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Ab initio calculations of light nuclei

Aim: understand nuclei in terms of interactions between individual nucleons
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Electromagnetic reactions are a powerful tool to test our theoretical models

◮ coupling constant α∼ 1/137 allows for a perturbative treatment of the EM

interaction→ single photon γ exchange suffices

◮ calculated x-sections ∝ |〈Ψf |jµ |Ψi〉|2 with jµ nuclear EM currents→ clear

connection between measured x-sections and calculated properties of nuclear

targets

◮ EXPT data (in most cases) known with great accuracy→ viable EXPT

constraints on theories

◮ For few-nucleon systems, the many-body problem can be solved exactly or

within controlled approximations
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Electromagnetic probes to test predictive power of nuclear theories/models

◮ In this talk we primarily focus on:

EM ground state properties and transitions between low-lying states

∼∼∼∼∼
* Validate our theoretical understanding and control of nuclear EM structure and

reactions is an essential prerequisite for studies on: *

⇒ Weak induced reactions, e.g., ν-nucleus interactions

(major progress by A. Lovato, S. Gandolfi et al.)

⇒ Larger nuclear systems
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Outline

◮ Microscopic picture of the nucleus: the ab initio framework

◮ Many-body nuclear EM currents from χEFT

◮ Applications:

◮ d, 3H and 3He EM form factors
◮ Magnetic moments and EM transitions in A≤ 10 systems

◮ Summary and outlook
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The Basic Model: Nuclear Potentials

◮ The nucleus is a system made of A non-relativistic interacting nucleons, its

energy is given by

H = T +V =
A

∑
i=1

ti +∑
i<j

υij + ∑
i<j<k

Vijk + ...

where υij and Vijk are 2- and 3-nucleon interaction operators

◮ Realistic υij and Vijk interactions are based on EXPT data fitting and fitted

parameters subsume underlying QCD

◮ Realistic potentials at large inter-particle distances are described in terms of

one-pion-exchange, range ∼ 1/mπ . Other mechanisms are, e.g., two-pion

exchange, range ∼ 1/2mπ ; ∆-excitations . . .

π

N N

∆

◮ Potentials utilized in these sets of calculations to generate nuclear wave

functions |Ψi〉 solving H|Ψi〉= Ei|Ψi〉 are:

[AV18+UIX], [AV18+IL7], [NN(N3LO)+3N(N2LO)]
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The Basic Model: Nuclear Electromagnetic Currents - Impulse Approximation

◮ Current and charge operators describe the interaction of nuclei with external

fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi +∑
i<j

ρij + ... , j =
A

∑
i=1

ji +∑
i<j

jij + ...

◮ In Impulse Approximation IA nuclear EM currents are expressed in terms of

those associated with individual protons and nucleons, i.e., ρi and ji

~Sp

~Sn

~Lp

◮ IA picture is however incomplete; Historical evidence is the 10% underestimate

of the np radiative capture ‘fixed’ by incorporating corrections from two-body

meson-exchange EM currents - Riska&Brown 1972
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The Basic Model: Nuclear Electromagnetic Currents

◮ Current and charge operators describe the interaction of nuclei with external

fields. They are expanded as a sum of 1−, 2−, ... nucleon operators:

ρ =
A

∑
i=1

ρi +∑
i<j

ρij + ... , j =
A

∑
i=1

ji +∑
i<j

jij + ...

q
+ . . .

N N

γ

◮ Longitudinal EM current operator j linked to the nuclear Hamiltonian via

continuity eq. (q momentum carried by the external EM probe γ)

q · j = [H, ρ ] =
[
ti +υij +Vijk, ρ

]

* Meson-exchange currents MEC follow once meson-exchange mechanisms are

implemented to describe nuclear forces - Villars&Miyazawa 40ies

These days we have:

◮ Highly sophisticated MEC projected out realistic potentials
◮ EM currents derived from χEFTs

7 / 30



Nuclear χEFT Approach

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett. B295, 114 (1992)

◮ χEFT is a low-energy (Q≪ Λχ ∼ 1 GeV) approximation of

QCD

◮ It provides effective Lagrangians describing π’s, N’s, ∆’s, ...

interactions that are expanded in powers n of a perturbative

(small) parameter Q/Λχ

Leff = L
(0)+L

(1)+L
(2)+ ...+L

(n)+ ...

π

N N

QQ

◮ The coefficients of the expansion, Low Energy Constants (LECs), are unknown

and need to be fixed by comparison with exp data

◮ The systematic expansion in Q naturally has the feature

〈O〉1−body > 〈O〉2−body > 〈O〉3−body

◮ A theoretical error due to the truncation of the expansion can be assigned
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Transition amplitude in time-ordered perturbation theory

Tfi = 〈f | T | i〉 = 〈f | H1

∞

∑
n=1

(
1

Ei−H0 + iη
H1

)n−1

| i〉

= 〈f | H1 | i〉+∑
|I〉
〈f | H1| I〉

1

Ei−EI
〈I |H1 | i〉+ ...

-

◮ A contribution with N interaction vertices and L loops scales as

e

(
N

∏
i=1

Qαi−βi/2

)

︸ ︷︷ ︸

H1scaling

×Q−(N−NK−1) Q−2NK

︸ ︷︷ ︸

denominators

× Q3L

︸︷︷︸

loopintegration

αi = number of derivatives in H1 and βi = number of π’s at each vertex

NK = number of pure nucleonic intermediate states

◮ Due to the chiral expansion, the transition amplitude Tfi can be expanded as

Tfi = TLO +TNLO +TN2LO + . . . and TNnLO ∼ (Q/Λχ )
nTLO

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001
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Transition amplitude in time-ordered perturbation theory - bis

◮ NK energy denominators scale as Q−2

1

Ei−EI
|I〉= 1

Ei−EN
|I〉 ∼Q−2|I〉

◮ (N−NK −1) energy denominators scale Q−1 in the static limit; they can be

further expanded in powers of (Ei−EN)/ωπ ∼ Q

1

Ei−EI
|I〉= 1

Ei−EN −ωπ
|I〉 ∼ −

[
1

ωπ
︸︷︷︸

Q−1

+
Ei−EN

ω2
π

︸ ︷︷ ︸

Q0

+
(Ei−EN)

2

ω3
π

︸ ︷︷ ︸

Q1

+ . . .
]

|I〉

◮ Terms accounted into the Lippmann-Schwinger equation are subtracted order

by order from reducible amplitudes !

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001
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χEFT EM current up to n = 1 (or up to N3LO)

LO : j(−2) ∼ eQ−2

NLO : j(−1) ∼ eQ−1

N2LO : j(−0) ∼ eQ0

* Two-body charge operators enter at

N3LO and do not depend on LECs *

◮ LO = IA

N2LO = IA(relativistic-correction)

◮ Strong contact LECs at N3LO fixed from

fits to np phases shifts

PRC68, 041001 (2003)

◮ Unknown EM LECs enter the N3LO

contact and tree-level currents

◮ No three-body EM currents at this order !!!

◮ NLO and N3LO loop-contributions lead to purely isovector operators

unknownLEC′s

N3LO: j(1) ∼ eQ

PRC78(2008)064002, PRC80(2009)034004, PRC84(2011)024001

11 / 30



χEFT EM currents at N3LO: fixing the EM LECs

cS, cVdS, dV
1 , dV

2

Five LECs: dS, dV
1 , and dV

2 could be

determined by pion photo-production

data on the nucleon

Isovector

dV
1 , dV

2

dV
2 and dV

1 are known assuming

∆-resonance saturation

Left with 3 LECs: Fixed in the A = 2−3 nucleons’ sector

◮ Isoscalar sector:

* dS and cS from EXPT µd and µS(3H/3He)

◮ Isovector sector:

* model I = cV from EXPT npdγ xsec.

or

* model II = cV from EXPT µV (3H/3He) m.m. ← our choice

Note that:

χEFT operators have a power law behavior→ introduce a regulator to kill divergencies at large Q, e.g.,

CΛ = e−(Q/Λ)n , ...and also, pick n large enough so as to not generate spurious contributions

CΛ ∼ 1−
(

Q

Λ

)n

+ . . .
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Predictions with χEFT EM currents for A = 2–3 systems

np capture xsec. (using model II) / µV of A = 3 nuclei (using model I)

bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

500 600
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◮ npdγ xsec. and µV (3H/3He) m.m. are within 1% and 3% of EXPT

◮ Two-body currents important to reach agreement with exp data

◮ Negligible dependence on the cutoff entering the regulator exp(−(k/Λ)4)

PRC87(2013)014006
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Applications:

EM form factors of nuclei with A = 2 and 3
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Predictions with χEFT EM Currents for the Deuteron Charge and Quadrupole f.f.’s
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(d)

Λ MeV < rd > (fm) < rd > EXP Qd (fm2) Qd (fm2) EXP

500 1.976 1.9734(44) 0.285 0.2859(3)

600 1.968 0.282

◮ Calculations include nucleonic f.f.’s taken from EXPT data

◮ Sensitivity to the cutoff used to regularize divergencies in the matrix elements is

given by the bands’ thickness

J.Phys.G34(2007)365 & PRC87(2013)014006
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Predictions with χEFT EM Currents for the Deuteron Magnetic f.f.
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j
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/NN(N2LO), Kolling et al.
..

j
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/NN(N3LO), Piarulli  et al.

PRC86(2012)047001 & PRC87(2013)014006
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Predictions with χEFT EM Currents for 3He and 3H Magnetic f.f.’s
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LO/N3LO with AV18+UIX – LO/N3LO with χ-potentials NN(N3LO)+3N(N2LO)

◮ 3He/3H m.m.’s used to fix EM LECs;∼ 15% correction from two-body currents

◮ Two-body corrections crucial to improve agreement with EXPT data

3He < r >EXP= 1.976±0.047 fm 3H < r >EXP= 1.840±0.181 fm

Λ 500 600 500 600

LO 2.098 (2.092) 2.090 (2.092) 1.924 (1.918) 1.914 (1.918)

N3LO 1.927 (1.915) 1.913 (1.924) 1.808 (1.792) 1.794 (1.797)

PRC87(2013)014006
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Calculations with EM Currents from χEFT with π’s and N’s

◮ Park, Min, and Rho et al. (1996)

applications to:

magnetic moments and M1 properties of A=2–3 systems, and

radiative captures in A=2–4 systems by Song, Lazauskas, Park at al.

(2009-2011) within the hybrid approach

. . . . . .
* Based on EM χEFT currents from NPA596(1996)515

◮ Meissner and Walzl (2001);

Kölling, Epelbaum, Krebs, and Meissner (2009–2011)

applications to:

d and 3He photodisintegration by Rozpedzik et al. (2011); e-scattering (2014);

d magnetic f.f. by Kölling, Epelbaum, Phillips (2012);

radiative N−d capture by Skibinski et al. (2014)

. . . . . .
* Based on EM χEFT currents from PRC80(2009)045502 &

PRC84(2011)054008 and consistent χEFT potentials from UT method

◮ Phillips (2003-2007)

applications to deuteron static properties and f.f.’s

* . . . . . .
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Moving on to larger nuclear systems:

magnetic moments and transitions in A≤ 10 nuclei
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Magnetic Moments in A≤ 10 Nuclei

Predictions for A > 3 nuclei
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◮ µ(IA) = µN ∑i[(Li +gpSi)(1+ τi,z)/2+gnSi(1− τi,z)/2]

◮ GFMC calculations based on H = T + AV18 + IL7→ hybrid framework

PRC87(2013)035503 20 / 30



Magnetic Moments in A≤ 10 Nuclei - bis

Predictions for A > 3 nuclei
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◮ µN (IA) = ∑i[(Li +gpSi)(1+ τi,z)/2+gnSi(1− τi,z)/2]

◮ 9C (9Li) dominant spatial symmetry [s.s.] = [432] = [α ,3He(3H),pp(nn)]→ Large MEC

◮ 9Be (9B) dominant spatial symmetry [s.s.] = [441] = [α ,α ,n(p)]

PRC87(2013)035503

21 / 30



EM Transitions in A≤ 9 Nuclei

◮ Two-body EM currents bring the

theory in a better agreement with

the EXP

◮ Significant correction in A = 9,

T = 3/2 systems. Up to ∼ 40%

correction found in 9C m.m.

◮ Major correction (∼ 60−70% of

total MEC) is due to the

one-pion-exchange currents at

NLO – purely isovector

One M1 prediction:9Li(1/2→ 3/2)*

Γ(IA) = 0.59(2) eV

Γ(TOT) = 0.79(3) eV

+ a number of B(E2)s in IA 0 1 2 3

Ratio to experiment

EXPT

6Li(0+ ® 1+) B(M1)

7Li(1/2
- ® 3/2

-) B(M1)

7Li(1/2
- ® 3/2

-) B(E2)

7Be(1/2
- ® 3/2

-) B(M1)

8Li(1+ ® 2+) B(M1)

8Li(3+ ® 2+) B(M1)

8B(1+ ® 2+) B(M1)

8B(3+ ® 2+) B(M1)

9Be(5/2
- ® 3/2

-) B(M1)

9Be(5/2
- ® 3/2

-) B(E2)

GFMC(IA) GFMC(TOT)

*Ricard-McCutchan et al. TRIUMF proposal 2014 - ongoing data analysis

PRC87(2013)035503
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8Be Energy Spectrum

◮ 2+ and 4+ broad states at

∼ 3 MeV and ∼ 11 MeV

◮ isospin-mixed states at

∼ 16 MeV, ∼ 17 MeV,

∼ 19 MeV

◮ M1 transitions

◮ E2 transitions

◮ E2 + M1 transitions

Jπ ; T GFMC Iso-mixed Experiment

0+ -56.3(1) -56.50

2+ + 3.2(2) + 3.03(1)

4+ +11.2(3) +11.35(15)

2+ ; 0 +16.8(2) +16.746(3) +16.626(3)

2+ ; 1 +16.8(2) +16.802(3) +16.922(3)

1+ ; 1 +17.5(2) +17.67 +17.640(1)

1+ ; 0 +18.0(2) +18.12 +18.150(4)

3+ ; 1 +19.4(2) +19.10 +19.07(3)

3+ ; 0 +19.9(2) +19.21 +19.235(10)
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PRL111(2013)062502 & PRC90(2014)024321
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One-body M1 transitions densities
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◮ [s.s.]-conserving transitions are enhanced due to overlap between large

components of the initial and final w.f.’s

◮ Isospin-conserving transitions are suppressed w.r.t. isospin-changing transitions

due to a cancellation between proton and neutron spin magnetization terms

M1(IA) = µN ∑
i

[(Li +gpSi)(1+ τi,z)/2+gnSi(1− τi,z)/2]

PRC90(2014)024321
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Two-body M1 transitions densities
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(Ji ,Ti)→ (Jf ,Tf ) IA NLO-OPE N2LO-RC N3LO-TPE N3LO-CT N3LO-∆ MEC

(1+ ; 1)→ (2+
2

; 0) 2.461 (13) 0.457 (3) -0.058 (1) 0.095 (2) -0.035 (3) 0.161 (21) 0.620 (5)

PRC90(2014)024321

25 / 30



M1 transitions in 8Be isospin-mixed states

◮ 2+, 1+, and 3+ states are isospin mixed, with mixing coefficients α2
J +β 2

J = 1

ψa = αJ ψT=0 +β J ψT=1

ψb = β J ψT=0−αJ ψT=1

◮ Mixing angles α , β are from experimental decay widths as Γa/Γb = α2
J/β 2

J

◮ (α2 ∼ 0.77, β 2) well known through EXP α-decay widths, which is the

only channel energetically allowed and available via T = 0
◮ (α1 ∼ 0.21, β 1) and (α3 ∼ 0.41, β 3) involve multiple decay channels→

hard to extract them with great accuracy (Barker NUCL. PHYS. 83, 418 (1966))

Example: 1+;T = 0+1→ 2+;T = 0+1, [431]→ [431]

< JT|M1|JT > IA TOT Ei→ Ef [MeV] B(M1)IA B(M1)TOT EXP [µ2
N ]

< 10|M1|20 > 0.17(0) 0.19(0) 18.15→16.626 0.56(1) 0.62(1) 1.88(46)

< 10|M1|21 > 2.60(1) 2.89(1) 18.15→16.922 1.56(2) 2.01(2) 2.89(33)

< 11|M1|20 > 2.29(1) 2.91(1) 17.64→16.626 1.65(2) 2.54(3) 2.65(25)

< 11|M1|21 > 0.14(0) 0.18(1) 17.64→16.922 0.25(1) 0.46(1) 0.30(7)

MEC contribute ∼ 20–30% of the total m.e.’s

PRC90(2014)024321 & PRC90(2014)024321
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M1 Transition Widths / EXPT

0 1 2
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◮ Predictions for [s.s.]-conserving transitions are in fair agreement with EXPT

◮ The theoretical description for this system is unsatisfactory, however, MEC

provide a ∼ 20−30% correction to the calculated matrix elements improving

the agreement with EXPT data

PRC90(2014)024321
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Benchmark calculations of 3He Zemach Moments∗

Quote: Precise moments are useful observables for the comparison with theoretical

calculations, . . . in particular for light nuclei where very accurate ab initio

calculations can be performed. I. Sick - PRC90(2014)064002

〈r〉(2) ∝−
∫ ∞

0

dq

q2
[GEGM−1] , 〈r3〉(2) ∝

∫ ∞

0

dq

q4

[

G2
E−1+q2R2/3

]

VMC(IA) VMC(TOT) GFMC(IA) GFMC(TOT) EXPT

〈r〉(2) 2.522 2.477 2.504 2.454 2.528 ± 0.016 fm

〈r3〉(2) 27.40 n.a. 29.30 n.a. 28.15 ± 0.70 fm3

〈r2
ch〉1/2 1.967 n.a. 1.970 n.a. 1.973 ± 0.014 fm

〈r2
m〉1/2 2.000 1.962 2.019 1.942 1.976 ± 0.047 fm

〈r4
ch〉 19.8 n.a. 30.0 n.a. 32.9 ± 1.60 fm4

〈µ〉 -1.775 -2.134 -1.767 -2.129 -2.127 µN

* in collaboration with S. Bacca, C. Ji et al.

Preliminary!!!
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Summary

The microscopic description of nuclei successfully reproduces EXPT data provided

that many-body effects in nuclear interactions and EM currents are accounted for.

J.Phys.G41(2014)123002 - S.Bacca&S.P.

◮ Two-body EM currents from χEFT tested in A≤ 10 nuclei

◮ Two-body corrections can be sizable and improve on theory/EXPT agreement

◮ EM structure of A = 2–3 nuclei well reproduced with chiral charge and current

operators for q . 3mπ

◮ ∼ 40% two-body correction found in 9C’s m.m.

◮ ∼ 20-30% corrections found in M1 transitions in low-lying states of 8Be
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Outlook

The microscopic description of nuclei successfully reproduces EXPT data provided

that many-body effects in nuclear interactions and EM currents are accounted for.

J.Phys.G41(2014)123002 - S.Bacca&S.P.

∗ EM structure and dynamics of light nuclei

◮ Charge and magnetic form factors of A≤ 10 systems
◮ M1/E2 transitions in light nuclei
◮ Radiative captures, photonuclear reactions . . .
◮ Fully consistent χEFT calculations now attainable within QMC

computational schemes
◮ Role of ∆-resonances in ‘MEC’ (EM current consistent with the chiral

‘∆-full’ NN potential developed by M. Piarulli et al. PRC91(2015)024003)

∗ Electroweak structure and dynamics of light nuclei

◮ Test axial currents (chiral and conventional) in light nuclei (χEFT axial

currents derived by A. Baroni et al. arXiv:1509.07039)
◮ Many-body effects in ν-d pion-production at threshold (in preparation)
◮ Study ν-scattering off A > 12 nuclei
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EXTRA SLIDES

31 / 30



NN Potential at NLO (or Qn=2)

υCT0 υCT2

renormalizeLEC′s

LO (Q0 ) N2LO ( )Q2

p

p′

◮ Contact potential at LO (or Qn=0) depends on 2 LECs

◮ Contact potential at NLO (or Qn=2) depends on 7 additional LECs

NN potentials with π’s and N’s

∗ van Kolck et al. (1994–96)

∗ Kaiser, Weise et al. (1997–98)

∗ Epelbaum, Glöckle, Meissner (1998–2015)

∗ Entem and Machleidt (2002–2015)←
∗ . . .
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χEFT EM currents at N3LO: fixing the EM LECs

cS, cVdS, dV
1 , dV

2

Five LECs: dS, dV
1 , and dV

2 could be

determined by pion photo-production

data on the nucleon

Isovector

dV
1 , dV

2

dV
2 and dV

1 are known assuming

∆-resonance saturation

Left with 3 LECs: Fixed in the A = 2−3 nucleons’ sector

◮ Isoscalar sector:

* dS and cS from EXPT µd and µS(3H/3He)

◮ Isovector sector:

* model I = cV from EXPT npdγ xsec.

or

* model II = cV from EXPT µV (3H/3He) m.m. ← our choice

Note that:

χEFT operators have a power law behavior→ introduce a regulator to kill divergencies at large Q, e.g.,

CΛ = e−(Q/Λ)n , ...and also, pick n large enough so as to not generate spurious contributions

CΛ ∼ 1−
(

Q

Λ

)n

+ . . .
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Predictions with χEFT EM currents for A = 2–3 systems

np capture xsec. (using model II) / µV of A = 3 nuclei (using model I)

bands represent nuclear model dependence (N3LO/N2LO – AV18/UIX)

500 600
Λ  (MeV)

260

280

300

320

340

360
m

b

LO
NLO
N2LO
N3LO (no LECs)

N3LO (full)

EXP

500 600
Λ (MeV)

-2.8

-2.6

-2.4

-2.2

-2

-1.8

n
.m

.

σγ
np

µ
V

(
3
H/

3
He)

◮ npdγ xsec. and µV (3H/3He) m.m. are within 1% and 3% of EXPT

◮ Two-body currents important to reach agreement with exp data

◮ Negligible dependence on the cutoff entering the regulator exp(−(k/Λ)4)
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Deuteron wave functions

from Entem&Machleidt 2011 Review

◮ Entem&Machleidt N3LO

◮ Epelbaum et al. 2005

◮ black lines = conventional potentials, i.e. AV18, CD-Bonn, Nijm-I
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3He and 3H charge f.f.’s

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✵

⑤✆
▲⑤

� ✶ ✷ ✸ ✹

q ❬✝✞
✲☎
❪

✶�
✲✁

✶�
✲✂

✶�
✲✄

✶�
✲☎

✶�
✵

⑤✆
▲❙ ⑤

� ✶ ✷ ✸ ✹ ✺

q ❬✝✞
✲☎
❪

⑤✆
▲❱
⑤

r✟✠✴✡☛☞✌✍✎✏✑

r✟✠✴✒✒✓✒✔✕✖✗✍✔✒✓✒✘✕✖✗

r◆✙✟✠✴✡☛☞✌✍✎✏✑

r◆✙✟✠✴✒✒✓✒✔✕✖✗✍✔✒✓✒✘✕✖✗

✚ ✚

✭✛✜ ✭✢✜

✭✣✜✭✤✜

◮ Excellent agreement up to q≃ 2 fm−1

◮ N3LO and N4LO comparable

3He < r >EXP= 1.959±0.030 fm 3H < r >EXP= 1.755±0.086

Λ 500 600 500 600

LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)

N4LO 1.966 (1.950) 1.958 (1.950) 1.762 (1.743) 1.750 (1.743)
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E2 transitions in 8Be

◮ 2+ and 4+ broad rotational states

at ∼ 3 MeV and ∼ 11 MeV

◮ 4+→ 2+ transition recently

measured at BARC*, Mumbai

◮ Calculational challenge:

2+ and 4+ states tend to break up

into two α as τ increases

◮ Results obtained by linear fitting

the GFMC points and

extrapolating at τ = 0.1 MeV

where stability is observed in the

g.s. energy propagation

Jπ ;T E [MeV] B(E2) [e2 fm4]

0+ -56.3(1)

2+ + 3.2(2) 20.0 (8)– [ 2+→ 0+ ]

4+ +11.2(3) 27.2(15)– [ 4+→ 2+ ]*

*Bhabha Atomic Research Centre

*EXPT B(E2) = 21 ± 2.3 e2 fm4

0 0.1 0.2 0.3
-60

-56

-52

-48

-44

-40

-36

E
 (

M
eV

)

0+

2+

4+

(a)

(b)

0 0.1 0.2 0.3

2.4

2.5

2.6

r p
 (

fm
)

0+

2+

4+

(c)

0 0.1 0.2 0.3
8

10

12

14

16

18

τ (MeV-1)

áE
2
ñ (

e 
fm

2
)

(2+ ® 0+)

(4+ ® 2+)
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E2 transition widths / EXPT

◮ We attempt to evaluate a

number of E2 transitions

(predictions not shown in the

figure)

◮ Complications are due to large

cancellations among large

m.e.’s→ E2s very sensitive to

small components

◮ One more complication: make

sure that the first and second

(Jπ ,T) = (2+,0) states are

orthogonal 0 1 2 3 4 5 6

16.626 0.00

16.922 0.00

17.64 3.03

GFMC(IA) α
1
~0.2

11.35 3.03

GFMC(IA) α
1
~0.3Ratio to EXPT

* We orthogonalize the second (Jπ ,T) = (2+,0) via

|Ψ2+2 (ortho)〉G = |Ψ2+2 〉G−G 〈Ψ2+2 |Ψ2+〉V|Ψ2+〉G
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Anomalous magnetic moment of 9C

Mirror nuclei spin expectation value

◮ Charge Symmetry Conserving (CSC) picture (p←→ n) ⋄

< σz >=
µ(Tz =+T)+µ(Tz =−T)−J

(g
p
s +gn

s −1)/2
=

2µ(IS)−J

0.3796

◮ For A = 9, T = 3/2 mirror nuclei: 9C and 9Li

EXP < σz >= 1.44 while THEORY < σz >∼ 1 (assuming CSC)

possible cause: Charge Symmetry Breaking (CSB)

◮ Three different predictions for < σz > with CSC w.f.’s (*) and CSB w.f.’s

< σz > Symmetry IA TOT EXP

CSB 9Li( 3
2

−
; 3

2
),9C( 3

2

−
; 3

2
) 1.05(1) 1.31(11) 1.44

CSC 9Li( 3
2

−
; 3

2
),9C( 3

2

−
; 3

2
)* 0.95 (11) 1.00 (11)

CSC 9Li( 3
2

−
; 3

2
)*,9C( 3

2

−
; 3

2
) 1.00 (1) 1.05 (1)

◮ Need both CSB in the w.f.’s and MEC!

⋄ Utsuno – PRC70, 011303(R) (2004)
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Currents from nuclear interactions ∗- Marcucci et al. PRC72, 014001 (2005)

◮ Current operator j constructed so as to satisfy the continuity equation with a

realistic Hamiltonian

◮ Short- and intermediate-behavior of the EM operators inferred from the nuclear

two- and three-body potentials

j = j(1)

+ j(3)(V )

+ j(2)(v) + +

NN

∆
π

q

π

ρω

transverse

∗ also referred to as Standard Nuclear Physics Approach (SNPA) currents

◮ Long range part of j(υ) corresponds to OPE seagull and pion-in-flight EM

currents
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Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005)

Satisfactory description of a variety of nuclear EM properties [see Marcucci et al. (2005)

and (2008)]

2H(p,γ)3He capture

0 10 20 30 40 50
E

CM
(keV)

0

0.1

0.2

0.3

0.4

0.5

S
(E

) 
(e

V
 b

)

LUNA 
Griffiths et al.

Schmid et al.

◮ Isoscalar magnetic moments are a few % off (10% in A=7 nuclei)
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Magnetic moments in A≤ 9 nuclei: SNPA vs χEFT

A s.s. IA TOT SNPA TOT χEFT* EXP

IS 7 [43] 0.902 (3) 0.833 (12) 0.906 (7) 0.929

IV [43] – 3.944 (5) – 4.587 (18) – 4.670 (9) – 4.654

IS 8 [431] 1.289 (8) 1.160 (15) 1.299 (9) 1.344

IV [431] 0.182 (8) – 0.129 (15) – 0.139 (9) – 0.310

IS 9 [432] 0.994 (15) 0.922 (32) 1.038 (21) 1.024

IV [432] – 1.095 (10) – 1.371 (21) – 1.532 (15) – 1.610

Preliminary results

Overall improvement of isoscalar (IS) component of the magnetic moment

µ = µS + τzµV
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courtesy of R.B.Wiringa

NUCLEAR HAMILTONIAN

H =
X

i

Ki +
X

i<j

vij +
X

i<j<k

Vijk

Ki: Non-relativistic kinetic energy, mn-mp effects included

Argonne v18: vij = vγ
ij + vπ

ij + vI
ij + vS

ij =
P

vp(rij)O
p
ij

• 18 spin, tensor, spin-orbit, isospin, etc., operators
• full EM and strong CD and CSB terms included
• predominantly local operator structure
• fits Nijmegen PWA93 data with χ2/d.o.f.=1.1

Wiringa, Stoks, & Schiavilla, PRC 51, (1995) 0 100 200 300 400 500 600
E

lab
 (MeV)

-40

-20

0

20

40

60

δ
 (

de
g)

1
S

0

Argonne v
18

 np

Argonne v
18

 pp

Argonne v
18

 nn

SAID 7/06 np

∆

π

ππ

π
∆

∆

∆

π

π

π

π
π π

Urbana & Illinois: Vijk = V 2π
ijk + V 3π

ijk + V R
ijk

• Urbana has standard 2π P -wave +
short-range repulsion for matter saturation

• Illinois adds 2π S-wave + 3π rings
to provide extra T=3/2 interaction

• Illinois-7 has four parameters fit to 23 levels in A ≤10 nuclei

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001)
Pieper, AIP CP 1011, 143 (2008)
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courtesy of R.B.Wiringa

THREE-NUCLEON POTENTIALS

Urbana Vijk = V
2πP

ijk + V
R

ijk

Carlson, Pandharipande, & Wiringa, NP A401, 59 (1983)

Illinois Vijk = V
2πP

ijk + V
2πS

ijk + V
3π∆R

ijk + V
R

ijk

Pieper, Pandharipande, Wiringa, & Carlson, PRC 64, 014001 (2001)

Illinois-7 has 4 strength parameters fit to 23 energy levels in A ≤ 10 nuclei.

In light nuclei we find (thanks to large cancellation between 〈K〉 & 〈vij〉):

〈Vijk〉 ∼ (0.02 to 0.07) 〈vij〉 ∼ (0.15 to 0.5) 〈H〉

We expect 〈Vijkl〉 ∼ 0.05 〈Vijk〉 ∼ (0.01 to 0.03) 〈H〉 ∼ 1 MeV in 12C .
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Transition amplitude in time-ordered perturbation theory

Tfi = 〈f | T | i〉 = 〈f | H1

∞

∑
n=1

(
1

Ei−H0 + iη
H1

)n−1

| i〉

= 〈f | H1 | i〉+∑
|I〉
〈f | H1| I〉

1

Ei−EI
〈I |H1 | i〉+ ...

-

◮ A contribution with N interaction vertices and L loops scales as

e

(
N

∏
i=1

Qαi−βi/2

)

︸ ︷︷ ︸

H1scaling

×Q−(N−NK−1) Q−2NK

︸ ︷︷ ︸

denominators

× Q3L

︸︷︷︸

loopintegration

αi = number of derivatives in H1 and βi = number of π’s at each vertex

NK = number of pure nucleonic intermediate states

◮ Due to the chiral expansion, the transition amplitude Tfi can be expanded as

Tfi = TLO +TNLO +TN2LO + . . . and TNnLO ∼ (Q/Λχ )
nTLO
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Power counting

◮ NK energy denominators scale as Q−2

1

Ei−EI
|I〉= 1

Ei−EN
|I〉 ∼Q−2|I〉

◮ (N−NK −1) energy denominators scale Q−1 in the static limit; they can be

further expanded in powers of (Ei−EN)/ωπ ∼ Q

1

Ei−EI
|I〉= 1

Ei−EN −ωπ
|I〉 ∼ −

[
1

ωπ
︸︷︷︸

Q−1

+
Ei−EN

ω2
π

︸ ︷︷ ︸

Q0

+
(Ei−EN)

2

ω3
π

︸ ︷︷ ︸

Q1

+ . . .
]

|I〉

◮ Terms accounted into the Lippmann-Schwinger Eq. are subtracted from the

reducible amplitude

◮ EM operators depend on the off-the-energy shell prescription adopted for the

non-static OPE and TPE potentials

◮ Ultimately, the EM operators are unitarily equivalent: Description of physical

systems is not affected by this ambiguity
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Magnetic moment at N3LO

◮ Magnetic moment operator due to two-body current density J(x)

µ(R,r) =
1

2

[

R×
∫

dx J(x)+
∫

dx(x−R)×J(x)

]

◮ Sachs’ and translationally invariant magnetic moments

µSachs(R,r) = −i
R

2
×
∫

dx x [ρ(x) , υ12]

µT(r) = − i

2

∫

k
eik·r ∇q× j(q,k)

∣
∣
∣
∣
q=0
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2009 EM current vs 2011 EM currents p. 1/2

g) i)

◮ Non-static corrections entering single-nucleon operators accounted into the

derivation of current i)

i)OLD = i
eg2

A

F2
π

τ1,z

∫
q1−q2

ω3
1 ω3

2

ω2
1 +ω1 ω2 +ω2

2

ω1 +ω2

[

CSσ1 · (q1×q2)

− CT σ2 · (q1×q2)

]

+1 ⇋ 2

i)NEW = 2 i
eg2

A CT

F2
π

τ1z

∫

q1 ,q2

ω2
1 +ω1ω2 +ω2

2

ω3
1 ω3

2 (ω1 +ω2)
(q1−q2)σ2 ·q2×q1 +1 ⇋ 2

◮ i) NEW in agreement with Kölling 2009/2011∗ but for a factor of 2, which has

no impact because (i + g) = 0

* PRC80, 045502 (2009)/ PRC 84, 054008 (2011)
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2009 EM current vs 2011 EM currents p. 2/2

TREE CT

◮ A different derivation in Kölling 2009/2011∗ leads to an additional term

∼ (σi×q)×q in the N3LO current at tree level, which however does not

contribute to the magnetic moment

◮ The N3LO contact current of Pastore 2009 is in agreement with that of Kölling

2011 after Fierz-reordering, apart from differences in the term ∝ C5:

jN3LO
ct =− iC5

4
(σ1 +σ2)× (e1 k1 +e2 k2)

* PRC80, 045502 (2009)/ PRC 84, 054008 (2011)
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Magnetic moment (m.m.) operator

◮ comparison with Kölling et al.:

i) LO, NLO, N2LO, N3LO TPE, N3LO CT, N3LO TREE m.m.’s agree,

but for the N3LO CT term ∝ C5

ii) currents associated with one loop corrections to the OPE are missing in

these calculations of m.m.’s; renormalization of OPE currents has been

carried out in Kölling 2011∗

◮ comparison with Park et al.∗∗:

i) Sachs’ m.m. is missing (no problem in two-body systems),

ii) TPE box contribution at N3LO generates an extra term ∝ (τi×τj)z

* Ultimately, in actual calculations these differences are presumably

mitigated by fitting LECs to experimental data

* loop corrections to OPE: terms ∝ L(k) in Eq. (4.28) of Kölling 2011;

** NP A596, 515, (1996)
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EM current up to n = 1 (or up to N3LO) - bis

LO : j(−2) ∼ eQ−2

NLO : j(−1) ∼ eQ−1

N2LO : j(−0) ∼ eQ0

◮ n =−2,−1, 0, and 1-(loops only):

depend on known LECs namely gA, Fπ ,

and proton and neutron µ

◮ n = 0: (Q/mN)
2 relativistic correction to

j(−2)

◮ unknown LECs enter the n = 1 contact

and tree-level currents (the latter

originates from a γπN vertex of order

eQ2)

◮ divergencies associated with loop integrals are reabsorbed by renormalization

of contact terms

◮ loops contributions lead to purely isovector operators

◮ j(n≤1) satisfies the CCR with χEFT two-nucleon potential υ(n≤2)

unknownLEC′s

N3LO: j(1) ∼ eQ
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Currents from nuclear interactions - Marcucci et al. PRC72, 014001 (2005)

vME = +
VPSfPS

k ,ma

◮ Exploiting the meson exchange (ME) mechanism, one assumes that the

static part υ0 of υ is due to pseudoscalar (PS) and vector (V) exchanges

◮ υME is expressed in terms of ’effective propagators’ υPS, υV , υVS, fixed such to

reproduce υ0, for example

υPS = [υσ τ (k)−2υ t τ (k)]/3

with υσ τ and υ t τ components of υ0

◮ The current operator is obtained by taking the non relativistic reduction of the

ME Feynman amplitudes and replacing the bare propagators with the ’effective’

ones

j(2)(v0) =
PS,V

+ +
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OPEP beyond the static limit

E ′1

k

v(2)π ∼ Q2v(1)π ∼ Q1v(0)π ∼ Q0

E1 E2

E ′2

On-the-energy-shell, non-static OPEP at N2LO (Q2) can be equivalently written as

υ
(2)
π (ν = 0) = υ

(0)
π (k)

(E ′1−E1)
2 +(E ′2−E2)

2

2ω2
k

υ
(2)
π (ν = 1) = −υ

(0)
π (k)

(E ′1−E1)(E
′
2−E2)

ω2
k

υ
(0)
π (k) = − g2

A

F2
π

τ1 ·τ2
σ1 ·k σ2 ·k

ω2
k

υ
(2)
π (ν) corrections are different off-the-energy-shell (E1 +E2 6= E′1 +E′2)

◮ TPE contributions are affected by the choice made for the parameter ν
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From amplitudes to potentials

The two-nucleon potential υ = υ(0)+υ(1)+υ(2)+ . . . (with υ(n) ∼ Qn) is iterated

into the Lippmann-Schwinger (LS) equation i.e.

υ +υ G0 υ +υ G0 υ G0 υ + . . . , G0 = 1/(Ei−EI + iη)

υ(n) is obtained subtracting from the transition amplitude T
(n)
fi terms already

accounted for into the LS equation

υ(0) = T(0) ,

υ(1) = T(1)−
[

υ(0) G0 υ(0)
]

,

υ(2) = T(2)−
[

υ(0) G0 υ(0) G0 υ(0)
]

−
[

υ(1)G0 υ(0)+υ(0) G0 υ(1)
]

,

υ(3)(ν) = T(3)−
[

υ(0) G0 υ(0) G0 υ(0)G0 υ(0)
]

−
[

υ(1) G0 υ(0) G0 υ(0)+permutations
]

−
[

υ(1) G0 υ(1)
]

−
[

υ(2)(ν)G0 υ(0)+υ(0) G0 υ(2)(ν)
]

︸ ︷︷ ︸

LS terms
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From amplitudes to potentials: an example with OPE and TPE only

T (3)

v
(2)
2π + LS terms

v
(3)
2π (ν) + LS terms

v(2)π (ν)

v(1)π

T (1)

T (0)

T (2)

v(0)π

LS terms

◮ To each υ
(2)
π (ν) corresponds a υ

(3)
2π (ν)
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Unitary equivalence of υ
(2)
π (ν) and υ

(3)
2π (ν)

◮ Different off-the-energy-shell parameterizations lead to unitarily equivalent

two-nucleon Hamiltonians

H(ν) = t(−1)+υ
(0)
π +υ

(2)
2π +υ

(2)
π (ν)+υ

(3)
2π (ν)

t(−1) is the kinetic energy, υ
(0)
π and υ

(2)
2π are the static OPEP and TPEP

◮ The Hamiltonians are related to each other via

H(ν) = e−iU(ν) H(ν = 0)e+iU(ν) , iU(ν)≃ iU(0)(ν)+ iU(1)(ν)

from which it follows

H(ν) = H(ν = 0)+
[

t(−1)+υ
(0)
π , iU(0)(ν)

]

+
[

t(−1), iU(1)(ν)
]

◮ Predictions for physical observables are unaffected by off-the-energy-shell

effects
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Technical issue II - Recoil corrections at N3LO

jN
3LO =

q2

q1

Direct Crossed

21

◮ Reducible contributions

jred ∼
∫

υπ (q2)
1

Ei−EI

jNLO(q1)

−
∫

2
ω1 +ω2

ω1 ω2

VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VγπNN (1,q1)

◮ Irreducible contributions

jirr =

∫

2
ω1 +ω2

ω1 ω2

VπNN(2,q2)VπNN(2,q1)VπNN(1,q2)VγπNN (1,q1)

−
∫

2
ω2

1 +ω2
2 +ω1 ω2

ω1 ω2(ω1 +ω2)
[VπNN(2,q2),VπNN(2,q1)]−VπNN(1,q2)VγπNN(1,q1)

◮ Observed partial cancellations at N3LO between recoil corrections to reducible

diagrams and irreducible contributions

57 / 30



The box diagram: an example at N3LO

q1

q2
Reducible

Irreducible

direct

Irreducible

crossed

1 2

a
b

d

a

b

c

d

c

direct = fd(ω1,ω2)Va Vb Vc Vd

crossed = fc(ω1,ω2)Vb Va Vc Vd VbVa = Va Vb− [Va,Vb]−

irreducible = [ fd(ω1,ω2)+ fc(ω1,ω2)]Va Vb Vc Vd

− fc(ω1,ω2)[Va,Vb]−Vc Vd
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Transition amplitude in time-ordered perturbation theory

Tfi = 〈f | T | i〉 = 〈f | H1

∞

∑
n=1

(
1

Ei−H0 + iη
H1

)n−1

| i〉

= 〈f | H1 | i〉+∑
|I〉
〈f | H1| I〉

1

Ei−EI
〈I |H1 | i〉+ ...

-

◮ A contribution with N interaction vertices and L loops scales as

e

(
N

∏
i=1

Qαi−βi/2

)

︸ ︷︷ ︸

H1scaling

×Q−(N−NK−1) Q−2NK

︸ ︷︷ ︸

denominators

× Q3L

︸︷︷︸

loopintegration

αi = number of derivatives in H1 and βi = number of π’s at each vertex

NK = number of pure nucleonic intermediate states

◮ (N−NK −1) energy denominators expanded in powers of (Ei−EN)/ωπ ∼ Q

1

Ei−EI
|I〉= 1

Ei−EN −ωπ
|I〉 ∼ −

[
1

ωπ
︸︷︷︸

Q−1

+
Ei−EN

ω2
π

︸ ︷︷ ︸

Q0

+
(Ei−EN)

2

ω3
π

︸ ︷︷ ︸

Q1

+ . . .
]

|I〉

◮ Due to the chiral expansion, the transition amplitude Tfi can be expanded as

Tfi = TLO +TNLO +TN2LO + . . . and TNnLO ∼ (Q/Λχ )
nTLO

59 / 30



EM charge up to n = 0 (or up to N3LO)

ρ
(0)
π (ν)

LO : ρ(−3)

N3LO : ρ(0)

N2LO : ρ(−1)

◮ n =−3

ρ (−3)(q) = e(2π)3δ (p1 +q−p′1)(1+τ1,z)/2+1 ⇋ 2

◮ n =−1:

(Q/mN)
2 relativistic correction to ρ(−3)

◮ n = 0:

i) ‘static’ tree-level current (originates

from a γπN vertex of order eQ)

ii) ‘non-static’ OPE charge operators,

ρ
(0)
π (ν) depends on υ

(2)
π (ν)

◮ ρ
(0)
π (ν)’s are unitarily equivalent

ρ
(0)
π (ν) = ρ

(0)
π (ν = 0)+

[

ρ(−3) , iU(0)(ν)
]

◮ No unknown LECs up to this order (gA, Fπ )
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EM charge @ n = 1 (or N4LO) 1.

N4LO : ρ(1) (d) (e)(a) (b) (c)

(g) (h) (i)(f) (j)

◮ (a), (f), (d), and (i) vanish

◮ Divergencies associated with (b) + (g), (c) + (h), and (e) + (j) cancel out—as

they must since there are no counter-terms at N4LO

◮ ρ
(1)
h (ν) depends on the parametrization adopted for υ

(2)
π (ν) and υ

(3)
2π (ν)

◮ ρ
(1)
h (ν)’s are unitarily equivalent

ρ
(1)
h (ν) = ρ

(1)
h (ν = 0)+

[

ρ(−3) , iU(1)(ν)
]
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EM charge @ n = 1 (or N4LO) 2.

N4LO : ρ(1) (d) (e)(a) (b) (c)

(g) (h) (i)(f) (j)

◮ Charge operators (ν-dependent included) up to n = 1 satisfy the condition

ρ (n>−3)(q = 0) = 0

which follows from charge conservation

ρ(q = 0) =

∫

dxρ(x) = e
(1+ τ1,z)

2
+1 ⇋ 2 = ρ (−3)(q = 0)

◮ ρ(1) does not depend on unknown LECs and it is purely isovector
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