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Some Motivations...

@ In many cases of interes, it might be useful to have a
stochastic projection algorithm a /a Quantum Monte Carlo
defined in a generic representation of the Hilbert space (e.g.
momentum space). For certain Hamiltonians, this is not just
useful, but necessary.

@ There are very efficient variational methods, like Cl, Cl,
NCSM, providing very accurate wavefunctions, but hard to
manage in coordinate space, hence useless in standard QMC.
An accurate wavefunction is an essential ingredient in
projection MC calculations.

@ Momentum distribution (and other momentum related
observables) in QMC, or response functions from the inversion
of general kernels, not just Laplace:

"difficult” in standard coordinate-space MC.
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Configuration Interaction Monte Carlo

We start considering a generic Hamiltonian including up to
two—body interactions (generalization to three-body, when needed,
is easy).

H= Y enatan+ Y Vafg,ﬂ;a:ga;awag

aeS nmpqgeS

Here S is he set of single particle states labeled by the index «.
Such set is assumed to be finite and of size Ns (in general this is a
model Hilbert space).

Notice that no assumption is made on the local or non-local nature
of the Hamiltonian.
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Configuration Interaction Monte Carlo

The idea is to project the ground state of the Hamiltonian
restricted to the model Hilbert space chosen by means of a
stochastic implementation of the power method.

Consider a matrix A and assume it has a dominant eigenvalue
Ao > A1 > A2+, and a corresponding dominant eigenvector Xg.
Start from a generic vector x not orthogonal to xg, and apply M
times to it the matrix A:

AMx = AM Z CnXp = Z)\yx,,
n n

Clearly the component along the dominant eigenvector takes over
al the other components exponentially with M.
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Configuration Interaction Monte Carlo

Define now a projection operator.
Par=1-A7(H-ET)

Clearly Pa, has the same eigenvectors as H, but given the minus
sign we will pick up the dominant egenvector will correspond to the
lowest eigenvalue Eg. If ET = Eg the normalization of the dominant
eigenvector is preserved, since the dominant eigenvalue is 1.

Given the finiteness of the space, if we choose A7 such that

2

AT< ———
Emax - ET

where E,,.x is the highest eigenvalue of H in the model Hilbert
space, all the eigenvalues of P are guaranteed to be positive.
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Configuration Interaction Monte Carlo

The propagation of a generic state |W) for an imaginary time
interval At is defined as:

V(7 + AT)) = Par V(7))

A repeated application of the propagator yelds the projection on
the ground state:

Wo) = lim [W(r))

provided that the projection is started from a state that is
non-orthogonal to the ground state.
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Configuration Interaction Monte Carlo

For a N-Fermion system we label the Slater determinants
constituting the Hilbert space with a label n = {n;...ny} where
ne, =0,1, and « labels a set of quantum numbers determining the
single particle state (any other way is just as good).
In configuration representation the imaginary time step can be
written as:

(n[W(7 +AT)) = 3 (n[PIm){m[¥(7)).

m

As it is commonly done also in standard coordinate space DMC,
we rewrite the matrix elements of the propagator as:

(n[Plm) = g(m)p(n, m)

where

m) = n|P|lm n.m :—(n]77|m)
g(m) = S{iPim)  p(n.m) = 5L
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Configuration Interaction Monte Carlo

If all the matrix elements of P are , then we can
interpret p(n,m) as a transition probability between the states n
and m, while g(m) is a "weight” of the configuration (relative
change in normalization).

From this point on, the algorithm might seem trivial. Transitions
are sampled according to the magnitude of the matrix elements
and walkers in the Hilbert space are replicated in the usual way.

© As the number of states and/or particles increases, the upper
bound for A7 gets smaller and smaller, introducing huge
autocorrelations — VERY INEFFICIENT ALGORITHM

@ For a generic Hamiltonian, for which the matrix elements
(n|H|m) have arbitrary sign, we can have p(n,m) <0, and the
algorithm breaks down.
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Exponential propagator

We cope with the first problem by using the algorithm introduced
by Trivedi and Ceperley (PRB 41, 4552 (1990)) which has some
analogies with the Domain’s Green's Function Monte Carlo of
Kalos Verlet and Levesque.

We start from the state |[m). A time-step AT is set after which the
state is declared not to change (i.e. the "dnm" part of P is used).
The initial weight is g = 1. Then, a time A7,q is sampled with
probability:

e—ATod Y nem(n|H-E7|m)

If AToq > AT then the state is propagated unchanged with weight
exp[-AT ¥pim(n|H — Ex|m)].
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Exponential propagator
If we have instead A7,y < A7, a transition to a new state |n’) is
sampled with probability:

(n'|H - Ex|m)
Zn#m(n“_/_ ET|m>

The time step AT is then reduced so that AT - AT — A7,y4, and
the weight of the walker is multiplied by

exp[—ATog Ynem(N|H — ET|m)]. This process is repeated until
AT7,q > AT. This procedure exactly samples

(n[PIm) = (n[e~27E|m)

without any time-step error.
(For an extended discussion see e.g. Schmidt, Niyaz, Vaught, Lee, PRE
71, 016707 (2005))



Configuration interaction Monte Carlo
Sampling an exponential propagator
Importance sampling

Importance sampling

The sign problem cannot be circumvented for a Hamiltonian that
is not purely attractive.

However, it is possible to come up with an algorithm similar to
constrained algorithms (such as the fixed-node or fixed-phase
approximations) in standard DMC. The difference is that the
constraint is now implemented as a transformation of H (see Shell
Model MC calculations).

At this point we might want to introduce an

®;(n) = (n|®g) which in general includes dynamic correlations.
Let's then define a "sign” function:

s(n,m) = sgn{Re [(®¢[n)(n|H|m)(m|®s)]}
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Importance sampling

Now we can build a family of parametrized Hamiltonians H,
defined as:

_ | =v(n|Hlm) s(n,m)>0
(m|H[n) = { Zn|H|m) otherwise

when n # m, and the diagonal elements are given by:

(m[H,|m) = (m[H|m) + (1 +7) ; (n[H|m)
s(n,m)>0

Clearly for v = —1 we obtain the original Hamiltonian.
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Importance sampling
For any v > 0 the importance sampled propagator:

Re[(Pg|n)(n[H, - Er[m)(m|Pg)]

m|P,|n) = dmn — AT
(P ) = b o]

is , and the ground state of H, is an

of the exact ground state energy of H. Moreover, the
ground state is better than the expctation of the original
Hamiltonian over |$g).

This procedure is somewhat equivalent to the standard way of
constraining calculations in QMC.

(For the upper bound proof see e.g.ten Haaf et al, PRB 51, 13039
(1995), and Sorella et al. PRB 61, 2599 (2000))
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Energy evaluation
Energies can be easily estimated for any positive value of «y via the
usual "mixed” estimate

S Ehm)g(n)

E, ~
K Znig(ni)
where 8,5 is the local energy defined by:
gL — (¢G|7_['Y|n>
T (®gln)

The energy E, can then be extrapolated to v = ~1 to obtain an
even tighter upper bound, and assuming that the extrapolation is
linear:

Ecime =2Ey=0 — Ey=1
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Use of Coupled-Cluster wavefunctions
An excellent importance function is given by the CC wavefunction
1CC) = e |HF)
where |HF) is the Hartree-Fock solution of the problem. The
operator T is hierarchically divided in T = T1 + To + T3 + -+, where:
7A'1 = Z t?agai 7\-2 = Z tabaTaba,aj
ia Uab

What we need in our calculation is an efficient evaluation of the
overlap of the CC wavefunction with an arbitrary Slater
determinant describing an M-particle-M-hole state

Im) = aLl,...,aLM,ahl,...,ahM|HF).
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Use of Coupled-Cluster wavefunctions

Let us consider e.g. the wavefunction for a homogeneous system
(for which the lowest order is CCD because of the request of
translational invariance). The required amplitude can be expressed
in turn as a superposition of M — 2 particle/hole states that can be
generated from m. Eventually (the proof is lengthy) one obtains:

M M

'y+y,+l/ PuPu P1;P2;--+sPpu—15Pu+15---sPv—1,Pv+15---,PM

(m[®ccp) = Z Z (-1) ty q>CCD( ha..hy—1,hys1,e b )
=2 p<v

assuming p; < p2 <---<ppy and hy < hy <--- < hy.
The extension to singlets (ph states) and triplets (3p-3h states) is
straightforward.
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Use of Coupled-Cluster wavefunctions
Average T, coefficients
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Use of Coupled Cluster wavefunctions

CIMC vs. standard GFMC/DMC

@ CIMC has the same propagator for any Hamiltonian. One just
needs to compute matrix elements between basis states.
Standard GFMC/DMC can in principle deal with non-local
interactions in some cases, but propagators are highly
non-trivial and expensive to compute.

@ CIMC can be proved to provide an upper bound for the
ground state energy also when using complex wavefucntions.
At present some versions of the standard DMC method (like
AFDMC) do not provide upper bounds.



Use of Coupled Cluster wavefunctions

CIMC vs. standard GFMC/DMC

A FEW CONS:

@ CIMC suffers of a bias coming from the truncation of a the
basis, while DMC virtually makes use of an infinite basis set,
and does not have such bias (but in CIMC cutoffs in
momentum space are defined in a more natural way...)

@ The evaluation of wavefunctions for CIMC may become costly
with the system size, while in DMC the evaluation of the
function always has a well defined scaling.
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V(q) = 4—7;,
q

Charge neutrality is imposed by a uniform background of positive

charge at density p.

In the table we show the CCD correlation energies, calculated

using conventional CC theory, along with the corresponding Monte

Carlo energies of an 3D electron gas system with N =14 and

N =342, for rs=0.5,1.0 and 2.0.

- 3\3
periodic b. c., rs= (—)
47p

Correlation energy (a.u.)
. CCD +CIMC  CCD(1)  + CIMC

05 -0.572682 -0.5729(3) |-0.659641 -0.5733(2)
1.0 -0.506701 -0.5021(3) | -0.657347 -0.5025(2)
2.0 -0.417946 -0.40317(2) | -0.665071 -0.4029(3)
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Electron gas results

@ The results labeled with CCD(1) have been obtained by
second order order perturbation theory (Moeller-Plesset
approximation).

@ It is extremely interesting to notice that the constrained
projection gives essentially the same results both for the full
CCD wavefunction and for CCD(1)!.

@ This means that the prominent features of the nodal structure
of the functions are recovered very soon in the perturbative
expansion.

@ — possible strong reduction of the computational cost with
respect to a full CC calculation.



Electron gas results

Correlation energy (a.u)

Electron gas
Atoms
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rs N CIMC Other
05 14 -0.5875(6) -0.5959(7)1
38 -1.809(4) -1.849(1)
54 -2.354(2) -2.435(7)1
-2.387(2) 2
1.0 14 -0.5114(5) -0.5316(4)1
38 -1.521(4) -1.590(1) 1
54 -2.053(4) -2.124(3)1
-2.125(2) 2
2.0 14 -0.4103(6) -0.444(1)!
38 -1.134(7) -1.225(2) 1
3.0 14 -0.333(1)

Correlation energies
obtained from CIMC
calculations with the
wavefunction evaluated at
second order perturbation
theory (MP2).

For these calculations we
use Ns = 2378

Ly Shepherd, G. H. Booth, and A. Alavi,
J. Chem. Phys. 136, 244101 (2012).

2 P.Lopez Rios, A.Ma, N.D.Drummond,
M.D.Towler, and R. J. Needs, Phys. Rev. E
74, 066701 (2006).
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Electron gas results

Lo
Basis size
s oW -0.48 L ;
-0.56 r,=05 0.49 r=10 RS =
0.57 ‘

L -0.50 s -
o S N 5
- by . :
.. < g
_ _ :
0.39 r =20 0 a0 E
s ) ] :
-0.40 :
033 M - 5
041t o . s
1 -1 o - . i ke

2378 342 162 2378 342 167

@ No clear linear extrapolation for large values of Ns.

@ The situation is similar for calculations we performed with
N =32 and 54. Thus, at least up to our largest basis size
N5 = 2378, we cannot safely do an extrapolation to Ny — oo
with a reasonably low x2.
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Electron gas results

CCDT(1)

Energy  Error
K?=5 -0.3570 0.0016
K?=9 -0.3865 0.0018

CCD

Energy  Error
K?=5 -0.3538 0.0009
K?=9 -0.3851 0.0020
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Electron gas results

Computational time (cpu hours)
rs N Ns | CIMC i-FCIQMC
0.5 14 1850 384 200
1.0 14 1850 768 2500
2.0 14 1850 768 2500
2.0 38 922 | 4608 16000

Computational cost of our method CIMC compared with the
i-FCIQMC method (Sheperd et al.) for different rs, N and N.



Electron gas
Atoms
Results Neutron and nuclear matter
The " polaron” energy in nuclear matter

CIMC for finite systems: Atoms

The algorithm was recently extended to finite systems, in particular
to a subset of first row atoms (Be, C, O, Ne).

This calculation is not performed in momentum space, but in a
space of determinants spanned by some Gaussian basis set. This is
more convenient for the computation of the matrix elements and
to benchmark the results.

Several different basis sets can be used. Here we report results for

cc-pVDZ and a subset of aug-cc-pVDZ not including contractions
with the d orbital.
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CC and MP2 amplitudes in atoms

amplitude ‘ MP2 value CC value
t] -0.000419584968505 -0.000401806290974
ti3 0.000726032756716  0.000733616388008
30 -0.000419584968505 -0.000507490573453
t3 0.000726032756716  0.000769255545851
t/8 -0.000933006312113  -0.000424639373447
t1112 1 .0.000023957069557  0.000049419081067

Amplitudes for Carbon atom wave function in a MP2 and CCSD

calculation using the cc-pVDZ basis. CC amplitudes have been
taken after 10 iterations, when full convergence has not been

reached yet.
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Results for first row atoms (Preliminary)

cc-pvVDZ
atom | MP2 CMC | CCSD cIMC
Be | -0.0217  -0.040(1) | -0.04073 -0.04090(1)
C -0.03458  -0.0625(5) | -0.06474 -0.0628(3)
O | -0.00456 -0.06741(2) | -0.06107 -0.0714(1)
Ne 0.0895  -0.0589(2) | -0.0095 -0.0589(1)
aug-cc-pVDZ*
atom ‘ MP2 CIMC ‘ CCSD CIMC
Be |-0.0228 -0.0437(3) | -0.0395 -0.0436(1)
C | -0.0455 -0.0860(1) | -0.0712 -0.0791(3)
O |-0.0393 -0.1300(3) | -0.1001 -0.1287(2)
Ne | 0.0179 -0.1900(4) | -0.0103 -0.1839(6)
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Non local effective interactions in neutron matter

As previously mentioned, one of the advantages of CIMC is the the
possibility of directly using non-local interactions.

In nuclear physics this means the possibility of using y-EFT
potentials with no need of a regularization in coordinate space.

Application: PNM with NNLO,; interactions (A Ekstrom et. al,
PRL 110, 192502 (2013)), fitting scattering data with x? ~ 1 at
laboratory energies < 125MeV, but with a reduced contribucion of
the TNF.
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Non local effective interactions in neutron matter

o Calculations performed at given density p for a periodic box
containing A nucleons. Size of the box L = (A/p)*/3.

@ sp states on a lattice of size / = 27r/L, therefore the sp states
are labelled by momentum /(ny, ny, n;), with no-y , , integers.

o We use a spherical cutoff, i.e. we include only momenta such
that k2 < k2

cut-
@ As previously stated we in
this calculation.
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Non local effective interactions in neutron matter
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Red squares - our results (66 neutrons), brown circles - AFDMC EoS with the 2b AV8, blue dashed line - APR EoS
with the 2b AV18, blue solid line - APR EoS with the 2b AV18 + 3b UIX, black dashed dotted line - NL3 EoS
(Shen, Horowitz et al.). The inset shows the convergence of our energies as a function of kmax at = 0.08 fm3 for
14 (black squares) and 66 (blue circles) particles. The dotted lines are a guide to the eye.
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Momentum Distribution (66 neutrons, NNLO,:)
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Roubustness

The results are quite Nucleon-Nucleon potential NNLO,p:,
66 neutrons

robust with respect to » oo s
the variation of the i
coefficients of the CC
calculations. In this plot
black dots are results
obtained from MP2 and
red dots are obtained
varying the MP2
coefficients of a random
amount with a Gaussian
distribution (50% width).

SIGN-PROBLEM PRESENT

E_ [MeV]

SIGN-PROBLEM FREE

L | 1 -
02 04 0.6 08 1

Extrapolation to « = 0 is still overlapping within errorbars.
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Analysis of uncertainties

@ Red line: difference (in
%) between PT-2 and
QMC (effect of

_ Zz _ projection)
% ol ) @ Dashed blue line:

g Difference between CCD
wozgm (thanky you Gaute and
T S T Thomas!) and QMC
W 4'\\ ] @ Black dotted line:

2 I ] Statistical error
0.04 0.08 ) 0.2 L @ Green dashed line:

Estimate of the
fixed-phase bias
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Spin/isospin impurities in polarized nuclear matter

Another interesting application of the method was the accurate
determination of the energy of a spin/isospin impurity (the analog
of a "polaron” in a polarized electron gas) in nuclear matter.

Calculations of the spin and isospin polaron are useful to constrain
the "time-odd” components of density functionals.

Calculations are analogous to those made for the EoS of neutron
matter, but for the fact that we in an elementary box we take A
nucleons with spin (isospin) up (down) and one with spin (isospin)
up (down). Polaron energies at low p are essentially
independent of the choice of the potential.
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Spin/isospin impurities in polarized nuclear matter

Problem

The energy difference we want to extract is order 1/A. We might
have to compromise between accuracy in the determination of the
difference and reduction of finite size effects!

Actually we have verified that differences are quite small. For
example at p = 0.06fm=3 (the largest density considered) the
polaron energy in NM is e, /EF = -0.6617 + 0.0003 for A =7 and
—0.647 + 0.004 for A =33, i.e. ~2%. Moreover the box size at this
density is ~ 4.9fm, more than three times the 7 Compton
wavelength.
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Spin/isospin impurities in polarized nuclear matter
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Neutron polaron energy Proton-up and proton-down
polaron energy
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Spin/isospin impurities in polarized nuclear matter

The weak dependence of A€ on p does not match
any of the results given by existing DFT EoS.

This a quantity that only depends on the time-odd
components in the density functionals. It can be
well fitted by an expression such as:

B
A-—-Ck
kF|as| Fle

with ag = —23.75fm and re = 2.75fm (n-p
scattering length and effective range)

Difference in the proton polaron

energies REMINISCENT OF DILUTE
e — € UNITARY FERMI GASES



Conclusions

Conclusions

@ We developed a protocol to perform efficient QMC
calculations in a generic representation of the Hilbert space
(e.g. momentum space, Gaussian basis sets etc.)

@ Important ingredients: Continuous time propagator,
importance sampling.

@ Thanks to an efficient recursive algorithm it is now possible to
use CC wavefunctions as importance functions.

@ Applications can be very diverse: infinite and finite systems,
local and non local potentials.
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Perspectives

@ Extend calculations to nuclei and hypernuclei using x-EFT
interaction and other kinds of soft-core interactions.

@ Implementation of the algorithm for spin Hamiltonians
(Hubbard model, topological insulators, but also spin
propagation for nuclear Hamiltonians)
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