Electromagnetic structure of light nuclei

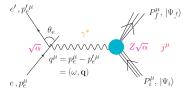
Saori Pastore @ CANHP15, Kyoto Japan - October 2015

* in collaboration with *
 Bob Wiringa, Rocco Schiavilla, Steven Pieper,
 Luca Girlanda, Maria Piarulli, Michele Viviani,
 Laura E. Marcucci, Alejandro Kievsky

PRC78(2008)064002 - PRC80(2009)034004 - PRC84(2011)024001 - PRC87(2013)014006 -PRC87(2013)035503 - PRL111(2013)062502 - PRC90(2014)024321

Ab initio calculations of light nuclei

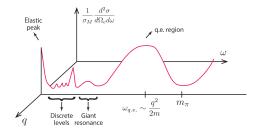
Aim: understand nuclei in terms of interactions between individual nucleons



Electromagnetic reactions are a powerful tool to test our theoretical models

- ► coupling constant $\alpha \sim 1/137$ allows for a perturbative treatment of the EM interaction \rightarrow single photon γ exchange suffices
- calculated x-sections ∝ |⟨Ψ_f|j^μ|Ψ_i⟩|² with j^μ nuclear EM currents → clear connection between measured x-sections and calculated properties of nuclear targets
- ► EXPT data (in most cases) known with great accuracy → viable EXPT constraints on theories
- For few-nucleon systems, the many-body problem can be solved exactly or within controlled approximations

Electromagnetic probes to test predictive power of nuclear theories/models



 In this talk we primarily focus on: EM ground state properties and transitions between low-lying states

$\sim \sim \sim \sim \sim$

- * Validate our theoretical understanding and control of nuclear EM structure and reactions is an essential prerequisite for studies on: *
- ⇒ Weak induced reactions, *e.g.*, *v*-nucleus interactions (major progress by A. Lovato, S. Gandolfi *et al.*)
- \Rightarrow Larger nuclear systems

Outline

- Microscopic picture of the nucleus: the *ab initio* framework
- Many-body nuclear EM currents from χ EFT
- Applications:
 - d, ³H and ³He EM form factors
 - Magnetic moments and EM transitions in $A \le 10$ systems
- Summary and outlook

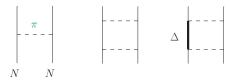
The Basic Model: Nuclear Potentials

The nucleus is a system made of A non-relativistic interacting nucleons, its energy is given by

$$H = T + V = \sum_{i=1}^{A} t_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

where v_{ij} and V_{ijk} are 2- and 3-nucleon interaction operators

- Realistic v_{ij} and V_{ijk} interactions are based on EXPT data fitting and fitted parameters subsume underlying QCD
- Realistic potentials at large inter-particle distances are described in terms of one-pion-exchange, range ~ 1/m_π. Other mechanisms are, *e.g.*, two-pion exchange, range ~ 1/2m_π; Δ-excitations ...

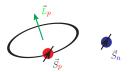


Potentials utilized in these sets of calculations to generate nuclear wave functions |Ψ_i⟩ solving H|Ψ_i⟩ = E_i|Ψ_i⟩ are: [AV18+UIX], [AV18+IL7], [NN(N3LO)+3N(N2LO)] The Basic Model: Nuclear Electromagnetic Currents - Impulse Approximation

Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1-, 2-, ... nucleon operators:

$$\boldsymbol{\rho} = \sum_{i=1}^{A} \boldsymbol{\rho}_i + \sum_{i < j} \boldsymbol{\rho}_{ij} + \dots, \qquad \qquad \mathbf{j} = \sum_{i=1}^{A} \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

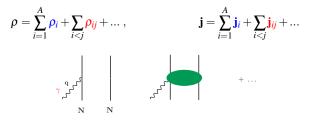
In Impulse Approximation IA nuclear EM currents are expressed in terms of those associated with individual protons and nucleons, *i.e.*, *p_i* and **j**_i



IA picture is however incomplete; Historical evidence is the 10% underestimate of the *np* radiative capture 'fixed' by incorporating corrections from two-body meson-exchange EM currents - Riska&Brown 1972

The Basic Model: Nuclear Electromagnetic Currents

Current and charge operators describe the interaction of nuclei with external fields. They are expanded as a sum of 1-, 2-, ... nucleon operators:



Longitudinal EM current operator j linked to the nuclear Hamiltonian via continuity eq. (q momentum carried by the external EM probe γ)

$$\mathbf{q} \cdot \mathbf{j} = [H, \boldsymbol{\rho}] = [t_i + v_{ij} + V_{ijk}, \boldsymbol{\rho}]$$

 Meson-exchange currents MEC follow once meson-exchange mechanisms are implemented to describe nuclear forces - Villars&Miyazawa 40ies

These days we have:

- Highly sophisticated MEC projected out realistic potentials
- EM currents derived from χ EFTs

Nuclear χ EFT Approach

- S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett. B295, 114 (1992)
- χ EFT is a low-energy ($Q \ll \Lambda_{\chi} \sim 1 \text{ GeV}$) approximation of
- χEFT is a low-energy (Q < Λχ ~ 1 compared on the compared on the

$$\mathscr{L}_{e\!f\!f} = \mathscr{L}^{(0)} + \mathscr{L}^{(1)} + \mathscr{L}^{(2)} + \ldots + \mathscr{L}^{(n)} + \ldots$$

- The coefficients of the expansion, Low Energy Constants (LECs), are unknown and need to be fixed by comparison with exp data
- ▶ The systematic expansion in *Q* naturally has the feature

$$\langle \mathscr{O} \rangle_{1-body} > \langle \mathscr{O} \rangle_{2-body} > \langle \mathscr{O} \rangle_{3-body}$$

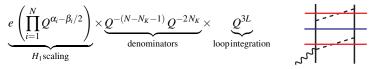
• A theoretical error due to the truncation of the expansion can be assigned

NN

Transition amplitude in time-ordered perturbation theory

$$\begin{split} T_{\mathrm{fi}} &= \langle f \mid T \mid i \rangle &= \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle \\ &= \langle f \mid H_1 \mid i \rangle + \sum_{|I\rangle} \langle f \mid H_1 \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_1 \mid i \rangle + \dots \end{split}$$

A contribution with N interaction vertices and L loops scales as



 α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex

 N_K = number of pure nucleonic intermediate states

• Due to the chiral expansion, the transition amplitude $T_{\rm fi}$ can be expanded as

$$T_{\rm fi} = T^{\rm LO} + T^{\rm NLO} + T^{\rm N2LO} + \dots$$
 and $T^{\rm NnLO} \sim (Q/\Lambda_{\chi})^n T^{\rm LO}$

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001

Transition amplitude in time-ordered perturbation theory - bis

► N_K energy denominators scale as Q^{-2} $\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N} |I\rangle \sim Q^{-2} |I\rangle$

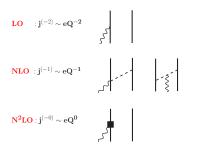
► $(N - N_K - 1)$ energy denominators scale Q^{-1} in the <u>static limit</u>; they can be further expanded in powers of $(E_i - E_N)/\omega_{\pi} \sim Q$

$$\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N - \omega_{\pi}} |I\rangle \sim - \left[\underbrace{\frac{1}{\omega_{\pi}}}_{Q^{-1}} + \underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}_{Q^0} + \underbrace{\frac{(E_i - E_N)^2}{\omega_{\pi}^3}}_{Q^1} + \dots\right] |I\rangle$$

Terms accounted into the Lippmann-Schwinger equation are subtracted order by order from reducible amplitudes !

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001

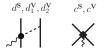
χ EFT EM current up to n = 1 (or up to N3LO)



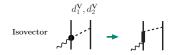
- * Two-body charge operators enter at N3LO and do not depend on LECs *
- LO = IA N2LO = IA(relativistic-correction)
- Strong contact LECs at N3LO fixed from fits to *np* phases shifts
 PRC68, 041001 (2003)
- Unknown EM LECs enter the N3LO contact and tree-level currents
- ▶ No three-body EM currents at this order !!!
- NLO and N3LO loop-contributions lead to purely isovector operators

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001

χ EFT EM currents at N3LO: fixing the EM LECs



Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon



 d_2^V and d_1^V are known assuming Δ -resonance saturation

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

- Isoscalar sector:
 - * d^{S} and c^{S} from EXPT μ_d and $\mu_S({}^{3}\text{H}/{}^{3}\text{He})$
- Isovector sector:

* model I =
$$c^V$$
 from EXPT $npd\gamma$ xsec.

* model II = c^V from EXPT $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$ m.m. \leftarrow our choice

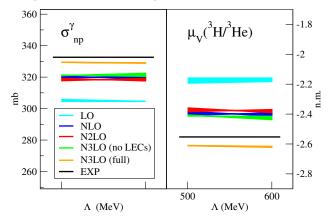
Note that:

 χ EFT operators have a power law behavior \rightarrow introduce a regulator to kill divergencies at large Q, *e.g.*, $C_{\Lambda} = e^{-(Q/\Lambda)^n}$, ...and also, pick *n* large enough so as to not generate spurious contributions

$$C_{\Lambda} \sim 1 - \left(\frac{Q}{\Lambda}\right)^n + \dots$$

Predictions with χ EFT EM currents for A = 2-3 systems

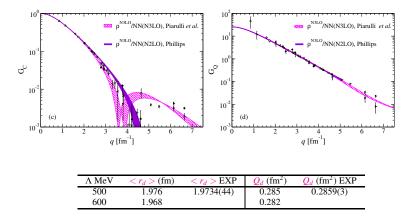
np capture xsec. (using model II) / μ_V of A = 3 nuclei (using model I) bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)



- ▶ $npd\gamma$ xsec. and $\mu_V(^{3}\text{H}/^{3}\text{He})$ m.m. are within 1% and 3% of EXPT
- Two-body currents important to reach agreement with exp data
- ▶ Negligible dependence on the cutoff entering the regulator $exp(-(k/\Lambda)^4)$

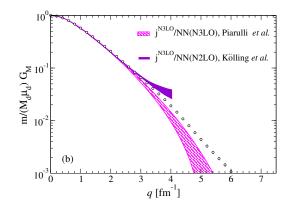
Applications: EM form factors of nuclei with A = 2 and 3

Predictions with χ EFT EM Currents for the Deuteron Charge and Quadrupole f.f.'s



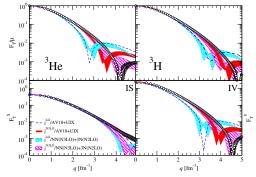
- Calculations include nucleonic f.f.'s taken from EXPT data
- Sensitivity to the cutoff used to regularize divergencies in the matrix elements is given by the bands' thickness

Predictions with χ EFT EM Currents for the Deuteron Magnetic f.f.



PRC86(2012)047001 & PRC87(2013)014006

Predictions with χ EFT EM Currents for ³He and ³H Magnetic f.f.'s



LO/N3LO with AV18+UIX – LO/N3LO with χ -potentials NN(N3LO)+3N(N2LO)

- ▶ 3 He/ 3 H m.m.'s used to fix EM LECs; ~ 15% correction from two-body currents
- Two-body corrections crucial to improve agreement with EXPT data

	$^{3}\text{He} < r >_{EXP} =$	$1.976 \pm 0.047 \text{ fm}$	$^{3}\text{H} < r >_{EXP} = 1.840 \pm 0.181 \text{ fm}$		
Λ	500	600	500	600	
LO	2.098 (2.092)	2.090 (2.092)	1.924 (1.918)	1.914 (1.918)	
N3LO	1.927 (1.915)	1.913 (1.924)	1.808 (1.792)	1.794 (1.797)	

Calculations with EM Currents from χ EFT with π 's and N's

Park, Min, and Rho et al. (1996)

applications to:

.

```
magnetic moments and M1 properties of A=2–3 systems, and radiative captures in A=2–4 systems by Song, Lazauskas, Park at al. (2009-2011) within the hybrid approach
```

* Based on EM χ EFT currents from NPA596(1996)515

```
    Meissner and Walzl (2001);
```

```
Kölling, Epelbaum, Krebs, and Meissner (2009–2011)
```

applications to:

```
d and <sup>3</sup>He photodisintegration by Rozpedzik et al. (2011); e-scattering (2014);

d magnetic f.f. by Kölling, Epelbaum, Phillips (2012);

radiative N - d capture by Skibinski et al. (2014)
```

* Based on EM χEFT currents from PRC80(2009)045502 & PRC84(2011)054008 and consistent χEFT potentials from UT method

Phillips (2003-2007)

applications to deuteron static properties and f.f.'s

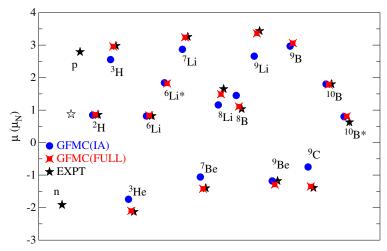
```
. . . . . .
```

.

Moving on to larger nuclear systems: magnetic moments and transitions in $A \le 10$ nuclei

Magnetic Moments in $A \leq 10$ Nuclei

Predictions for A > 3 nuclei



- $\mu(IA) = \mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 \tau_{i,z})/2]$
- ▶ GFMC calculations based on $H = T + AV18 + IL7 \rightarrow hybrid$ framework

Magnetic Moments in $A \leq 10$ Nuclei - bis

Predictions for A > 3 nuclei



- $\mu_N(IA) = \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 \tau_{i,z})/2]$
- ▶ ⁹C (⁹Li) dominant spatial symmetry [s.s.] = [432] = $[\alpha, {}^{3}\text{He}({}^{3}\text{H}), pp(nn)] \rightarrow \text{Large MEC}$
- ▶ ⁹Be (⁹B) dominant spatial symmetry [s.s.] = [441] = $[\alpha, \alpha, n(p)]$

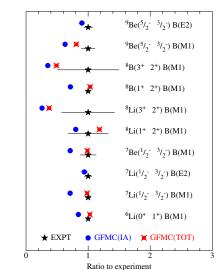
EM Transitions in $A \leq 9$ Nuclei

- Two-body EM currents bring the theory in a better agreement with the EXP
- Significant correction in A = 9, T = 3/2 systems. Up to $\sim 40\%$ correction found in ⁹C m.m.
- Major correction (~ 60 70% of total MEC) is due to the one-pion-exchange currents at NLO – purely isovector

One M1 prediction: ${}^{9}\text{Li}(1/2 \rightarrow 3/2)^{*}$

 $\Gamma(IA) = 0.59(2) \text{ eV}$ $\Gamma(TOT) = 0.79(3) \text{ eV}$

+ a number of B(E2)s in IA

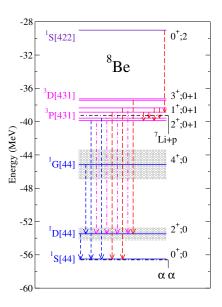


*Ricard-McCutchan et al. TRIUMF proposal 2014 - ongoing data analysis

⁸Be Energy Spectrum

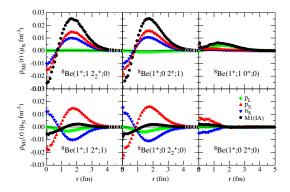
- 2⁺ and 4⁺ broad states at
 3 MeV and ~ 11 MeV
- isospin-mixed states at ~ 16 MeV, ~ 17 MeV, ~ 19 MeV
- M1 transitions
- E2 transitions
- E2 + M1 transitions

$J^{\pi};T$	GFMC	Iso-mixed	Experiment
$^{0+}$	-56.3(1)		-56.50
2+	+ 3.2(2)		+3.03(1)
4+	+11.2(3)		+11.35(15)
$2^+;0$	+16.8(2)	+16.746(3)	+16.626(3)
$2^+;1$	+16.8(2)	+16.802(3)	+16.922(3)
1+;1	+17.5(2)	+17.67	+17.640(1)
$1^{+};0$	+18.0(2)	+18.12	+18.150(4)
3+;1	+19.4(2)	+19.10	+19.07(3)
$3^+;0$	+19.9(2)	+19.21	+19.235(10)



PRL111(2013)062502 & PRC90(2014)024321

One-body M1 transitions densities

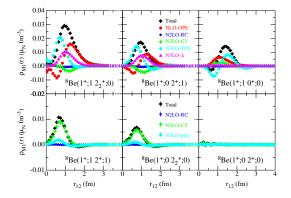


- [s.s.]-conserving transitions are enhanced due to overlap between large components of the initial and final w.f.'s
- Isospin-conserving transitions are suppressed w.r.t. isospin-changing transitions due to a cancellation between proton and neutron spin magnetization terms

M1(IA) =
$$\mu_N \sum_i [(L_i + g_p S_i)(1 + \tau_{i,z})/2 + g_n S_i(1 - \tau_{i,z})/2]$$

PRC90(2014)024321

Two-body M1 transitions densities



$(J_i, T_i) \rightarrow (J_f, T_f)$	IA	NLO-OPE	N2LO-RC	N3LO-TPE	N3LO-CT	N3LO-A	MEC
$(1^+; 1) \rightarrow (2^+_2; 0)$	2.461 (13)	0.457 (3)	-0.058 (1)	0.095 (2)	-0.035 (3)	0.161 (21)	0.620 (5)

PRC90(2014)024321

M1 transitions in ⁸Be isospin-mixed states

▶ 2⁺, 1⁺, and 3⁺ states are isospin mixed, with mixing coefficients $\alpha_J^2 + \beta_J^2 = 1$

$$\psi^{a} = \alpha_{J} \psi_{T=0} + \beta_{J} \psi_{T=1}$$

$$\psi^{b} = \beta_{J} \psi_{T=0} - \alpha_{J} \psi_{T=1}$$

• Mixing angles α , β are from experimental decay widths as $\Gamma^a/\Gamma^b = \alpha_J^2/\beta_J^2$

- $(\alpha_2 \sim 0.77, \beta_2)$ well known through EXP α -decay widths, which is the only channel energetically allowed and available via T = 0
- ► $(\alpha_1 \sim 0.21, \beta_1)$ and $(\alpha_3 \sim 0.41, \beta_3)$ involve multiple decay channels \rightarrow hard to extract them with great accuracy (Barker NUCL, PHYS, 83, 418 (1966))

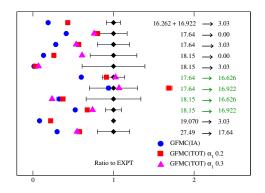
< JT M1 JT >	IA	TOT	$E_i \rightarrow E_f [MeV]$	$B(M1)_{IA}$	B(M1) _{TOT}	EXP $[\mu_N^2]$
< 10 M1 20 >	0.17(0)	0.19(0)	$18.15 \rightarrow 16.626$	0.56(1)	0.62(1)	1.88(46)
< 10 M1 21 >	2.60(1)	2.89(1)	$18.15 \rightarrow 16.922$	1.56(2)	2.01(2)	2.89(33)
< 11 M1 20 >	2.29(1)	2.91(1)	$17.64 \rightarrow 16.626$	1.65(2)	2.54(3)	2.65(25)
< 11 M1 21 >	0.14(0)	0.18(1)	$17.64 \rightarrow 16.922$	0.25(1)	0.46(1)	0.30(7)

Example: 1^+ ; $T = 0 + 1 \rightarrow 2^+$; T = 0 + 1, [431] \rightarrow [431]

MEC contribute $\sim 20-30\%$ of the total m.e.'s

PRC90(2014)024321 & PRC90(2014)024321

M1 Transition Widths / EXPT



- ▶ Predictions for [s.s.]-conserving transitions are in fair agreement with EXPT
- ► The theoretical description for this system is unsatisfactory, however, MEC provide a ~ 20 30% correction to the calculated matrix elements improving the agreement with EXPT data

PRC90(2014)024321

Benchmark calculations of ³He Zemach Moments*

Quote: Precise moments are useful observables for the comparison with theoretical calculations, ... in particular for light nuclei where very accurate *ab initio* calculations can be performed. I. Sick - PRC90(2014)064002

$$\langle r \rangle_{(2)} \propto -\int_0^\infty \frac{dq}{q^2} \left[G_E G_M - 1 \right], \qquad \langle r^3 \rangle_{(2)} \propto \int_0^\infty \frac{dq}{q^4} \left[G_E^2 - 1 + q^2 R^2 / 3 \right]$$

	VMC(IA)	VMC(TOT)	GFMC(IA)	GFMC(TOT)	EXPT
$\langle r \rangle_{(2)}$	2.522	2.477	2.504	2.454	$2.528\pm0.016~\text{fm}$
$\langle r^3 \rangle_{(2)}$	27.40	n.a.	29.30	n.a.	$28.15 \pm 0.70 \ \text{fm}^3$
$\langle r_{\rm ch}^2 \rangle^{1/2}$	1.967	n.a.	1.970	n.a.	$1.973\pm0.014~\text{fm}$
$\langle r_{\rm m}^2 \rangle^{1/2}$	2.000	1.962	2.019	1.942	$1.976\pm0.047~\mathrm{fm}$
$\langle r_{\rm ch}^4 \rangle$	19.8	n.a.	30.0	n.a.	$32.9\pm1.60~\text{fm}^4$
$\langle \mu \rangle$	-1.775	-2.134	-1.767	-2.129	-2.127 μ_N

* in collaboration with S. Bacca, C. Ji et al.

Preliminary!!!

Summary

The microscopic description of nuclei successfully reproduces EXPT data provided that many-body effects in nuclear interactions and EM currents are accounted for. J.Phys.G41(2014)123002 - S.Bacca&S.P.

- ► Two-body EM currents from χ EFT tested in $A \leq 10$ nuclei
- ► Two-body corrections can be sizable and improve on theory/EXPT agreement
- ► EM structure of A = 2-3 nuclei well reproduced with chiral charge and current operators for $q \leq 3m_{\pi}$
- $\triangleright \sim 40\%$ two-body correction found in ⁹C's m.m.
- $\triangleright \sim 20-30\%$ corrections found in M1 transitions in low-lying states of ⁸Be

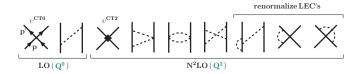
Outlook

The microscopic description of nuclei successfully reproduces EXPT data provided that many-body effects in nuclear interactions and EM currents are accounted for. J.Phys.G41(2014)123002 - S.Bacca&S.P.

- * EM structure and dynamics of light nuclei
 - Charge and magnetic form factors of $A \le 10$ systems
 - M1/E2 transitions in light nuclei
 - Radiative captures, photonuclear reactions ...
 - Fully consistent χEFT calculations now attainable within QMC computational schemes
 - Role of Δ-resonances in 'MEC' (EM current consistent with the chiral 'Δ-full' NN potential developed by M. Piarulli et al. PRC91(2015)024003)
- * Electroweak structure and dynamics of light nuclei
 - Test axial currents (chiral and conventional) in light nuclei (χEFT axial currents derived by A. Baroni et al. arXiv:1509.07039)
 - ► Many-body effects in *v*-*d* pion-production at threshold (in preparation)
 - Study *v*-scattering off A > 12 nuclei

EXTRA SLIDES

NN Potential at NLO (or $Q^{n=2}$)

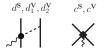


- Contact potential at LO (or $Q^{n=0}$) depends on 2 LECs
- Contact potential at NLO (or $Q^{n=2}$) depends on 7 additional LECs

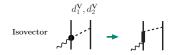
NN potentials with π 's and *N*'s

- * van Kolck et al. (1994–96)
- * Kaiser, Weise et al. (1997–98)
- * Epelbaum, Glöckle, Meissner (1998–2015)
- ∗ Entem and Machleidt (2002–2015) ←
- * ...

χ EFT EM currents at N3LO: fixing the EM LECs



Five LECs: d^S , d_1^V , and d_2^V could be determined by pion photo-production data on the nucleon



 d_2^V and d_1^V are known assuming Δ -resonance saturation

Left with 3 LECs: Fixed in the A = 2 - 3 nucleons' sector

* d^{S} and c^{S} from EXPT μ_d and $\mu_S({}^{3}\text{H}/{}^{3}\text{He})$

Isovector sector:

* model I =
$$c^V$$
 from EXPT $npd\gamma$ xsec.

* model II = c^V from EXPT $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$ m.m. \leftarrow our choice

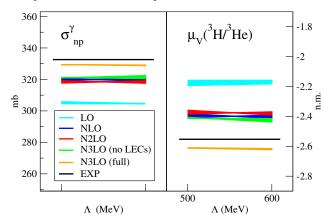
Note that:

 χ EFT operators have a power law behavior \rightarrow introduce a regulator to kill divergencies at large Q, *e.g.*, $C_{\Lambda} = e^{-(Q/\Lambda)^n}$, ...and also, pick *n* large enough so as to not generate spurious contributions

$$C_{\Lambda} \sim 1 - \left(\frac{Q}{\Lambda}\right)^n + \dots$$

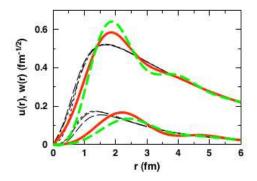
Predictions with χ EFT EM currents for A = 2-3 systems

np capture xsec. (using model II) / μ_V of A = 3 nuclei (using model I) bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)



- ▶ $npd\gamma$ xsec. and $\mu_V({}^{3}\text{H}/{}^{3}\text{He})$ m.m. are within 1% and 3% of EXPT
- Two-body currents important to reach agreement with exp data
- ▶ Negligible dependence on the cutoff entering the regulator $exp(-(k/\Lambda)^4)$

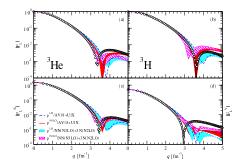
Deuteron wave functions



from Entem&Machleidt 2011 Review

- Entem&Machleidt N3LO
- Epelbaum *et al.* 2005
- black lines = conventional potentials, i.e. AV18, CD-Bonn, Nijm-I

³He and ³H charge f.f.'s



- Excellent agreement up to $q \simeq 2 \text{ fm}^{-1}$
- ▶ N3LO and N4LO comparable

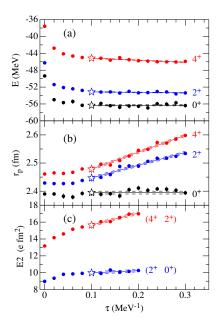
	$^{3}\text{He} < r >_{EXP} =$	$1.959 \pm 0.030 \; \text{fm}$	$^{3}\text{H} < r >_{EXP} = 1.755 \pm 0.086$		
Λ	500	600	500	600	
LO	1.966 (1.950)	1.958 (1.950)	1.762 (1.743)	1.750 (1.743)	
N4LO	1.966 (1.950)	1.958 (1.950)	1.762 (1.743)	1.750 (1.743)	

E2 transitions in ⁸Be

- 2⁺ and 4⁺ broad rotational states at ~ 3 MeV and ~ 11 MeV
- ► $4^+ \rightarrow 2^+$ transition recently measured at BARC*, Mumbai
- Calculational challenge: 2⁺ and 4⁺ states tend to break up into two α as τ increases
- Results obtained by linear fitting the GFMC points and extrapolating at $\tau = 0.1$ MeV where stability is observed in the g.s. energy propagation

$J^{\pi};T$	E [MeV]	$B(E2) [e^2 fm^4]$
0^{+}	-56.3(1)	
2^{+}	+ 3.2(2)	20.0 (8)– [$2^+ \rightarrow 0^+$]
4^{+}	+11.2(3)	27.2(15)– [$4^+ \rightarrow 2^+$]*

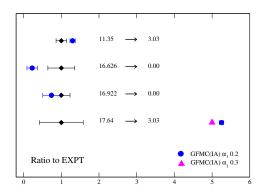
^{*}Bhabha Atomic Research Centre



^{*}EXPT B(E2) = $21 \pm 2.3 e^2 \text{ fm}^4$

E2 transition widths / EXPT

- We attempt to evaluate a number of E2 transitions (predictions not shown in the figure)
- Complications are due to large cancellations among large m.e.'s → E2s very sensitive to small components
- One more complication: make sure that the first and second $(J^{\pi}, T) = (2^+, 0)$ states are orthogonal



* We orthogonalize the second $(J^{\pi}, T) = (2^+, 0)$ via

$$|\Psi^{2^+_2}(\text{ortho})\rangle_G = |\Psi^{2^+_2}\rangle_G -_G \langle \Psi^{2^+_2} | \Psi^{2^+}\rangle_V | \Psi^{2^+}\rangle_G$$

Anomalous magnetic moment of ⁹C

Mirror nuclei spin expectation value

• Charge Symmetry Conserving (CSC) picture $(p \leftrightarrow n)^{\diamond}$

$$<\sigma_z>=rac{\mu(T_z=+T)+\mu(T_z=-T)-J}{(g_s^p+g_s^n-1)/2}=rac{2\mu(\mathrm{IS})-J}{0.3796}$$

- ► For A = 9, T = 3/2 mirror nuclei: ⁹C and ⁹Li EXP $< \sigma_z >= 1.44$ while THEORY $< \sigma_z >\sim 1$ (assuming CSC) possible cause: Charge Symmetry Breaking (CSB)
- ► Three different predictions for $\langle \sigma_z \rangle$ with CSC w.f.'s (*) and CSB w.f.'s

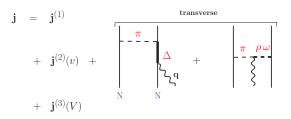
$< \sigma_z >$	Symmetry	IA	TOT	EXP
CSB CSC CSC	${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2}), {}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})$ ${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2}), {}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})*$ ${}^{9}\text{Li}(\frac{3}{2}^{-};\frac{3}{2}), {}^{9}\text{C}(\frac{3}{2}^{-};\frac{3}{2})$	1.05(1) 0.95 (11) 1.00 (1)	1.31(11) 1.00 (11) 1.05 (1)	1.44

► Need both CSB in the w.f.'s and MEC!

^o Utsuno - PRC70, 011303(R) (2004)

Currents from nuclear interactions *- Marcucci et al. PRC72, 014001 (2005)

- Current operator j constructed so as to satisfy the continuity equation with a realistic Hamiltonian
- Short- and intermediate-behavior of the EM operators inferred from the nuclear two- and three-body potentials

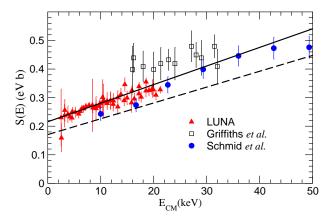


* also referred to as Standard Nuclear Physics Approach (SNPA) currents

Long range part of j(υ) corresponds to OPE seagull and pion-in-flight EM currents

Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005) Satisfactory description of a variety of nuclear EM properties [see Marcucci et al. (2005) and (2008)]

²H(p, γ)³He capture



▶ Isoscalar magnetic moments are a few % off (10% in A=7 nuclei)

Magnetic moments in $A \leq 9$ nuclei: SNPA vs χ EFT

	А	s.s.	IA	TOT SNPA	TOT χEFT^*	EXP
IS	7	[43]	0.902 (3)	0.833 (12)	0.906 (7)	0.929
IV		[43]	- 3.944 (5)	- 4.587 (18)	- 4.670 (9)	- 4.654
IS	8	[431]	1.289 (8)	1.160 (15)	1.299 (9)	1.344
IV		[431]	0.182 (8)	- 0.129 (15)	- 0.139 (9)	- 0.310
IS	9	[432]	0.994 (15)	0.922 (32)	1.038 (21)	1.024
IV		[432]	- 1.095 (10)	- 1.371 (21)	- 1.532 (15)	- 1.610

Preliminary results

Overall improvement of isoscalar (IS) component of the magnetic moment

$$\mu = \mu_S + \tau_z \mu_V$$

courtesy of R.B.Wiringa

NUCLEAR HAMILTONIAN

$$H = \sum_{i} K_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

 K_i : Non-relativistic kinetic energy, m_n - m_p effects included

Argonne v₁₈: $v_{ij} = v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{I} + v_{ij}^{S} = \sum v_p(r_{ij})O_{ij}^p$

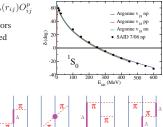
- · 18 spin, tensor, spin-orbit, isospin, etc., operators
- · full EM and strong CD and CSB terms included
- · predominantly local operator structure
- fits Nijmegen PWA93 data with χ^2 /d.o.f.=1.1

Wiringa, Stoks, & Schiavilla, PRC 51, (1995)

Urbana & Illinois: $V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{3\pi} + V_{ijk}^{R}$

- Urbana has standard 2π P-wave + short-range repulsion for matter saturation
- Illinois adds 2π S-wave + 3π rings to provide extra T=3/2 interaction
- Illinois-7 has four parameters fit to 23 levels in A ≤10 nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001) Pieper, AIP CP 1011, 143 (2008)



courtesy of R.B.Wiringa

THREE-NUCLEON POTENTIALS

Urbana $V_{ijk} = V_{ijk}^{2\pi P} + V_{ijk}^{R}$

Carlson, Pandharipande, & Wiringa, NP A401, 59 (1983)

Illinois $V_{ijk} = V_{ijk}^{2\pi P} + V_{ijk}^{2\pi S} + V_{ijk}^{3\pi\Delta R} + V_{ijk}^{R}$

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001)

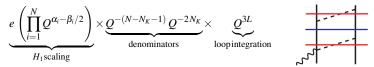
Illinois-7 has 4 strength parameters fit to 23 energy levels in $A \le 10$ nuclei. In light nuclei we find (thanks to large cancellation between $\langle K \rangle \& \langle v_{ij} \rangle$):

 $\begin{array}{l} \langle V_{ijk}\rangle\sim(0.02\ {\rm to}\ 0.07)\ \langle v_{ij}\rangle\sim(0.15\ {\rm to}\ 0.5)\ \langle H\rangle\\ \mbox{We expect}\ \langle \mathcal{V}_{ijkl}\rangle\sim0.05\ \langle V_{ijk}\rangle\sim(0.01\ {\rm to}\ 0.03)\ \langle H\rangle\sim1\ {\rm MeV\ in\ }^{12}{\rm C}\ . \end{array}$

Transition amplitude in time-ordered perturbation theory

$$\begin{split} T_{\mathrm{fi}} &= \langle f \mid T \mid i \rangle \quad = \quad \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle \\ &= \quad \langle f \mid H_1 \mid i \rangle + \sum_{|I\rangle} \langle f \mid H_1 \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_1 \mid i \rangle + \dots \end{split}$$

A contribution with N interaction vertices and L loops scales as



 α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex

 N_K = number of pure nucleonic intermediate states

• Due to the chiral expansion, the transition amplitude $T_{\rm fi}$ can be expanded as

$$T_{\rm fi} = T^{\rm LO} + T^{\rm NLO} + T^{\rm N2LO} + \dots$$
 and $T^{\rm NnLO} \sim (Q/\Lambda_{\chi})^n T^{\rm LO}$

Power counting

- ► N_K energy denominators scale as Q^{-2} $\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N} |I\rangle \sim Q^{-2} |I\rangle$
- ► $(N N_K 1)$ energy denominators scale Q^{-1} in the <u>static limit</u>; they can be further expanded in powers of $(E_i E_N)/\omega_{\pi} \sim Q$

$$\frac{1}{E_i - E_I} |I\rangle = \frac{1}{E_i - E_N - \omega_{\pi}} |I\rangle \sim - \left[\underbrace{\frac{1}{\omega_{\pi}}}_{Q^{-1}} + \underbrace{\frac{E_i - E_N}{\omega_{\pi}^2}}_{Q^0} + \underbrace{\frac{(E_i - E_N)^2}{\omega_{\pi}^3}}_{Q^1} + \dots\right] |I\rangle$$

- Terms accounted into the Lippmann-Schwinger Eq. are subtracted from the reducible amplitude
- EM operators depend on the off-the-energy shell prescription adopted for the non-static OPE and TPE potentials
- Ultimately, the EM operators are unitarily equivalent: Description of physical systems is not affected by this ambiguity

Magnetic moment at N³LO

• Magnetic moment operator due to two-body current density J(x)

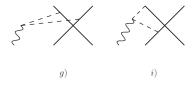
$$\boldsymbol{\mu}(\mathbf{R},\mathbf{r}) = \frac{1}{2} \left[\mathbf{R} \times \int d\mathbf{x} \, \mathbf{J}(\mathbf{x}) + \int d\mathbf{x} \, (\mathbf{x} - \mathbf{R}) \times \mathbf{J}(\mathbf{x}) \right]$$

> Sachs' and translationally invariant magnetic moments

$$\mu_{\text{Sachs}}(\mathbf{R}, \mathbf{r}) = -i \frac{\mathbf{R}}{2} \times \int d\mathbf{x} \, \mathbf{x} \left[\rho(\mathbf{x}), \upsilon_{12} \right]$$

$$\mu_{\text{T}}(\mathbf{r}) = -\frac{i}{2} \int_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} \nabla_{q} \times \mathbf{j}(\mathbf{q}, \mathbf{k}) \Big|_{\mathbf{q}=0}$$

2009 EM current vs 2011 EM currents p. 1/2



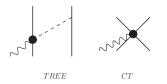
 Non-static corrections entering single-nucleon operators accounted into the derivation of current i)

$$i) \text{OLD} = i \frac{e g_A^2}{F_\pi^2} \tau_{1,z} \int \frac{\mathbf{q}_1 - \mathbf{q}_2}{\omega_1^2 \omega_2^3} \frac{\omega_1^2 + \omega_1 \omega_2 + \omega_2^2}{\omega_1 + \omega_2} \left[C_S \boldsymbol{\sigma}_1 \cdot (\mathbf{q}_1 \times \mathbf{q}_2) - C_T \boldsymbol{\sigma}_2 \cdot (\mathbf{q}_1 \times \mathbf{q}_2) \right] + 1 \rightleftharpoons 2$$
$$i) \text{NEW} = 2i \frac{e g_A^2 C_T}{F_\pi^2} \tau_{1z} \int_{\mathbf{q}_1, \mathbf{q}_2} \frac{\omega_1^2 + \omega_1 \omega_2 + \omega_2^2}{\omega_1^3 \omega_2^3 (\omega_1 + \omega_2)} (\mathbf{q}_1 - \mathbf{q}_2) \boldsymbol{\sigma}_2 \cdot \mathbf{q}_2 \times \mathbf{q}_1 + 1 \rightleftharpoons 2$$

▶ i) NEW in agreement with Kölling 2009/2011* but for a factor of 2, which has no impact because (i + g) = 0

* PRC80, 045502 (2009)/ PRC 84, 054008 (2011)

2009 EM current vs 2011 EM currents p. 2/2



- A different derivation in Kölling 2009/2011* leads to an additional term ~ (σ_i × q) × q in the N3LO current at tree level, which however does not contribute to the magnetic moment
- ► The N3LO contact current of Pastore 2009 is in agreement with that of Kölling 2011 after Fierz-reordering, apart from differences in the term $\propto C_5$:

$$\mathbf{j}_{\text{ct}}^{\text{N3LO}} = -\frac{iC_5}{4} \left(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2\right) \times \left(e_1 \,\mathbf{k}_1 + e_2 \,\mathbf{k}_2\right)$$

* PRC80, 045502 (2009)/ PRC 84, 054008 (2011)

Magnetic moment (m.m.) operator

comparison with Kölling et al.:

i) LO, NLO, N2LO, N3LO TPE, N3LO CT, N3LO TREE m.m.'s agree, but for the N3LO CT term $\propto C_5$ ii) currents associated with one loop corrections to the OPE are missing in these calculations of m.m.'s; renormalization of OPE currents has been carried out in Kölling 2011*

comparison with Park et al.**:

i) Sachs' m.m. is missing (no problem in two-body systems),

ii) TPE box contribution at N3LO generates an extra term $\propto (\tau_i \times \tau_j)_z$

Ultimately, in actual calculations these differences are presumably mitigated by fitting LECs to experimental data

* loop corrections to OPE: terms $\propto L(k)$ in Eq. (4.28) of Kölling 2011;

** NP A596, 515, (1996)

EM current up to n = 1 (or up to N3LO) - bis

$$\begin{array}{c} \mathbf{LO} \quad : \mathbf{j}^{(-2)} \sim \mathbf{eQ}^{-2} \\ \\ \mathbf{NLO} \quad : \mathbf{j}^{(-1)} \sim \mathbf{eQ}^{-1} \\ \\ \mathbf{N}^2 \mathbf{LO} : \mathbf{j}^{(-0)} \sim \mathbf{eQ}^0 \end{array}$$

- ► n = -2, -1, 0, and 1-(loops only): depend on known LECs namely g_A, F_{π} , and proton and neutron μ
- ► n = 0: $(Q/m_N)^2$ relativistic correction to $\mathbf{j}^{(-2)}$
- unknown LECs enter the n = 1 contact and tree-level currents (the latter originates from a $\gamma \pi N$ vertex of order $e Q^2$)
- divergencies associated with loop integrals are reabsorbed by renormalization of contact terms
- loops contributions lead to purely isovector operators
- ► $\mathbf{j}^{(n \le 1)}$ satisfies the CCR with χ EFT two-nucleon potential $\boldsymbol{\upsilon}^{(n \le 2)}$

Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005)

$$v^{\rm ME} = \frac{f_{\rm PS}}{\mathbf{k}, m_a} + \mathbf{v}$$

- Exploiting the meson exchange (ME) mechanism, one assumes that the static part v_0 of v is due to pseudoscalar (PS) and vector (V) exchanges
- ▶ v^{ME} is expressed in terms of 'effective propagators' v_{PS} , v_V , v_{VS} , fixed such to reproduce v_0 , for example

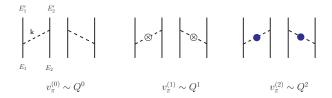
$$\boldsymbol{v}_{\boldsymbol{PS}} = [\boldsymbol{v}^{\boldsymbol{\sigma}\,\boldsymbol{\tau}}(k) - 2\boldsymbol{v}^{t\,\boldsymbol{\tau}}(k)]/3$$

with $v^{\sigma \tau}$ and $v^{t \tau}$ components of v_0

The current operator is obtained by taking the non relativistic reduction of the ME Feynman amplitudes and replacing the bare propagators with the 'effective' ones

$$\mathbf{j}^{(2)}(v_0) = \mathbf{p}^{\mathbf{S},\mathbf{V}} + \mathbf{p}^{\mathbf{S},\mathbf{V}} + \mathbf{p}^{\mathbf{S},\mathbf{V}}$$

OPEP beyond the static limit



On-the-energy-shell, non-static OPEP at N2LO (Q^2) can be equivalently written as

$$\begin{aligned} \upsilon_{\pi}^{(2)}(\mathbf{v} = 0) &= \upsilon_{\pi}^{(0)}(\mathbf{k}) \; \frac{(E_{1}' - E_{1})^{2} + (E_{2}' - E_{2})^{2}}{2 \, \omega_{k}^{2}} \\ \upsilon_{\pi}^{(2)}(\mathbf{v} = 1) &= -\upsilon_{\pi}^{(0)}(\mathbf{k}) \; \frac{(E_{1}' - E_{1}) \, (E_{2}' - E_{2})}{\omega_{k}^{2}} \\ \upsilon_{\pi}^{(0)}(\mathbf{k}) &= -\frac{g_{A}^{2}}{F_{\pi}^{2}} \tau_{1} \cdot \tau_{2} \, \frac{\boldsymbol{\sigma}_{1} \cdot \mathbf{k} \, \boldsymbol{\sigma}_{2} \cdot \mathbf{k}}{\omega_{k}^{2}} \end{aligned}$$

v⁽²⁾_π(v) corrections are different off-the-energy-shell (E₁ + E₂ ≠ E'₁ + E'₂)
 TPE contributions are affected by the choice made for the parameter v

From amplitudes to potentials

The two-nucleon potential $v = v^{(0)} + v^{(1)} + v^{(2)} + \dots$ (with $v^{(n)} \sim Q^n$) is iterated into the Lippmann-Schwinger (LS) equation *i.e.*

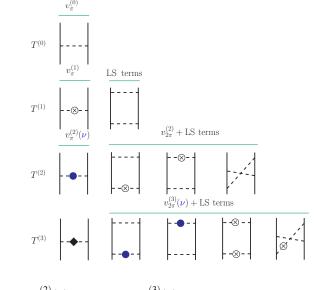
$$\upsilon + \upsilon G_0 \upsilon + \upsilon G_0 \upsilon G_0 \upsilon + \dots , \qquad G_0 = 1/(E_i - E_I + i\eta)$$

 $v^{(n)}$ is obtained subtracting from the transition amplitude $T_{\rm fi}^{(n)}$ terms already accounted for into the LS equation

$$\begin{aligned}
\boldsymbol{v}^{(0)} &= T^{(0)}, \\
\boldsymbol{v}^{(1)} &= T^{(1)} - \left[\boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)}\right], \\
\boldsymbol{v}^{(2)} &= T^{(2)} - \left[\boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)}\right] - \left[\boldsymbol{v}^{(1)} G_0 \, \boldsymbol{v}^{(0)} + \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(1)}\right], \\
\boldsymbol{v}^{(3)}(\boldsymbol{v}) &= T^{(3)} - \left[\boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)}\right] - \left[\boldsymbol{v}^{(1)} G_0 \, \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(0)} + \text{permutations}\right] \\
&- \left[\boldsymbol{v}^{(1)} G_0 \, \boldsymbol{v}^{(1)}\right] - \left[\boldsymbol{v}^{(2)}(\boldsymbol{v}) G_0 \, \boldsymbol{v}^{(0)} + \boldsymbol{v}^{(0)} G_0 \, \boldsymbol{v}^{(2)}(\boldsymbol{v})\right]
\end{aligned}$$

LS terms

From amplitudes to potentials: an example with OPE and TPE only



• To each $v_{\pi}^{(2)}(\mathbf{v})$ corresponds a $v_{2\pi}^{(3)}(\mathbf{v})$

Unitary equivalence of $v_{\pi}^{(2)}(\mathbf{v})$ and $v_{2\pi}^{(3)}(\mathbf{v})$

 Different off-the-energy-shell parameterizations lead to unitarily equivalent two-nucleon Hamiltonians

$$H(\mathbf{v}) = t^{(-1)} + v_{\pi}^{(0)} + v_{2\pi}^{(2)} + v_{\pi}^{(2)}(\mathbf{v}) + v_{2\pi}^{(3)}(\mathbf{v})$$

 $t^{(-1)}$ is the kinetic energy, $v_{\pi}^{(0)}$ and $v_{2\pi}^{(2)}$ are the static OPEP and TPEP

The Hamiltonians are related to each other via

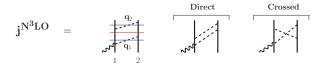
$$H(\mathbf{v}) = e^{-iU(\mathbf{v})} H(\mathbf{v} = 0) e^{+iU(\mathbf{v})}, \qquad i U(\mathbf{v}) \simeq i U^{(0)}(\mathbf{v}) + i U^{(1)}(\mathbf{v})$$

from which it follows

$$H(\mathbf{v}) = H(\mathbf{v} = 0) + \left[t^{(-1)} + v_{\pi}^{(0)}, i U^{(0)}(\mathbf{v})\right] + \left[t^{(-1)}, i U^{(1)}(\mathbf{v})\right]$$

 Predictions for physical observables are unaffected by off-the-energy-shell effects

Technical issue II - Recoil corrections at N³LO



Reducible contributions

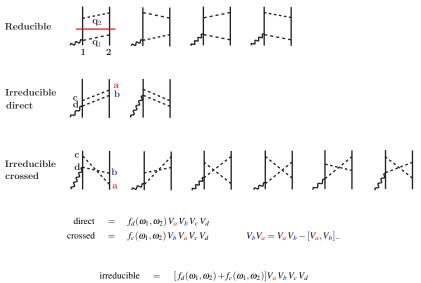
$$\begin{aligned} \mathbf{j}_{\text{red}} &\sim \int \upsilon^{\pi}(\mathbf{q}_2) \, \frac{1}{E_i - E_I} \, \mathbf{j}^{\text{NLO}}(\mathbf{q}_1) \\ &- \int 2 \, \frac{\omega_1 + \omega_2}{\omega_1 \, \omega_2} \, V_{\pi NN}(2, \mathbf{q}_2) \, V_{\pi NN}(2, \mathbf{q}_1) \, V_{\pi NN}(1, \mathbf{q}_2) \, V_{\gamma \pi NN}(1, \mathbf{q}_1) \end{aligned}$$

Irreducible contributions

$$\mathbf{j}_{\text{irr}} = \int 2 \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} V_{\pi NN}(2, \mathbf{q}_2) V_{\pi NN}(2, \mathbf{q}_1) V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1) - \int 2 \frac{\omega_1^2 + \omega_2^2 + \omega_1 \omega_2}{\omega_1 \omega_2 (\omega_1 + \omega_2)} [V_{\pi NN}(2, \mathbf{q}_2), V_{\pi NN}(2, \mathbf{q}_1)]_{-} V_{\pi NN}(1, \mathbf{q}_2) V_{\gamma \pi NN}(1, \mathbf{q}_1)$$

 Observed partial cancellations at N³LO between recoil corrections to reducible diagrams and irreducible contributions

The box diagram: an example at N³LO

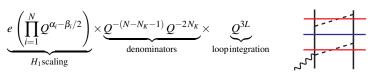


$$- f_c(\boldsymbol{\omega}_1, \boldsymbol{\omega}_2)[V_{\boldsymbol{a}}, V_{\boldsymbol{b}}]_- V_c V_d$$

Transition amplitude in time-ordered perturbation theory

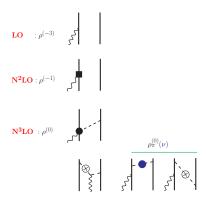
$$\begin{split} T_{\mathrm{fi}} &= \langle f \mid T \mid i \rangle \quad = \quad \langle f \mid H_1 \sum_{n=1}^{\infty} \left(\frac{1}{E_i - H_0 + i \eta} H_1 \right)^{n-1} \mid i \rangle \\ &= \quad \langle f \mid H_1 \mid i \rangle + \sum_{|I\rangle} \langle f \mid H_1 \mid I \rangle \frac{1}{E_i - E_I} \langle I \mid H_1 \mid i \rangle + \dots \end{split}$$

A contribution with N interaction vertices and L loops scales as



- α_i = number of derivatives in H_1 and β_i = number of π 's at each vertex N_K = number of pure nucleonic intermediate states
- $(N N_K 1) \text{ energy denominators expanded in powers of } (E_i E_N) / \omega_{\pi} \sim Q$ $\frac{1}{E_i E_I} |I\rangle = \frac{1}{E_i E_N \omega_{\pi}} |I\rangle \sim -\left[\underbrace{\frac{1}{\omega_{\pi}}}_{Q^{-1}} + \underbrace{\frac{E_i E_N}{\omega_{\pi}^2}}_{Q^0} + \underbrace{\frac{(E_i E_N)^2}{\omega_{\pi}^2}}_{Q^1} + \dots\right] |I\rangle$

► Due to the chiral expansion, the transition amplitude $T_{\rm fi}$ can be expanded as $T_{\rm fi} = T^{\rm LO} + T^{\rm NLO} + T^{\rm N2LO} + \dots$ and $T^{\rm NnLO} \sim (Q/\Lambda\chi)^n T^{\rm LO}$ EM charge up to n = 0 (or up to N3LO)



n = -3 $\rho^{(-3)}(\mathbf{q}) = e(2\pi)^3 \delta(\mathbf{p}_1 + \mathbf{q} - \mathbf{p}'_1)(1 + \tau_{1,z})/2 + 1 \rightleftharpoons 2$ n = -1: $(Q/m_N)^2$ relativistic correction to $\rho^{(-3)}$ n = 0:

i) 'static' tree-level current (originates from a $\gamma \pi N$ vertex of order eQ)

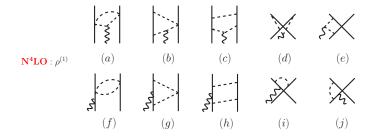
ii) 'non-static' OPE charge operators, $\rho_{\pi}^{(0)}(\mathbf{v})$ depends on $v_{\pi}^{(2)}(\mathbf{v})$

• $\rho_{\pi}^{(0)}(\mathbf{v})$'s are unitarily equivalent

$$\rho_{\pi}^{(0)}(\mathbf{v}) = \rho_{\pi}^{(0)}(\mathbf{v}=0) + \left[\rho^{(-3)}, i U^{(0)}(\mathbf{v})\right]$$

► No unknown LECs up to this order (g_A, F_π)

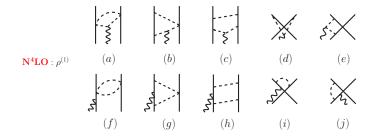
EM charge @ n = 1 (or N4LO) 1.



- ▶ (a), (f), (d), and (i) vanish
- Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as they must since there are no counter-terms at N4LO
- ► $\rho_{\rm h}^{(1)}(\mathbf{v})$ depends on the parametrization adopted for $v_{\pi}^{(2)}(\mathbf{v})$ and $v_{2\pi}^{(3)}(\mathbf{v})$
- $\rho_{\rm h}^{(1)}(\mathbf{v})$'s are unitarily equivalent

$$\rho_{\rm h}^{(1)}(\mathbf{v}) = \rho_{\rm h}^{(1)}(\mathbf{v}=0) + \left[\rho^{(-3)}, i U^{(1)}(\mathbf{v})\right]$$

EM charge @ n = 1 (or N4LO) 2.



• Charge operators (v-dependent included) up to n = 1 satisfy the condition

$$\rho^{(n>-3)}(\mathbf{q}=0)=0$$

which follows from charge conservation

$$\boldsymbol{\rho}(\mathbf{q}=0) = \int \mathrm{d}\mathbf{x}\,\boldsymbol{\rho}(\mathbf{x}) = e\frac{(1+\tau_{1,z})}{2} + 1 \rightleftharpoons 2 = \boldsymbol{\rho}^{(-3)}(\mathbf{q}=0)$$

• $\rho^{(1)}$ does not depend on unknown LECs and it is purely isovector