2 of the electroweak form factors of the
nucleon andN -to-� transition. We fix ! at the quasielas-
tic peak energy, !qe =

p
q

2 +m

2�m, and evaluate these
form factors at Q2

qe = q

2�!

2
qe. Sum rules of NC response

functions, defined as

S

↵�

(q)=C

↵�

Z 1

!el

d!R

↵�

(q,!) ,

can then be expressed as ground-state expectation values
of the type

S

↵�

(q)=C
↵�

X

i

hi|j↵†(q)j�(q)+(1��

↵�

) j�†(q)j↵(q)|ii

S

xy

(q)=C
xy

X

i

Im hi|jx†(q)jy(q)� j

y†(q)jx(q)|ii

where !el =
p

q

2 +m

2
A

�m

A

is the energy transfer cor-
responding to elastic scattering, the C

↵�

’s are conve-
nient normalization factors (see below), ↵� = 00, zz,
0z, and xx, and for ↵� = xx the expectation value of
j

x†
j

x + j

y†
j

y is computed. Note that the sum rules as
defined above include the elastic and inelastic contribu-
tions; the former are proportional to the square of elec-
troweak form factors of the nucleus. In the large q limit,
these nuclear form factors decrease rapidly with q, and
the sum rules reduce to the incoherent sum of single-
nucleon contributions. The normalization factors C

↵�

are chosen such that S
↵�

(q ! 1) ' 1, for example

C

�1
xy

= � q

m

G

A

(Q2
qe)

h
Z

e
G

p

M

(Q2
qe)�N

e
G

n

M

(Q2
qe)

i
,

where Z (N) is the proton (neutron) number, G

A

is the weak axial form factor of the nucleon nor-
malized as G

A

(0) = g

A

(g
A

=1.2694 [17]), and

Vector - Axial Vector Interference determines the
difference between neutrino and antineutrino scattering
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to collective excitations of electric-dipole type in the nu-
cleus. In the large q limit, the one-body sum rules di↵er
from unity because of relativistic corrections in OL(q),
primarily the Darwin-Foldy term which gives a contri-
bution �⌘/(1 + ⌘) to S1b

L (q), where ⌘ ' q2/(4m2), and
because of the convection term in OT (q), which gives a
contribution ' (4/3)CT Tp/m to S1b

T (q), where Tp is the
proton kinetic energy in the nucleus.

In contrast to SL, the transverse sum rule has large
two-body contributions. This is consistent with studies
of Euclidean transverse response functions in the few-
nucleon systems (Carlson et al., 2002), which suggest that
a significant portion of this excess transverse strength
is in the quasi-elastic region. Overall, the calculated
SL(q) and ST (q) are in reasonable agreement with data.
However, a direct calculation of the response functions
is clearly needed for a more meaningful comparison be-
tween theory and experiment. Such calculations will be
forthcoming in the near future.

While sum rules of NC or CC weak sum rules are of a
more theoretical interest, they nevertheless provide useful
insights into the nature of the strength seen in the quasi-
elastic region of the response and, in particular, into the
role of two-body terms in the electroweak current. Those
corresponding to weak NC response functions and rela-
tive to 12C are shown in Fig. 24: results S1b (S2b) cor-
responding to one-body (one- and two-body) terms in
the NC are indicated by the dashed (solid) lines. Note
that both S1b

↵� and S2b
↵� are normalized by the same fac-

tor C↵� , which makes S1b
↵�(q) ! 1 in the large q limit.

In the small q limit, S1b
00 (q) and S1b

0z (q) are much larger
than S1b

↵� for ↵� 6= 00, 0z. In a simple ↵-cluster pic-

ture of 12C, one would expect S1b
↵�(

12C)/C↵�(12C) '
3S1b

↵�(
4He)/C↵�(4He), as is indeed verified in the ac-

tual numerical calculations to within a few %, except for
S1b
00 /C00 and S1b

0z /C0z at low q . 1 fm �1, where these
quantities are dominated by the elastic contribution scal-
ing as A2.

Except for S2b
00 (q), the S2b

↵�(q) sum rules are consid-

erably larger than the S1b
↵�(q), by as much as 30-40%.

This enhancement is not seen in calculations of neutrino-
deuteron scattering (Shen et al., 2012); the deuteron
R↵�(q,!) response functions at q = 300 MeV/c are dis-
played in Fig. 25 (note that R00 is multiplied by a factor
of 5). Two-body current contributions in the deuteron
amount to only a few percent at the top of the quasielas-
tic peak of the largest in magnitude Rxx and Rxy, but
become increasingly more important in the tail of these
response functions, consistent with the notion that this
region is dominated by NN physics (Lovato et al., 2013).
The very weak binding of the deuteron dramatically
reduces the impact of NN currents, which are impor-
tant only when two nucleons are within 1–2 inverse pion
masses.

Correlations in np pairs in nuclei with mass number
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FIG. 24 (Color online) The sum rules S
↵�

in 12C, correspond-
ing to the AV18/IL7 Hamiltonian and obtained with one-body
only (dashed lines) and one- and two-body (solid lines) terms
in the NC.

50 100 150
ω (MeV)

-0.02

0.00

0.02

0.04

M
eV

-1

1b
1b+2b

100 150 200

-0.001

0.000

0.001

0.002

xx00 x 5

0z

xy

zz

FIG. 25 (Color online) The response functions R
↵�

in the
deuteron at q = 300 MeV/c computed using AV18 and ob-
tained with one-body only (dashed lines) and one- and two-
body (solid lines) terms in the NC. The inset shows the tails
of R

↵�

in the !-region well beyond the quasi-elastic peak.

A�3 are stronger than in the deuteron. The NN density
distributions in deuteron-like (T=0 and S=1) pairs are
proportional to those in the deuteron for separations up
to ' 2 fm, and this proportionality constant, denoted as
RAd (Forest et al., 1996), is larger than A/2; in 4He and
16O the calculated values of RAd are 4.7 and 18.8, respec-
tively. Similarly, experiments at BNL (Piasetzky et al.,
2006) and JLab (Subedi et al., 2008) find that exclusive
measurements of back-to-back pairs in 12C at relative mo-
menta around 2 fm�1 are strongly dominated by np (ver-
sus nn or pp) pairs. In this range and in the back-to-back

Sum rules in 12C
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EM

Single Nucleon currents (open symbols) versus
Full currents (filled symbols)
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FIG. 1. (Color online) Euclidean electromagnetic longitudinal
(top panel) and transverse (lower panel) response function of
12C at q = 570 MeV. Experimental data are from Ref. [22].

that used in Ref. [3] for the sum rules. As discussed
in Ref. [3], the scaling assumption can be justified by ob-
serving that the high ! (well beyond !

qe

) region of the
response is dominated by two-nucleon physics, in partic-
ular by deuteron-like np pairs in the ground-state of the
nucleus. It is important to stress that, as ⌧ increases,
the Euclidean response functions become more and more
sensitive to strength in the quasi-elastic and threshold
regions of RL,T (q,!). Indeed, in this limit (⌧ >⇠ 1/!

qe

)
contributions from unmeasured strength at ! > !

max

are
exponentially suppressed.

In Fig. 1 we show results obtained by including only
one-body (open circles) or both one- and two-body (solid
circles) terms in the electromagnetic transition operators.
In the longitudinal case, destructive interference between
the matrix elements of the one- and two-body charge op-
erators reduces, albeit slightly, the one-body response.
In the transverse case, on the other hand, two-body cur-
rent contributions substantially increase the one-body re-
sponse. This enhancement is e↵ective over the whole
imaginary-time region we have considered, with the im-
plication that excess transverse strength is generated by
two-body currents not only at ! >⇠ !

qe

, but also in the
quasi-elastic and threshold regions of RT (q,!). It is re-
assuring to see that the full predictions for both longitu-

dinal and transverse Euclidean response functions are in
excellent agreement with data.
At larger values of ⌧ the statistical errors associated

with the GFMC evolution are rather large, particularly
in the longitudinal response for which the elastic contri-
bution proportional to the square of the 12C form fac-
tor [3] needs to be removed in order to account for the
inelastic strength only. However, it should be possible
to reduce these errors in the future by investing substan-
tial additional computational resources in this type of
calculation. Those presented here were performed with
⇠45 million core hours of Argonne National Laboratory’s
IBM Blue Gene/Q (Mira) parallel supercomputer. The
Automatic Dynamic Load Balancing (ADLB) library [23]
was used to distribute the imaginary time propagation of
O�(q)| V i and the evaluation of the matrix element in
Eq. (3) over more than 8000 MPI ranks. The code is at
present approximately 75% e�cient at this scale.
In Fig. 2 we show the largest of the five Euclidean

neutral-weak response functions: the transverse (top
panel) and interference (lower panel) E↵�(q, ⌧), having
respectively ↵� = xx and ↵� = xy in the notation of
Ref. [1]. The Exy(q, ⌧) response is due to interference
between the vector (VNC) and axial (ANC) parts of the
neutral current (NC), and in the inclusive cross section
the corresponding Rxy(q,!) enters with opposite sign de-
pending on whether the process A(⌫l, ⌫0l) or A(⌫l, ⌫

0
l ) is

considered [1]. On the other hand, in the transverse
case the interference of VNC and ANC terms vanishes,
and Exx(q, ⌧) is simply given by the sum of the terms
with both O↵ and O� in Eq. (1) being from the VNC
or from the ANC. For Exx(q, ⌧) these individual contri-
butions, along with their sum, are displayed separately.
Both Exx(q, ⌧) and Exy(q, ⌧) response functions obtained
with one-body terms only in the NC are substantially in-
creased when two-body terms are also retained. This
enhancement is found not only at low ⌧ , thus corrobo-
rating the sum-rule predictions of Ref. [4], but in fact
extends over the whole ⌧ region studied here. Moreover,
in the case of the transverse response it a↵ects, in rela-
tive terms, the individual (VNC-VNC) and (ANC-ANC)
contributions about equally.

The VNC consists of a linear combination of the isoscalar
and isovector components of the electromagnetic cur-
rent, weighted respectively by the factors �2 sin2 ✓W
and (1 � 2 sin2 ✓W ) with ✓W being the Weinberg an-
gle. The excess transverse strength induced by two-body
terms in the VNC is consistent with that found in the
transverse electromagnetic response, and is confirmed by
experiment as Fig. 1 demonstrates. The two-body en-
hancement in the (ANC-ANC) contribution of Exx(q, ⌧)
is substantial at these relatively large q’s. It decreases
significantly (for ⌧ >⇠ 0.01 MeV�1) as q is reduced [24],
consistently with what is found in calculations of low

12C Euclidean Response: Electron Scattering
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FIG. 2. (Color online) Euclidean neutral-weak transverse
(top panel) and interference (lower panel) response functions
(↵� = xx and xy in the notation of Ref. [1]) of 12C at q = 570
MeV. See text for further explanations.

q charge-changing weak transitions to specific low-lying
states, such as the �-decays and electron and muon cap-
tures studied in Refs. [25, 26], where it amounts to a
few percent. In principle, the enhancement in the quasi-
elastic region could be measured in parity-violating in-
clusive (~e, e0) scattering at backward angles. However,
the smallness of the factor (1� 4 sin2 ✓W ), to which the
relevant (VEM-ANC) interference response function is
proportional, makes experiments of this type extremely
di�cult.

In order to obtain more detailed information on the
energy dependence of the R↵�(q,!) response, we em-
ploy the maximum entropy (MaxEnt) method to invert
E↵�(q, ⌧). We describe the method here very briefly, sev-
eral standard references are available [15, 16]. The nu-
merical inversion of a Laplace transform E↵�(q, ⌧) with
its associated statistical errors is a notoriously ill-posed
problem. The fact that we are interested in the (smooth)
response around the quasi-elastic peak rather than iso-
lated peaks makes it somewhat more practical. The
MaxEnt method is based on Bayesian statistical infer-
ence: the “most probable” response function is the one
that maximizes the posterior probability Pr[R|E ], i.e.,
the conditional probability of R given E. Bayes theo-
rem states that the posterior probability is proportional

to the product Pr[E|R ] ⇥ Pr[R ], where Pr[E|R ] is the
likelihood function and Pr[R ] is the prior probability. Ar-
guments based on the central limit theorem show that
the asymptotic limit of the likelihood function is given
by Pr[E|R ] / exp(��2/2) with �2 defined as follows.
Let N⌧ and N! be the numbers of grid points in the
variables ⌧ and !, respectively. Then the Laplace trans-
form in Eq. (2) reads (the q-dependence and subscripts
↵� of E↵�(q, ⌧) and R↵�(q, ⌧) are suppressed for simplic-
ity hereafter)

Ei =
N!X

j=1

Kij Rj , (4)

where Kij = exp(�⌧i !j) and Rj = �!j R(!j), and the
�2 follows from

�2 =
N⌧X

i,j=1

�
Ei � Ei

� �
C�1

�
ij

�
Ej � Ej

�
, (5)

where the Ei are obtained from Eq. (4), the Ei are the
GFMC calculated values, and C is the covariance matrix.
Therefore, maximizing the likelihood function reduces to
finding a set of Ri values that minimizes the �2. The
GFMC errors on Ei are strongly correlated in ⌧ , as in-
dividual steps involve only small spatial distances and
evolutions of the spin-isospin amplitudes. It is therefore
of paramount importance to estimate the covariance ma-
trix C.
Limiting ourselves only to the �2 minimization would

implicitly be making the assumption that the prior prob-
ability is either unimportant or unknown. However, since
the response function is positive definite and normal-
izable, it can be interpreted as yet another probability
function. The principle of maximum entropy states that
the values of a probability function are to be assigned by
maximizing the entropy

S =
N!X

i=1

h
R(!i)�M(!i)�R(!i) ln[R(!i)/M(!i)]

i
�!i ,

(6)
where the positive definite function M(!) is the default

model. It is worthwhile mentioning that the above ex-
pression is applicable even whenR(!) andM(!) have dif-
ferent normalizations. The entropy measures how much
the response function di↵ers from the model. It vanishes
when R(!) = M(!), and is negative when R(!) 6= M(!).
The maximum entropy method adds to the simple �2

minimization the use of the prior information that the
response function can be interpreted as a probability dis-
tribution function. We employ historic maximum en-

tropy by minimizing ↵S � �2/2 with the parameter ↵
adjusted to make the �2 equal to one. While more re-
fined methods relying on Bayes statistical inference have
been developed, we found historic maximum entropy to
be simple to implement and adequate for our purposes.

Lovato, et al, arXiv:1491,2605; 1501.01981

see Omar Benhar, Patrick Huber, Camillo Mariani, Davide Meloni: arXiv:1501.06448 for impact on oscillation parameters
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Impact on Oscillation Parameters
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FIG. 3: Muon angle and energy distribution d2�/d cos ✓µdTµ for 0.80 < cos ✓µ < 0.90. Experimental data from Ref. [5] and
calculation with MA = 1.32 GeV are multiplied by 0.9. Axial mass for the other curves is MA = 1.049 GeV.

with electron, photon and pion probes and contains no additional free parameters. RPA and multinucleon knockout
have been found to be essential for the description of the data. Our main conclusion is that MiniBooNE data are fully
compatible with former determinations of the nucleon axial mass, both using neutrino and electron beams in contrast
with several previous analyses. The results also suggest that the neutrino flux could have been underestimated.
Besides, we have found that the procedure commonly used to reconstruct the neutrino energy for quasielastic events
from the muon angle and energy could be unreliable for a wide region of the phase space, due to the large importance
of multinucleon events.

It is clear that experiments on neutrino reactions on complex nuclei have reached a precision level that requires for a
quantitative description of sophisticated theoretical approaches. Apart from being important in the study of neutrino
physics, these experiments are starting to provide very valuable information on the axial structure of hadrons.
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the quasielastic peak), and by multiplying the responses by
(1 + ω

MN
). Our present evaluations use these recipes and unless

specified otherwise the curves of this article are calculated in
this framework. Now in a realistic approach of the nuclear dy-
namics with correlations the nuclear region of response is not
restricted to the Fermi motion band around the quasielastic line
(as in Fig. 1) but it covers the whole ω and q plane from mult-
inucleon emission. As a consequence, for a given set of values
of Eµ and θ , all values of the energy transfer ω, hence of the
neutrino energy, Eν = Eµ + ω, contribute and one explores
the full energy spectrum of neutrinos above the muon energy.

The results of our present evaluation with the relativis-
tic corrections of the double differential cross section are
displayed in Fig. 2, with and without the inclusion of the
np-nh component and compared to the experimental data.
This evaluation, like all those in this article, is done with the
free value of the axial mass. The agreement is quite good in
all the measured ranges once the multinucleon component is
incorporated. Similar conclusions have been recently reported
in Ref. [9]. The relativistic corrections are significant, as
illustrated in Fig. 3 which compares the two approaches for the
genuine quasielastic contributions. The relativistic treatment,
which suppresses the kinematical pathologies, improves the
description, in particular, in the backward direction. This is
illustrated in Fig. 4 in the case 0.4 GeV < Tµ < 0.5 GeV in
which the 2p-2h component was added for comparison with
data. The good agreement with data of Fig. 2 is absent in the
nonrelativistic case.

Our responses are described, as in our previous works [3,4],
in the framework of random phase approximation. Its role
is shown in Figs. 5 and 6 where the double differential
cross sections as a function of cosθ or Tµ are displayed
with and without RPA. The RPA produces a quenching and
some shift toward larger angles or larger Tµ. In Fig. 6 we
present the comparison with data adding the np-nh to the
genuine QE with or without RPA. The fit is significantly

better in the RPA framework, reflecting the collective character
of the nuclear response. The RPA quenching of the cross
sections results from the repulsive nature of the p-h force,
embodied in the Landau-Migdal parameter g′. A large part
of this quenching arises from the mixing of the p-h states
with $-hole ones. This is the Lorentz-Lorenz effect, which
concerns exclusively the spin isospin response, hence the axial
or magnetic matrix elements. In the graphical illustration of
the response, the Lorentz-Lorenz effect on the quasielastic
one is illustrated in Fig. 7. Figure 6 shows the dominance of
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FIG. 25 (color online) Comparison between the flux averaged muon energy spectrum at muon scattering angle ✓µ such that
0.8  cos ✓µ  0.9, measured by the MiniBooNE collaboration (Aguilar-Arevalo et al., 2008) and the theoretical results of
Martini et al. (2011) (thick solid line of the right panel) and Gran et al. (2013) (thick solid line of the left panel). All theoretical
calculations have been carried out using a value of the axial mass consistent with the one extracted from deuteron data.
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FIG. 26 (color online) Comparison between the flux averaged muon energy spectra measured by the MiniBooNE collaboration
at muon scattering angle ✓µ corresponding to 0.8  cos ✓µ  0.9 (left panel) and 0.3  cos ✓µ  0.4 (right panel) (Aguilar-
Arevalo et al., 2008) and the results of Amaro et al. (2011). The data, with their error bars, are represented by the boxes,
while the solid lines show the calculated spectra.

is expected to simulate all relevant interactions and each
of this simulations has to cover all possible kinematical
regions. Additional complications stem from the require-
ment of describing of a variety of nuclei used in neutrino
detectors.

Most available neutrino event generators use the
RFGM to describe the nuclear ground state. Recently, an
improved implementation of the SF approach (Ankowski
and Sobczyk, 2008; Benhar et al., 1994, 2005), based
on the formalism described in Section III.B, has been
included in the GENIE neutrino event generator (An-
dreopoulos et al., 2010; Jen et al., 2014). As a first step,
the work of Jen et al. (2014) focused on the CC QE chan-
nel, which accounts for a large fraction of the detected
signal in many neutrino oscillation experiments. As an
example, Fig. 27 presents the double di↵erential cross

section of the process

⌫
µ

+ 12C ! µ� + X , (66)

in the QE channel, at neutrino energy E
⌫

= 1 GeV and
muon scattering angle ✓

µ

= 30 deg, plotted as a function
of the lepton energy loss !. The calculation has been
carried out using the carbon spectral function of Benhar
et al. (1994). In order to illustrate the size of the axial-
vector contributions, the result of the full calculation is
compared to that obtained setting F

A

(Q2) = 0.

To carry out the simulation following the scheme out-
lined above, few new modules were developed, and few
modules from the o�cial GENIE release 2.8.0 were mod-
ified (Jen et al., 2014). From now on, we will refer to
them as GENIE 2.8.0 + ⌫T . By analogy to Eq. (22), the
QE neutrino-nucleus cross section at beam energy E

⌫

can

Martini et al. (2011)
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FIG. 36 (color online) Impact on the results if a di↵erent generator is used to compute the true and fitted rates in the analysis.
The shaded areas show the confidence regions at 1, 2 and 3� that are obtained in the ✓23 � �m2

31 plane if the true and fitted
rates are generated using the same set of migration matrices (obtained from GiBUU, with oxygen as the target nucleus). The
solid lines show the same confidence regions if the true rates are generated using matrices produced with GiBUU, but the
fitted rates are computed using matrices produced with GENIE. Both sets of matrices are generated using oxygen as the target
nucleus. The dot indicates the true input value, while the triangle shows the location of the best fit point. The value of the
�2 at the best fit is also shown, together with the number of degrees of freedom. In the left panel no energy scale uncertainty
is considered, while for the right panel an energy scale uncertainty of 5% is assumed, see text for details. Figure and caption
adapted from Coloma et al. (2014)

like experiments against cross section systematics found
by Coloma et al. (2013): in light of later studies, this may
be entirely due to using systematical uncertainties which
only a↵ect the rate but not the shape of the signal. The
conceptually expedient simplification to focus on one in-
teraction type, like quasi-elastic, severely restricts practi-
cal applicability for future experiments in the multi-GeV
energy range where a multitude of interaction mecha-
nisms contributes. Similarly, comparing di↵erent event
generators may create a false sense of the magnitude of
the problem, in particular since none of the existing gen-
erators is known to correctly describe neutrino scatter-
ing over a wide kinematic range and di↵erent interaction
modes.

VIII. SUMMARY AND OUTLOOK

The surge of activities aimed at improving the descrip-
tion of neutrino-nucleus interactions, critical for the in-
terpretation of oscillation signals, is now over a decade
old, and still growing. Beginning with the first Workshop
of the NUINT (Neutrino-nucleus interactions in the few
GeV region) series—that marked the dawning of the age
of collaboration between the communities of nuclear and
neutrino physics back in 2001—a number of experimen-

tal and theoretical developments contributed to steadily
advance the field.

On the experimental side, the MiniBooNE Collabora-
tion performed the first measurement of the double dif-
ferential nuclear cross section in the QE sector (Aguilar-
Arevalo et al., 2010), thus providing an unprecedented
opportunity to test the available theoretical models and
compare their predictions of the electron and neutrino
cross sections. Additional new information has been
also provided by the Miner⌫a experiment, specifically de-
signed to study neutrino-nucleus interactions using di↵er-
ent targets and covering a broad kinematical region (Tice
et al., 2014).

Theoretical studies, carried out using highly advanced
models of nuclear structure and dynamics, shed new light
on the complex reaction mechanisms contributing to the
flux integrated cross sections, the understanding of which
is needed to reduce the uncertainties associated with
event identification and neutrino energy reconstruction.

Thanks to the availability of ever more powerful com-
puters, and to the continuous evolution of Monte Carlo
computational algorithms, accurate ab initio calculations
of scattering observables, based on the formalism of nu-
clear many-body theory and realistic nuclear hamiltoni-
ans, can presently be carried out for nuclei as large as
carbon. However, the Monte Carlo approach appears to

Using two different generators
before improved models

Coloma, et al. (2014)
see discussion in Benhar, et al:  arXiv:1501.06448v1

may be overestimate of the problem



Present and Future Challenges
Charged Current Scattering from 12C
Larger Nuclei (new US detectors use Argon)
Relativistic Effects, Delta Resonances, …
Incorporating Results into Event Generators (Classical)
Lower Energy Scattering (Supernovae Neutrinos)

possible coherent neutrino-neutrino coherent evolution
coupled with neutrino-nucleus scattering
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