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Ab initio calculations of light nuclei

Aim: understand nuclei in terms of interactions between individual nucleons
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Electromagnetic reactions are a powerful tool to test our theoretical models

coupling constant a~ 1/137 allows for a perturbative treatment of the EM
interaction — single photon 7 exchange suffices

calculated x-sections o< |(¥|/*|¥;)|* with j* nuclear EM currents — clear
connection between measured x-sections and calculated properties of nuclear
targets

EXPT data (in most cases) known with great accuracy — viable EXPT
constraints on theories

For few-nucleon systems, the many-body problem can be solved exactly or
within controlled approximations
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Electromagnetic probes to test predictive power of nuclear theories/models
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» In this talk we primarily focus on:
EM ground state properties and transitions between low-lying states
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* Validate our theoretical understanding and control of nuclear EM structure and
reactions is an essential prerequisite for studies on: *

= Weak induced reactions, e.g., v-nucleus interactions
(major progress by A. Lovato, S. Gandolfi et al.)

= Larger nuclear systems
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Microscopic picture of the nucleus: the ab initio framework
Many-body nuclear EM currents from ¥y EFT
Applications:

» d, 3H and *He EM form factors
> Magnetic moments and EM transitions in A < 10 systems

Summary and outlook
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The Basic Model: Nuclear Potentials

» The nucleus is a system made of A non-relativistic interacting nucleons, its
energy is given by

A
H=T+V=Y t;+Y vj+ Y Vit
i=1 i<j i<j<k

where v;; and Vi are 2- and 3-nucleon interaction operators

> Realistic v;; and Vi interactions are based on EXPT data fitting and fitted
parameters subsume underlying QCD

» Realistic potentials at large inter-particle distances are described in terms of
one-pion-exchange, range ~ 1/my. Other mechanisms are, e.g., two-pion
exchange, range ~ 1/2my; A-excitations ...

N N
» Potentials utilized in these sets of calculations to generate nuclear wave
functions |¥;) solving H|¥;) = E;|'¥;) are:
[AV18+UIX], [AV18+IL7], [INN(N3LO)+3N(N2LO)]
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The Basic Model: Nuclear Electromagnetic Currents - Impulse Approximation

» Current and charge operators describe the interaction of nuclei with external

fields. They are expanded as a sum of 1—, 2—, ... nucleon operators:
A A
P:ZPi+Zpij+-v-7 J:ZJ1+ZJU+
i=1 i<j i=1 i<j

> In Impulse Approximation IA nuclear EM currents are expressed in terms of
those associated with individual protons and nucleons, i.e., p; and j;

g S
S,
> IA picture is however incomplete; Historical evidence is the 10% underestimate
of the np radiative capture ‘fixed’ by incorporating corrections from two-body

meson-exchange EM currents - Riska&Brown 1972
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The Basic Model: Nuclear Electromagnetic Currents

» Current and charge operators describe the interaction of nuclei with external

fields. They are expanded as a sum of 1—, 2—, ... nucleon operators:
A A
i=1 i<j i=1 i<j
q + .
N N

» Longitudinal EM current operator j linked to the nuclear Hamiltonian via
continuity eq. (q momentum carried by the external EM probe 7)

q-j=[H,p]=[ti+vj+ Ve, p]
* Meson-exchange currents MEC follow once meson-exchange mechanisms are
implemented to describe nuclear forces - Villars&Miyazawa 40ies

These days we have:
> Highly sophisticated MEC projected out realistic potentials
> EM currents derived from yEFTs
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Nuclear Y EFT Approach

. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett. B295, 114 (1992)

XEFT is a low-energy (Q < Ay ~ 1 GeV) approximation of
QCD

It provides effective Lagrangians describing 7’s, N’s, A’s, ... :
interactions that are expanded in powers n of a perturbative
(small) parameter O/A,

Lyyp=20 1 20 4 @ 4 ow Noon

The coefficients of the expansion, Low Energy Constants (LECs), are unknown
and need to be fixed by comparison with exp data

The systematic expansion in Q naturally has the feature
(O)1-body > (O)2-body > (O)3_body

A theoretical error due to the truncation of the expansion can be assigned
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Transition amplitude in time-ordered perturbation theory

. S 1 S
n=girly = ¢im L (Gogorm) 1
; 1 .
= L g 1

> A contribution with N interaction vertices and L loops scales as

N 4
o;—i/2 —(N—=Ng—1) H—2N 3L L -~
e I IQ Bi/2 | « 0 (N—Nk )Q (% 0
i=1 M E
denominators loopintegration = =
H,scaling 'JJJ

o; = number of derivatives in H; and f§; = number of 7’s at each vertex

Nk = number of pure nucleonic intermediate states

> Due to the chiral expansion, the transition amplitude 7§ can be expanded as
T = THO 4 TNLO f 7N2LO | g NILO (Q/Ax)nTLO
PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001
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Transition amplitude in time-ordered perturbation theory - bis

> N energy denominators scale as Q2 - -

1 1 )
1) = I)~Q7 2|1 =
Ei—E1|> Ei—EN‘> Qi o

» (N —Ng — 1) energy denominators scale Q! in the static limit; they can be
further expanded in powers of (E; — Ey)/wz ~ Q

1 _ 1 | | E—Ey_ (Ei—Ey)
Ei—Elm_Ei—EN—a)nmN_[w_—’— oz e ]\U
~ — ——
o g o'

» Terms accounted into the Lippmann-Schwinger equation are subtracted order
by order from reducible amplitudes !

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001
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XEFT EM current up to n =1 (or up to N3LO)

* Two-body charge operators enter at
Lo 5D meq-? N3LO and do not depend on LECs *
» LO=1IA
N2LO = IA(relativistic-correction)
NLO :j=0 ~eQ™! J,/ *%1 » Strong contact LECs at N3LO fixed from

fits to np phases shifts
PRC68, 041001 (2003)

NZLO - j ~ eQ° » Unknown EM LECs enter the N3LO
contact and tree-level currents

> No three-body EM currents at this order !!!

» NLO and N3LO loop-contributions lead to purely isovector operators
R = = I 1 O i
unknown LEC's ‘J__—l X

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001
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XEFT EM currents at N3LO: fixing the EM LECs

S gV gV
d>,d) , d. (’,S< v
L ’ dy,dy

Five LECs: d5, dY, and dY could be
determined by pion photo-production
data on the nucleon

dg and d}/ are known assuming
A-resonance saturation

Left with 3 LECs: Fixed in the A = 2 — 3 nucleons’ sector

> Isoscalar sector:
# 5 and ¢® from EXPT py and ug(H/>He)
» Isovector sector:
* model I = ¢V from EXPT npdy xsec.
or
* model I = ¢” from EXPT py(PH/3He) m.m. < our choice

Note that:
XEFT operators have a power law behavior — introduce a regulator to kill divergencies at large Q, e.g.,
Cp=e @M andalso, pick n large enough so as to not generate spurious contributions

C,\'\/l*(%) +...
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Predictions with Y EFT EM currents for A = 2—3 systems

np capture xsec. (using model IT) / py of A = 3 nuclei (using model I)
bands represent nuclear model dependence (N3LO/N2LO — AV18/UIX)

360 F
3.3
r o w,CH/ He)
340 P
30 —o0—
s |
3001 Lo —
- |— NLO
—— N3LO (no LECs)
i N3LO (full)
260 |— EXP
L1 \ \ \
500 600
A (MeV) A (MeV)

» npdy xsec. and uy(*H/AHe) m.m. are within 1% and 3% of EXPT

» Two-body currents important to reach agreement with exp data

» Negligible dependence on the cutoff entering the regulator exp(—(k/A)*)

PRC87(2013)014006
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Applications:
EM form factors of nuclei with A = 2 and 3
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Predictions with Y EFT EM Currents for the Deuteron Charge and Quadrupole f.f.’s

10° T T T T T 10° T T T T T T
) s p/NNN3LO), Piarulli er al. * s p " NN(N3LO), Piarulli et al.
1
. 10'e ‘ 3
— VO /NN(N2LO), Phillips — " O/NN(N2LO), Phillips
10 0
10°s
o
o’ ©
-1
10"
10%F
10°F t
© ()
-3 L 3 L Il L L L L L
10 i 3 3 yi 3 3 7 10 I 2 3 4 5 6 7
-1
g [fm] q[fm ]

AMeV <r;>(@{m) <r;>EXP | Q;(fm?)  Q, (fm?) EXP
500 1.976 1.9734(44) 0.285 0.2859(3)
600 1.968 0.282

» Calculations include nucleonic f.f.’s taken from EXPT data

> Sensitivity to the cutoff used to regularize divergencies in the matrix elements is
given by the bands’ thickness

J.Phys.G34(2007)365 & PRC87(2013)014006
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Predictions with Y EFT EM Currents for the Deuteron Magnetic f.f.

100E L A B B B B
r T *9/NN(N3LO), Piarulli ef al. ]
I — LO/NN(N2LO), Kélling ef al. |
||
s E E
i ]
=) n ]
=3 L o i
= o
B0t < E
- () o
3L b b b Lado o
107 1 2 3 4 5 6 7
-1
qlfm ]

PRC86(2012)047001 & PRC87(2013)014006
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Predictions with ¥ EFT EM Currents for *He and *H Magnetic f.f.’s

— = "%AVI8+UIX
- AVISHUIX
JNN(N3LO)+3N(N2LO)

FULONN(N3LO)+3N(N2LO) x
PR IV I RNITIN A WA N

0 1 2 3 40 1 2 3 4 5
qlfm’] qlfm’]

LO/N3LO with AV18+UIX — LO/N3LO with x-potentials NN(N3LO)+3N(N2LO)
» 3He/*H m.m.’s used to fix EM LECs; ~ 15% correction from two-body currents

4

107

» Two-body corrections crucial to improve agreement with EXPT data

*He < r >pxp= 1.976£0.047 fm 3H < r >pxp= 1.840+0.181 fm
A 500 600 500 600
LO 2.098 (2.092) 2.090 (2.092) 1.924 (1.918) 1.914 (1.918)
N3LO 1.927 (1.915) 1.913 (1.924) 1.808 (1.792) 1.794 (1.797)

PRC87(2013)014006
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Calculations with EM Currents from yEFT with 7’s and N’s

» Park, Min, and Rho et al. (1996)

applications to:

magnetic moments and M1 properties of A=2-3 systems, and
radiative captures in A=2—4 systems by Song, Lazauskas, Park at al.
(2009-2011) within the hybrid approach

* Based on EM YEFT currents from NPA596(1996)515

» Meissner and Walzl (2001);
Kolling, Epelbaum, Krebs, and Meissner (2009-2011)
applications to:
d and He photodisintegration by Rozpedzik et al. (2011); e-scattering (2014);
d magnetic f.f. by Kolling, Epelbaum, Phillips (2012);
radiative N — d capture by Skibinski ef al. (2014)

* Based on EM YEFT currents from PRC80(2009)045502 &
PRC84(2011)054008 and consistent ¥ EFT potentials from UT method

> Phillips (2003-2007)
applications to deuteron static properties and f.f.’s
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Moving on to larger nuclear systems:
magnetic moments and transitions in A < 10 nuclei
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Magnetic Moments in A < 10 Nuclei

Predictions for A > 3 nuclei

4
L " * i
3 * wk Y ° d m
L p [ TLi o - B i
5 3H Li
B & ok
= 6Li* I [ 10 B
~ 1 s e x
A ok i Li 8g o
= r 2H 6L j 1og* ]
= 0l-@ GFMC(IA) . .
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> u(IA) = IJNZ,'[(Li -‘rgpSi)(l + Ti,z)/2+gllsi(1 - Ti.,z)/z]
» GFMC calculations based on H=T + AV18 + IL7 — hybrid framework
PRC87(2013)035503 o020



Magnetic Moments in A < 10 Nuclei - bis

Predictions for A > 3 nuclei

4
L - *
3 . °
L [ ] i ° 9
p 34 9Li
2 o o
r OLj* ) 108
L ®
> ox e ek 8Li s
2 r ’H OLi 10g%
=
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> uy(IA) = YLi[(Li+8pSi) (1 +Ti2) /2+8nSi(1— Ti2) /2]

> 9C (°Li) dominant spatial symmetry [s.s.] = [432] = [a,>He(*H),pp(nn)] — Large MEC

> °Be (°B) dominant spatial symmetry [s.s.] = [441] = [&, o, n(p)]

PRC87(2013)035503
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EM Transitions in A < 9 Nuclei

» Two-body EM currents bring the

theory in a better agreement with o, 9Be(S, ¥,) BE2)
the EXP
o x_ Be(*/,” 3/,) B(MI)
» Significant correction in A =9,
T = 3/2 systems. Up to ~ 40% X BG" 29BMD
correction found in °C m.m. o x SB(I* 2% BMI)
> Major corrgction (~60—70% of ox SLIG* 2% BOMI)
total MEC) is due to the
one-pion-exchange currents at & X LAY 29 BMD
NLO - purely isovector ° x TBe(lry 31,) BMI)
< Li('7y 3/,) B(E2)
One M1 prediction:°Li(1/2 — 3/2)* o 3 ity ) B
L] SLi(0* 1*) B(M1)
I(IA) = 0.59(2) eV ¥ '
I['(TOT) =0.79(3) eV * EXPT @ GFMC(IA) X GFMC(TOT)
P | IR L
+ a number of B(E2)s in IA 1 2

Ratio to experiment

*Ricard-McCutchan et al. TRIUMF proposal 2014 - ongoing data analysis
PRC87(2013)035503
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8Be Energy Spectrum

» 21 and 41 broad states at
~ 3 MeV and ~ 11 MeV

> isospin-mixed states at
~ 16 MeV, ~ 17 MeV,
~ 19 MeV

» M1 transitions

> E2 transitions

» E2 + MI transitions

-28
1 N
FoS[422] 10752
1
320k 8 |
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PRL111(2013)062502 & PRC90(2014)024321
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One-body M1 transitions densities

0.03 7
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> [s.s.]-conserving transitions are enhanced due to overlap between large
components of the initial and final w.f.’s

> Isospin-conserving transitions are suppressed w.r.t. isospin-changing transitions
due to a cancellation between proton and neutron spin magnetization terms

MIOA) =iy Tl 89801+ /2 + 08501 - 52/

PRC90(2014)024321
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Two-body M1 transitions densities

004 LI L B B I R B B
& Total

~ 0.03 e NLO-OPE | 7
b * N2LO-RC | ]
£ 002 w +NLocr T 7
£ * T R ]
= 0.01 4 N3LOA ] 7]
S Y, T h
T 0.00
& T ]
001 T 8Be(1%02%1) T SBe(1*:10%0) |

R I RN R N

-0.02 ———+——— T B T
L 4 4 Total 1 i
§ 0011 :& 1 iNZLOVR(‘ 1 B

3LO-
5 f > | N3LO-CT

8Be(1*;12%1) T 8Be(1+:02,%0) T 8Be(1+,0 2+,0)

001§t A . e 3\ . - 2\ —
1y, (fm) 1y, (fm) 1y, (fm)
Ui, 1) = Up.Tp) | 1A | NLO-OPE | N2LO-RC | N3LO-TPE | N3LO-CT | N3LO-A | MEC
(05D 5027:0 [ 246103) | 04573 | 00s8() | 009520 [ 00353) | 01612) [ 0.620(5)

PRC90(2014)024321
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M1 transitions in ®Be isospin-mixed states

» 2%, 17, and 3% states are isospin mixed, with mixing coefficients o + 2 = 1

"
v’

= oyY¥r—0+BsYr=1
= Br¥Wr—o— s Y1=1

» Mixing angles o, 3 are from experimental decay widths as I /T” = (X% / ﬁ%

> (0tg ~0.77, B5) well known through EXP a-decay widths, which is the
only channel energetically allowed and available via 7= 0
> (orp ~0.21, B1) and (a3 ~ 0.41, 3) involve multiple decay channels —
hard to extract them with great accuracy (Barker nuct. prys. 83,418 (1966))

Example: 11,7 =0+1—2",T=0+1, [431] — [431]

< JTIM1|JT > 1A TOT  E —E[MeVl BMI)y, BMDror EXP[u3]
<10]M1]20 > 0.17(0) _ 0.19(0) | 18.15—16.626 _ 0.56(1) 0.62(1) 1.88(46)
<10|M1]21>  2.60(1) 2.89(1) | 18.15-16922  1.56(2) 2.01(2) 2.89(33)
<UM120>  229(1)  291(1) | 17.64-16626  1.65(2) 2.54(3) 2.65(25)
<1|M121>  0.14(0) 0.18(1) | 17.64—16922  0.25(1) 0.46(1) 0.30(7)

MEC contribute ~ 20-30% of the total m.e.’s

PRC90(2014)024321 & PRC90(2014)024321
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M1 Transition Widths / EXPT

T T T
e = o 16262 +16.922 —» 3.03
° e 17.64 —> 0.00
o M e 17.64 —> 3.03
on A——eo— 1815 —» 0.00
o P 1815 — 3.03
° e 17.64 — 16626
e W 1764 — 16922
Awm —— 18.15 —» 16.626
o BA o 1815 — 16922
on . 19.070 — 3.03
e M —e 2749 — 17.64
@ GFMC(A)
B GFMC(TOT) a, 0.2
Ratio to EXPT A GFMC(TOT)a, 0.3
0 i ;

> Predictions for [s.s.]-conserving transitions are in fair agreement with EXPT

» The theoretical description for this system is unsatisfactory, however, MEC
provide a ~ 20 — 30% correction to the calculated matrix elements improving
the agreement with EXPT data

PRC90(2014)024321
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Benchmark calculations of *He Zemach Moments*

Quote: Precise moments are useful observables for the comparison with theoretical
calculations, ... in particular for light nuclei where very accurate ab initio
calculations can be performed. I. Sick - PRC90(2014)064002

* dg
«— [ Y1GeGy—1],
N /0 qz[ EGm — 1]

= dg
<r3>(2) o</0 q—4 [G%;— 1 +q2R2/3

VMC(IA) | VMC(TOT) | GFMC(A) _ GFMC(IOT) EXPT
Mo 2522 2477 2504 2454 2528 £ 0.016 fm
() ) 27.40 n.a. 29.30 n.a. 28.15 £+ 0.70 fm?
(22 1.967 n.a. 1.970 n.a. 1.973 4 0.014 fm
()12 2.000 1.962 2,019 1.942 1.976 + 0.047 fm
(rin) 19.8 na. 30.0 n.a. 32.9 4 1.60 fm*
(1) -1.775 2.134 -1.767 2.129 -2.127 py

* in collaboration with S. Bacca, C. Ji et al.

Preliminary!!!
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Summary

The microscopic description of nuclei successfully reproduces EXPT data provided
that many-body effects in nuclear interactions and EM currents are accounted for.
J.Phys.G41(2014)123002 - S.Bacca&S.P.

» Two-body EM currents from yEFT tested in A < 10 nuclei
» Two-body corrections can be sizable and improve on theory/EXPT agreement

» EM structure of A = 2-3 nuclei well reproduced with chiral charge and current
operators for g < 3my

> ~ 40% two-body correction found in 9C’s m.m.

> ~ 20-30% corrections found in M1 transitions in low-lying states of $Be
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Outlook

The microscopic description of nuclei successfully reproduces EXPT data provided
that many-body effects in nuclear interactions and EM currents are accounted for.
J.Phys.G41(2014)123002 - S.Bacca&S.P.

+ EM structure and dynamics of light nuclei

>

Charge and magnetic form factors of A < 10 systems

M1/E2 transitions in light nuclei

Radiative captures, photonuclear reactions ...

Fully consistent Y EFT calculations now attainable within QMC
computational schemes

Role of A-resonances in ‘MEC’ (EM current consistent with the chiral
‘A-full’ NN potential developed by M. Piarulli et al. PRC91(2015)024003)

+ Electroweak structure and dynamics of light nuclei

>

>

>

Test axial currents (chiral and conventional) in light nuclei (Y EFT axial
currents derived by A. Baroni et al. arXiv:1509.07039)

Many-body effects in v-d pion-production at threshold (in preparation)
Study v-scattering off A > 12 nuclei
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EXTRA SLIDES
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NN Potential at NLO (or 0"=2)

renormalize LEC's

KX B X X

N2LO (Q?)

Contact potential at LO (or 0"=9) depends on 2 LECs
Contact potential at NLO (or 0"=2) depends on 7 additional LECs

NN potentials with 7’s and N’s
van Kolck et al. (1994-96)
Kaiser, Weise et al. (1997-98)
Epelbaum, Glockle, Meissner (1998-2015)
Entem and Machleidt (2002-2015) +

22 /30



XEFT EM currents at N3LO: fixing the EM LECs

S gV gV
d>,d) , d. (’,S< v
L ’ dy,dy

Five LECs: d5, dY, and dY could be
determined by pion photo-production
data on the nucleon

dg and d}/ are known assuming
A-resonance saturation

Left with 3 LECs: Fixed in the A = 2 — 3 nucleons’ sector

> Isoscalar sector:
# 5 and ¢® from EXPT py and ug(H/>He)
» Isovector sector:
* model I = ¢V from EXPT npdy xsec.
or
* model I = ¢” from EXPT py(PH/3He) m.m. < our choice

Note that:
XEFT operators have a power law behavior — introduce a regulator to kill divergencies at large Q, e.g.,
Cp=e @M andalso, pick n large enough so as to not generate spurious contributions

C,\'\/l*(%) +...
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Predictions with Y EFT EM currents for A = 2—3 systems

np capture xsec. (using model II) / y of A = 3 nuclei (using model I)
bands represent nuclear model dependence (N3LO/N2LO — AV18/UIX)

360

340

320
E

300

280

260

np

LO

NLO

N2LO

N3LO (no LECs)
N3LO (full)
EXP

u,CH/ He)

A (MeV)

500
N\ (MeV)

600

—-1.8

2

> npdy xsec. and ,LLV(3H/3He) m.m. are within 1% and 3% of EXPT

» Two-body currents important to reach agreement with exp data

» Negligible dependence on the cutoff entering the regulator exp(—(k/A)*)
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Deuteron wave functions

T I T I T I T I T I T

056 | —a |
£ i
E
< 04| / N i
Ll :
o2 M -

0
]

from Entem&Machleidt 2011 Review

» Entem&Machleidt N3LO
» Epelbaum et al. 2005

> black lines = conventional potentials, i.e. AV18, CD-Bonn, Nijm-I
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3He and 3H charge f.f.’s

Al

(b)

H v

— M PIAVISsUIX

- P AVISHUIX

P UNN(NILO)+IN(N2LOY

© g

)

gl glfm™]
» Excellent agreement up to g ~ 2 fm~!
» N3LO and N4LO comparable
3He < r >pxp=1.959£0.030 fm *H < r >pxp= 1.755£0.086
A 500 600 500 600
LO 1.966 (1.950) 1.958 (1.950) 1762 (1.743) | 1.750 (1.743)
N4LO || 1.966 (1.950) 1.958 (1.950) 1762 (1.743) | 1.750 (1.743)
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E2 transitions in ®Be

2% and 4T broad rotational states
at ~3 MeV and ~ 11 MeV

4% — 27 transition recently
measured at BARC*, Mumbai

Calculational challenge:
27 and 4T states tend to break up
into two @ as 7T increases

Results obtained by linear fitting
the GFMC points and
extrapolating at T = 0.1 MeV
where stability is observed in the
g.8. energy propagation

J5T  E[MeV] B(E2) [¢? fm*]

0F -56.3(1)

2+ +3.2(2) 20.0 (8)-[2t =01 ]
4+ +11.2(3)  27.2(15)-[ 4+ — 2+ |*

*Bhabha Atomic Research Centre
*EXPT B(E2) = 21 4 2.3 €2 fm*

E (MeV)

E2 (e fm?)

. i\f"‘rl-o-.—t.._. Y 4+

+ e o o

0%

0.3
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E2 transition widths / EXPT

> We attempt to evaluate a

number of E2 transitions
(predictions not shown in the .o s s a0
figure)
» Complications are due to large o1 e 16626 — 00
cancellations among large
m.e.’s — E2s very sensitive to Fe o o
small components e —s 303 e
» One more complication: make
sure that the first and second i ® GRuCIA) a,02
(J*,T) = (2*,0) states are | Ratio tO‘EXPT | | A omame
orthogonal 0 ! 2 3 4 5

* We orthogonalize the second (J*,T) = (2%,0) via

W% (ortho))g = |¥% )6 —g (P2 |92 )y |[¥2 )6
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Anomalous magnetic moment of °C

Mirror nuclei spin expectation value

» Charge Symmetry Conserving (CSC) picture (p +— n) ©

T,=+T T, =
<Gz>:'u( =+T) +u(

=—T)—J _2u(IS) -

(& +g¢—1)/2

» For A =9, T = 3/2 mirror nuclei: 9C and °Li
EXP < o; >= 1.44 while THEORY < ¢; >~ 1 (assuming CSC)

possible cause: Charge Symmetry Breaking (CSB)
» Three different predictions for < ¢; > with CSC w.f.’s (*) and CSB w.f’s

0.3796

<o, > Symmetry 1A TOT EXP
CSB Li(3 :3).°C(3 33 1.05(1) 1.31(11) 1.44
Ccsc Li(3 759,23 7:3)* | 095(11)  1.00(11)

Ccsc Li(375)*°Cc(37:3) | 1.00 (1) 1.05 (1)

» Need both CSB in the w.f.’s and MEC!

¢ Utsuno — PRC70, 011303(R) (2004)
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Currents from nuclear interactions *- Marcucci et al. PRC72, 014001 (2005)

» Current operator j constructed so as to satisfy the continuity equation with a
realistic Hamiltonian

> Short- and intermediate-behavior of the EM operators inferred from the nuclear
two- and three-body potentials

J = ,](1) transverse
T T PpWw
+ P T
q
. N N
+ JE)

« also referred to as Standard Nuclear Physics Approach (SNPA) currents

» Long range part of j(v) corresponds to OPE seagull and pion-in-flight EM
currents
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Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005)

Satisfactory description of a variety of nuclear EM properties [see Marcucci et al. (2005)

and (2008)]

S(E) (eV b)
© o o o
N w » al

o©
=

2H(p,y)*He capture

A LUNA
o Griffiths et al.
® Schmid eral

10 20 30 40
E .y (keV)

a1
o

> Isoscalar magnetic moments are a few % off (10% in A=7 nuclei)
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Magnetic moments in A < 9 nuclei: SNPA vs yEFT

A s.S. 1A TOT SNPA TOT xEFT*  EXP
IN 7 [43] 0.902 (3) 0.833 (12) 0.906 (7) 0.929
v [43] —3.944 (5) —4.587(18)  —-4.670(9) —4.654
IN 8 [431] 1.289 (8) 1.160 (15) 1.299 (9) 1.344
v [431] 0.182(8) -0.129 (15)  -0.139 (9) -0.310

IN 9 [432] 0.994 (15) 0.922 (32) 1.038 (21) 1.024
v [432] -1.095(10) -1371Q21) -1.532(15) —-1.610

Preliminary results

Overall improvement of isoscalar (IS) component of the magnetic moment

W= HUs+ Ty
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courtesy of R.B.Wiringa

’ USA
NUCLEAR HAMILTONIAN Argonne vig 27
4 TH
A [
i i<j i<j<k " §' g %
st ots | 5SS
K;: Non-relativistic kinetic energy, m.,-m,, effectsincluded ]

Argomnevis: vij = v), + vl + vl + vl = Nup(ri )0, ey T T T
‘ ' — Argonnev,; np
e 18 spin, tensor, spin-orbit, isospin, etc., operators _ “r - ﬁ[gmjﬁ e
o full EM and strong CD and CSB termsincluded g . a7
e predominantly local operator structure
o fits Nijmegen PWA93 datawith y?/d.o.f.=1.1 = s \ ]
Wiringa, Stoks, & Schiavilla, PRC 51, (1995) 4 020 E‘ﬁ)?Mthi)L‘)O 050
Urbana& Illinois: Vije = V2E+VEE+VE 0 1 1 1 L L
R T T T N
e Urbanahas standard 2 P-wave + A ’'s A o |
short-range repulsion for matter saturation |- “r A
o lllinois adds 27 S-wave + 37 rings k3 k3

to provide extra7'=3/2 interaction
e |llinois-7 has four parametersfit to 23 levelsin A <10 nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001)
Pieper, AIP CP 1011, 143 (2008)

43 130



courtesy of R.B.Wiringa

THREE-NUCLEON POTENTIALS

Urbana V;; = Vi2i¥ + Vi

Carlson, Pandharipande, & Wiringa, NP A401, 59 (1983)

linois Vi = VZE + V2ES + VIS 4 Vi,

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001)

I1linois-7 has 4 strength parametersfit to 23 energy levelsin A < 10 nuclei.

Inlight nuclei we find (thanks to large cancellation between (K) & (vij)):
(Vijr) ~ (0.02100.07) (v;;) ~ (0.15t0 0.5) (H)

We expect (Vi) ~ 0.05 (V1) ~ (0.01t00.03) (H) ~ 1 MeV in'2C.
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Transition amplitude in time-ordered perturbation theory

. S 1 S
n=girly = ¢im L (Gogorm) 1
; 1 .
= R g 1

> A contribution with N interaction vertices and L loops scales as

N 4
oi—PBi/2 —(N—Nk—1) /—2N, 3L L -~
e I IQ Bi/2 | « 0 (N—Nk )Q (% 0
] -_— ~— j
denominators loopintegration == z
H,scaling 'JJJ

o; = number of derivatives in H; and f§; = number of 7’s at each vertex

Nk = number of pure nucleonic intermediate states

> Due to the chiral expansion, the transition amplitude 7§ can be expanded as

T =T+ TNO f TNLO | g 7NILO (/A )" 71O
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Power counting

N energy denominators scale as Q2 - -
1 1 2
I)= I)~Q 4| =

fo5 =g g0 ~07 &

(N — Nk — 1) energy denominators scale Q! in the static limit; they can be
further expanded in powers of (E; — Ey)/wz ~ Q

1 o 1 1 E;—Eyn (Ei—Ey)
El—E,‘I> E,—EN—a)nmN_[w__'_ o e T ]\U
~ —— —
ol o'

Terms accounted into the Lippmann-Schwinger Eq. are subtracted from the
reducible amplitude

EM operators depend on the off-the-energy shell prescription adopted for the
non-static OPE and TPE potentials

Ultimately, the EM operators are unitarily equivalent: Description of physical
systems is not affected by this ambiguity
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Magnetic moment at N°LO

> Magnetic moment operator due to two-body current density J(x)

1
R,r) = -
1(R,x) 3

R x / dx J(x) + /dx (x—R) x J(x)]

» Sachs’ and translationally invariant magnetic moments
R 7
HSachs (er) = 1 E X /dX X [P (X) s UIZ]

i ik .
pr() = =5 [TV, i@k

q=0
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2009 EM current vs 2011 EM currents p.

X E‘X

9) i)

> Non-static corrections entering single-nucleon operators accounted into the
derivation of current i)

2 2

. egi q; —q O] + 0 0+ O

l)OLD = Féq ‘5172 w3 w3 1 o+ 2
] 5 | + @

Csoi-(q1 x q2)

Croy-(qixq)| +1=2

HNEW = 2i

2 2

eg Cr 07 + W ) + O

e T/ L= 2 (q-q)orqrxq+1=2
q

CF: g 0703 (@) + @)

> i) NEW in agreement with Ko6lling 2009/2011* but for a factor of 2, which has
no impact because (i + g) =

* PRC80, 045502 (2009)/ PRC 84, 054008 (2011)
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2009 EM current vs 2011 EM currents p. 2/2

-
-
-

TREE cT

> A different derivation in Kolling 2009/2011* leads to an additional term
~ (o x q) x q in the N3LO current at tree level, which however does not
contribute to the magnetic moment

» The N3LO contact current of Pastore 2009 is in agreement with that of Kolling
2011 after Fierz-reordering, apart from differences in the term o< Cs:

. iCs
jR3LO - (o1 +072) x (e1k;+erkp)

* PRC80, 045502 (2009)/ PRC 84, 054008 (2011)

49 /30



Magnetic moment (m.m.) operator

» comparison with Kolling et al.:

i) LO, NLO, N2LO, N3LO TPE, N3LO CT, N3LO TREE m.m.’s agree,
but for the N3LO CT term o< Cs

ii) currents associated with one loop corrections to the OPE are missing in
these calculations of m.m.’s; renormalization of OPE currents has been
carried out in Kolling 2011*

» comparison with Park er al.**:

i) Sachs’ m.m. is missing (no problem in two-body systems),
ii) TPE box contribution at N3LO generates an extra term o< (7; X 7);

* Ultimately, in actual calculations these differences are presumably
mitigated by fitting LECs to experimental data
* Joop corrections to OPE: terms o< L(k) in Eq. (4.28) of Kolling 2011;
% NP A596, 515, (1996)
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EM current up to n =1 (or up to N3LO) - bis

> n=-2,—1,0, and 1-(loops only):
LO i) ~eq? depend on known LECs namely g4, Fr,
and proton and neutron [

> n=0: (Q/my)? relativistic correction to

NLO :j-U~eQ! J . }V’ ,1 A
% » unknown LECs enter the n = 1 contact

and tree-level currents (the latter
N2LO : j-0) ~ 6Q0 originates from a YN vertex of order
eQ?
» divergencies associated with loop integrals are reabsorbed by renormalization
of contact terms

> loops contributions lead to purely isovector operators

» j*= satisfies the CCR with ¥EFT two-nucleon potential v("<2)
wor B B XX XX
unknown LEC's ‘J_.rl x
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Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005)

o) frs Ps v
oME ; -— + R
k,m,

» Exploiting the meson exchange (ME) mechanism, one assumes that the
static part vy of v is due to pseudoscalar (PS) and vector (V) exchanges
» VME g expressed in terms of ’effective propagators’ vpg, Uy, Vys, fixed such to

reproduce vy, for example
vps = [V77 (k) — 20" (K)] /3
with V97 and v’* components of v

» The current operator is obtained by taking the non relativistic reduction of the
ME Feynman amplitudes and replacing the bare propagators with the ’effective’
ones

P = -4+ --- + --g-
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OPEP beyond the static limit

B 12
k . . . . .
}"’ 1 r \\4 }'® r ®\ }'. r‘\
£y B,
00 ~ Q0 o) ~ Q! v~ Q?

On-the-energy-shell, non-static OPEP at N2LO (Q2) can be equivalently written as

Qa0 E1—E)+(Ey—Er)?
vy (v=0) = vy (k) 2w,§
E| —E\)(E,—E
Wiv=1 = -V w
o
2
(0) _ gA 0'1'k0'2 k
v (k) = _F_%Tl w]?

v,<,2) (v) corrections are different off-the-energy-shell (E| + E, # E| + E})

» TPE contributions are affected by the choice made for the parameter v

53 /3()



From amplitudes to potentials

The two-nucleon potential v = O M 4@ 4 . (with v ~ Q") is iterated
into the Lippmann-Schwinger (LS) equation i.e.

v is obtained subtracting from the transition amplitude T

V+vGyv+vGyvGyv+... Go=1/(Ei—E[+in)

(n)

terms already

accounted for into the LS equation

7(0)
[‘D G()‘D ] s
[U Gy Gpo© )] [ (1>Gov<0)+v<0)G0v<l)] ,
[u Gov'% Gy G v(0>] - [1)(1) Gov'? Gy +permutati0ns]

[v Gov! ] [U(2>(V)G01)(0>+U(0>Gov(2>(v)]

LS terms
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From amplitudes to potentials: an example with OPE and TPE only

» Toeach v

(2)

/1

(0
ot LS terms
- _®_ d
7)-,(;2)(V IEQJ + LS terms
_____ L -®- )
F-@- /~ W«
L.®-4  F---1
U'gi)(’/) + LS terms
_____ --@- - '
L -@- - L
r-@-4  F---1 -®-
3)
(v) corresponds a v,/ (V)
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Unitary equivalence of v,gz)(v) and vz(? (v)

» Different off-the-energy-shell parameterizations lead to unitarily equivalent
two-nucleon Hamiltonians

Hv) = 402 4+ 0@ 40P (v) + 0l (v)

/1) is the kinetic energy, v,<,0) and véi) are the static OPEP and TPEP

» The Hamiltonians are related to each other via
Hv)=e VWM HV =0V | iuv)~ivOwv)+iv(v)
from which it follows

H(v) = H(v = 0)+ [ 40 ivO(v)] + [, ;00 (v)]

» Predictions for physical observables are unaffected by off-the-energy-shell
effects
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Technical issue II - Recoil corrections at N3LO

Direct Crossed

a2 I

jN3LO _ |- : ’::: ! I \:':: 1
'JJJ'—‘h ’ ’

» Reducible contributions

. |
Jea  ~ /v”(qz) gt (@)

(L O+
-2 e (2.e) Ve (2.0 Ve (1) Vi (L)

» Irreducible contributions

0+
)
0} + 0 + 0 o

- m[VnNN(zqu)vvnNN(zvql)LVENN(lqu)VWENN(qul)

Jirr

Vany (2,a2) Vann (2,41) Vany (1,@2) Vyzun (1,41)

» Observed partial cancellations at N>LO between recoil corrections to reducible
diagrams and irreducible contributions
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The box diagram: an example at N°LO

oY S .J ] .H‘I "'J
Irreducible

direct ,-afr::“— ;f‘r\:::

Reducible

Irreducible ’;e R Iy - :’:’ l JJ ‘:‘:l —rj’;-,.'. D
crossed DA R4 . . ‘
a
direct Sa(@r1,0)V,V Ve Vy
crossed =

fe(@1,02) Vi Vo Ve Vy VVa = VoV = [Va, Vi]-

irreducible

= [falor, @) +fe(01,0)]Va Vi Ve Va
= fel@1,0) [V, Vi Ve Vy
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Transition amplitude in time-ordered perturbation theory

Ta=(fIT|i)

I 1 n—1 )
(f|HIZ (ml‘ll> | i)

n=1

(FIH )+ H )5
I !

1
I|Hy|i
)+

> A contribution with N interaction vertices and L loops scales as

N J
e HQa[—ﬁ[/Z « Q—(N—NK—I) Q—ZNK « Q3L L -
e -~ ~— ]
—_— denominators loopintegration ==
Hjscaling 'JJJ

o; = number of derivatives in H; and f§; = number of 7’s at each vertex

Nk = number of pure nucleonic intermediate states

» (N —Ng — 1) energy denominators expanded in powers of (E; — Ey)/®g ~ Q

1 1 E — E (E: — Ey)?
= I N—[ vy (Bi—En)® ] I
E,'—E[‘> E,-—EN—a),IH w7r+ + 3} + ‘>
0! Q° Q!

> Due to the chiral expansion, the transition amplitude 7§ can be expanded as

Tp=TO 4 TNO L N2LO L and TNLO < (/A )" TO
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EM charge up to n = 0 (or up to N3LO)
> n=-3
P (q) = e (21’8 (p1 +a—p}) (1+7.)/2+1 =2
> n=—1:

> n=0:

NZLO : pl~V ;+ (Q/my)? relativistic correction to p(~3)

) 1) ‘static’ tree-level current (originates
T )

from a yzN vertex of order e Q)

HIENER

(v)’s are unitarily equivalent

ii) ‘non-static’ OPE charge operators,

p,go)(v) depends on v,<,2) (v)

> py)

» No unknown LECs up to this order (g4, Fr)
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v

v

EM charge @ n =1 (or N4LO) 1.

N4LO : pV (a) (0) (c) (d) (e)

14A1~
W
W,

(), (D), (d), and (i) vanish

Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as
they must since there are no counter-terms at N4LO

p}gl) (v) depends on the parametrization adopted for 1)7(,2> (v) and DST) (v)
pﬁl) (v)’s are unitarily equivalent
p'v) = =0+ [p i)
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EM charge @ n =1 (or N4LO) 2.

T~
FA
Vo
A |
Sl
",
. B
v
S
‘4
T
'
'
'
s
1
> ’

sX
NILO : p» (a) (0) (c) (d) (e)
()

> Charge operators (V-dependent included) up to n = 1 satisfy the condition
P V(g=0)=0
which follows from charge conservation

(1+7.)
2

p(q:O):/dxp(x):e +1=2=pF(q=0)

> p<1) does not depend on unknown LECs and it is purely isovector
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