Computational Advances in Nuclear and Hadron Physics September 21 – October 30, 2015, YITP, Kyoto, Japan

Localized form of Fock terms in nuclear covariant density functional theory

Haozhao Liang (梁豪兆)

RIKEN Nishina Center, Japan

October 21, 2015

Original idea

HZL, P.W. Zhao, P. Ring, X. Roca-Maza, J. Meng, PRC 86, 021302(R) (2012)

Outline

- Introduction
- Theoretical Framework
 - Relativistic Hartree-Fock theory
 - Zero-range reduction
 - Fierz transformation
- Results and Discussion
 - Coupling strengths in different channels
 - Dirac mass splitting
 - Spin-isospin resonances
- A new fitting
- Summary and Perspectives

Many-body systems and density functional theories

- Research on quantum mechanical many-body problems is essential in many areas of modern physics
 - ★ electrons in metal, atoms in molecule, electrons in atom, nucleons in nucleus ...
- Density functional theories (DFT) Hohenberg & Kohn:1964
 - * reducing the many-body problems formulated in terms of N-particle wave functions to the one-particle level with the local density distribution $\rho(\mathbf{r})$
 - * no other method achieves comparable accuracy at the same computational cost
- Kohn-Sham scheme Kohn & Sham:1965
 - * for any interacting system, there exists a **local** single-particle (Kohn-Sham) potential $v_{KS}(\mathbf{r})$, such that the exact ground-state density of the interacting system can be reproduced by non-interacting particles moving in this local potential:

$$\rho(\mathbf{r}) = \rho_{\mathrm{KS}}(\mathbf{r}) \equiv \sum_{i} |\phi_{i}(\mathbf{r})|^{2}$$

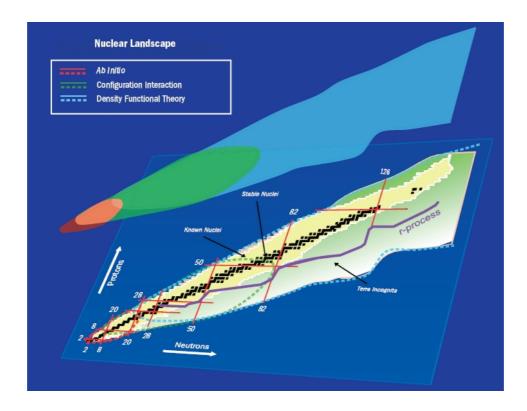
★ system energy density functional:

$$E[\rho(\mathbf{r})] = T[\rho(\mathbf{r})] + E_{\text{ext.}}[\rho(\mathbf{r})] + E_{\text{H}}[\rho(\mathbf{r})] + E_{\text{xc}}[\rho(\mathbf{r})]$$

Nuclear DFT

- Nuclear DFT is a promising tool for investigating the ground-state and excited state properties of nuclei throughout the nuclear chart.
- Since the 1970s, lots of experience have been accumulated in implementing, adjusting, and using the DFT in nuclei.

Petkov&Stoitsov:1991, Bender:2003, Nakatsukasa:2015, ...



Introduction Theoretical Framework Results and Discussion A new fitting Summary and Perspectives

Covariant density functional theory – RH theory

- The covariant version of DFT takes into account Lorentz symmetry.
 - ★ stringent restrictions on the number of parameters
- CDFT in Hartree level (RH/RMF theory) has received wide attention due to its successful description of lots of nuclear phenomena.

Serot:1986, Ring:1996, Vretenar:2005, Meng:2006, Paar:2007, Nikšić:2011; Meng & Zhou, JPG 42, 093101 (2015)

- ★ spin-orbit splittings, pseudospin symmetry HZL, Meng, Zhou, Phys. Rep. **570**, 1–84 (2015)
- ★ EoS in symmetric and asymmetric nuclear matter
- ★ ground-state properties of finite spherical and deformed nuclei
- * collective rotational and vibrational excitations
- ★ low-lying spectra of transitional nuclei involving quantum phase transitions
- *

Something more: the isovector channels

- Difficult to disentangle the isovector-scalar (δ) and isovector-vector (ρ) channels, unless a tuning is performed based on selected microscopic calculations. Roca-Maza:2011
- Nuclear spin-isospin resonances, e.g., GTR and SDR, cannot be described in a fully self-consistent way.

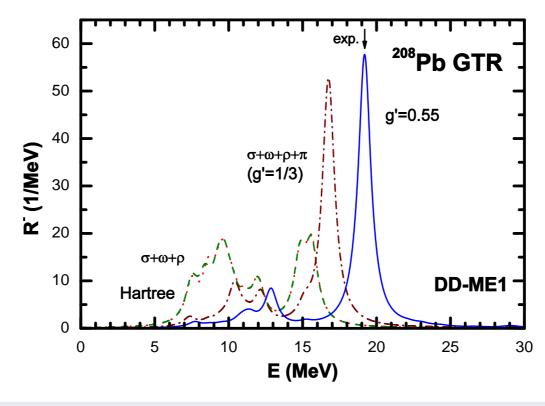
A new fitting

RH+RPA for spin-isospin resonances

• RH+RPA for spin-isospin resonances

De Conti:1998, 2000, Vretenar: 2003, Ma:2004, Paar:2004, Nikšić:2005

example: Gamow-Teller resonance (GTR) in 208 Pb ($\Delta S=1$, $\Delta L=0$, $J^{\pi}=1^{+}$)



a. add π -meson

b. fit g'

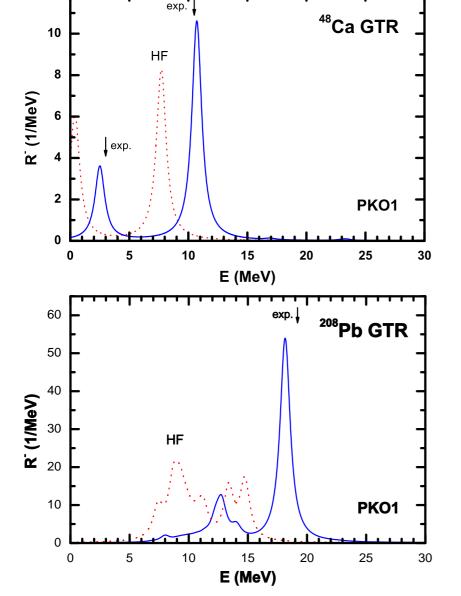
Introduction Theoretical Framework Results and Discussion A new fitting Summary and Perspectives

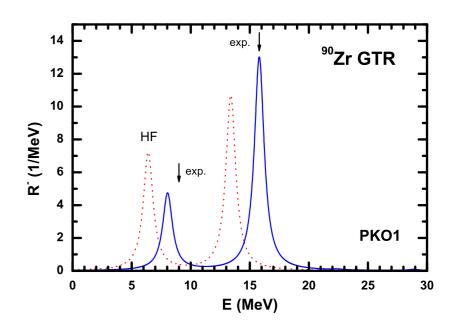
Covariant density functional theory – RHF theory

- CDFT in Hartree-Fock level (RHF theory)
 - ★ several attempts to include the Fock term in the relativistic framework Bouyssy:1985,1987, Bernardos:1993, Marcos:2004
 - ★ DDRHF theory achieved quantitative descriptions of binding energies and radii Long, Giai, Meng, PLB 640, 150 (2006); Long, Sagawa, Giai, Meng, PRC 76, 034314 (2007); Long, Sagawa, Meng, Giai, EPL 82, 12001 (2008); Long, Ring, Giai, Meng, PRC 81, 024308 (2010)
 - ★ effective mass splitting in asymmetric nuclear matter can be described naturally Long, Giai, Meng, PLB 640, 150 (2006)
 - ★ nuclear spin-isospin resonances can be described in a fully self-consistent way HZL, Giai, Meng, PRL 101, 122502 (2008); HZL, Giai, Meng, PRC 79, 064316 (2009); HZL, Zhao, Meng, PRC 85, 064302 (2012)

RHF+RPA for Gamow-Teller resonances

★ Gamow-Teller resonances in ⁴⁸Ca, ⁹⁰Zr, and ²⁰⁸Pb





✓ GTR excitation energies can be reproduced in a fully self-consistent way. cf. Skyrme functional SAMi

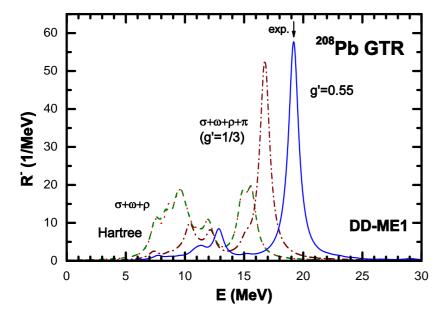
HZL, Giai, Meng, PRL 101, 122502 (2008)

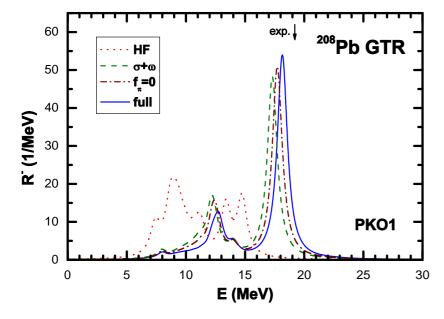
GTR excitation energies and strength

★ GTR excitation energies in MeV and strength in percentage of the 3(N-Z) sum rule within the RHF+RPA framework. Experimental and the RH+RPA results are given for comparison. HZL, Giai, Meng, PRL 101, 122502 (2008)

		⁴⁸ Ca		⁹⁰ Zr		²⁰⁸ Pb	
		energy	strength	energy	strength	energy	strength
experiment		~ 10.5		15.6 ± 0.3		19.2 ± 0.2	60-70
RHF+RPA	PKO1	10.72	69.4	15.80	68.1	18.15	65.6
	PKO2	10.83	66.7	15.99	66.3	18.20	60.5
	PKO3	10.42	70.7	15.71	68.9	18.14	67.7
RH+RPA	DD-ME1	10.28	72.5	15.81	71.0	19.19	70.6

• The pion is not included in PKO2.





RH+RPA

- \star no contribution from isoscalar mesons (σ, ω) , because exchange terms are missing.
- \star π -meson is dominant in this resonance.
- ★ g' has to be refitted to reproduce the experimental data.

RHF+RPA

- \star isoscalar mesons (σ, ω) play an essential role via the exchange terms.
- \star π -meson plays a minor role.
- \star g' = 1/3 is kept for self-consistency.

Introduction Theoretical Framework Results and Discussion A new fitting Summary and Perspectives

Covariant density functional theory – RHF theory

- CDFT in Hartree-Fock level (RHF theory)
 - * several attempts to include the Fock term in the relativistic framework Bouyssy:1985,1987, Bernardos:1993, Marcos:2004
 - ★ DDRHF theory achieved quantitative descriptions of binding energies and radii Long, Giai, Meng, PLB 640, 150 (2006); Long, Sagawa, Giai, Meng, PRC 76, 034314 (2007); Long, Sagawa, Meng, Giai, EPL 82, 12001 (2008); Long, Ring, Giai, Meng, PRC 81, 024308 (2010)
 - ★ effective mass splitting in asymmetric nuclear matter can be described naturally Long, Giai, Meng, PLB 640, 150 (2006)
 - ★ nuclear spin-isospin resonances can be described in a fully self-consistent way HZL, Giai, Meng, PRL 101, 122502 (2008); HZL, Giai, Meng, PRC 79, 064316 (2009); HZL, Zhao, Meng, PRC 85, 064302 (2012)
- RHF includes non-local potentials $v_{HF}(\mathbf{r}, \mathbf{r}')$, the simplicity of KS scheme is lost.
- RHF is much more complicated than RH theory.
- The computational cost is too expensive for including paring, deformation, projection, cranking, ...

Introduction Theoretical Framework Results and Discussion A new fitting Summary and Perspectives

To construct RH functionals from RHF scheme

It is therefore highly desirable

- to stay within the conventional Kohn-Sham scheme in nuclear physics
- to find a covariant density functional based on only local potentials, yet keeping the merits of the exchange terms

- Possible/promising solution: construct RH functionals from RHF scheme
 - * take the constraints introduced by exchange terms of RHF scheme into account
- We start from an important observation: RHF functional PKO2 [Long:2008]
 - ★ well describes the neutron-proton Dirac mass splitting in asymmetric nuclear matter and nuclear spin-isospin resonances
 - \star only includes σ -, ω -, ρ -mesons, but not π -meson
 - ★ masses of mesons are heavy ⇒ zero-range approximation is reasonable
 - \star Fierz transformation: Fock terms \Rightarrow local Hartree terms

In this work

- To construct RH functional from RHF scheme by the following procedure
 - ★ start with RHF parametrization PKO2
 - ⋆ perform the zero-range reduction
 - ★ perform the Fierz transformation
- With such RH functional thus obtained, to investigate
 - ⋆ proton-neutron Dirac mass splitting in neutron matter
 - ★ Gamow-Teller and spin-dipole resonances

Goal(s)

• To verify whether the important effects of exchange terms can be maintained by the mapping from RHF functional to RH functional.

Covariant density functional theory – RHF theory

• Effective Lagrangian density Bouyssy:1987, Long:2006

$$\mathcal{L} = \bar{\psi} \left[i \gamma^{\mu} \partial_{\mu} - M - g_{\sigma} \sigma - \gamma^{\mu} \left(g_{\omega} \omega_{\mu} + g_{\rho} \vec{\tau} \cdot \vec{\rho}_{\mu} + e \frac{1 - \tau_{3}}{2} A_{\mu} \right) \right] \psi
+ \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{4} \Omega^{\mu\nu} \Omega_{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} \vec{R}_{\mu\nu} \cdot \vec{R}^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \vec{\rho}^{\mu} \cdot \vec{\rho}_{\mu} - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} \tag{1}$$

System Hamiltonian

$$\mathcal{H} = \mathcal{T}^{00} = \frac{\partial \mathcal{L}}{\partial \dot{\phi}_i} \dot{\phi}_i - \mathcal{L} \tag{2}$$

Ground-state trial wave function

$$|\Phi_0\rangle = \prod_a c_a^{\dagger} |0\rangle \tag{3}$$

Energy functional of the system

$$E = \langle \Phi_0 | H | \Phi_0 \rangle = E_k + E_{\sigma}^D + E_{\omega}^D + E_{\omega}^D + E_{A}^D + E_{\sigma}^E + E_{\omega}^E + E_{\alpha}^E + E_{A}^E$$
 (4)

Introduction

Zero-range reduction

Yukawa propagators of the mesons

$$D_i(\mathbf{r}, \mathbf{r}') = \frac{1}{4\pi} \frac{e^{-m_i|\mathbf{r}-\mathbf{r}'|}}{|\mathbf{r}-\mathbf{r}'|}, \qquad D_i(\mathbf{q}) = \frac{1}{m_i^2 + \mathbf{q}^2}$$
 (5)

for $m_i \gg q$,

$$D_i(\mathbf{q}) \approx \frac{1}{m_i^2} - \frac{\mathbf{q}^2}{m_i^4} + \cdots \quad \Rightarrow \quad D_i(\mathbf{r}, \mathbf{r}') \approx \frac{1}{m_i^2} \delta(\mathbf{r} - \mathbf{r}')$$
 (6)

within the zero-order approximation.

Zero-range reduction of meson-nucleon couplings

$$\alpha_{\mathcal{S}}^{\mathrm{HF}} = -\frac{g_{\sigma}^2}{m_{\sigma}^2}, \qquad \alpha_{V}^{\mathrm{HF}} = \frac{g_{\omega}^2}{m_{\omega}^2}, \qquad \alpha_{tV}^{\mathrm{HF}} = \frac{g_{\rho}^2}{m_{\rho}^2},$$
 (7)

Fierz transformation (I)

Sixteen Dirac matrices form a complete system

$$\mathcal{O}^{\mathcal{S}}=1, \mathcal{O}^{\mathcal{V}}=\gamma^{\mu}, \mathcal{O}^{\mathcal{T}}=\sigma^{\mu
u}, \mathcal{O}^{\mathcal{PS}}=\gamma^5, \mathcal{O}^{\mathcal{PV}}=\gamma^5 \gamma^{\mu}$$

so that any one can be expressed as a linear superposition of variants with a changed sequence of spinors,

$$(\bar{a}O^id)(\bar{c}O_ib) = \sum_k c_{ik}(\bar{a}O^kb)(\bar{c}O_kd), \tag{8}$$

with the coefficients cik in the so-called Fierz table Fierz:1937, Okun:1982, Sulaksono:2003

For the isospin coefficients,

$$\delta_{q_{a}q_{d}}\delta_{q_{c}q_{b}} = \frac{1}{2} \left[\delta_{q_{a}q_{b}}\delta_{q_{c}q_{d}} + \langle q_{a} | \vec{\tau} | q_{b} \rangle \cdot \langle q_{c} | \vec{\tau} | q_{d} \rangle \right], \qquad (10a)$$

$$\langle q_{a} | \vec{\tau} | q_{d} \rangle \cdot \langle q_{c} | \vec{\tau} | q_{b} \rangle = \frac{1}{2} \left[3\delta_{q_{a}q_{b}}\delta_{q_{c}q_{d}} - \langle q_{a} | \vec{\tau} | q_{b} \rangle \cdot \langle q_{c} | \vec{\tau} | q_{d} \rangle \right]. \qquad (10b)$$

$$\langle q_a | \vec{\tau} | q_d \rangle \cdot \langle q_c | \vec{\tau} | q_b \rangle = \frac{1}{2} \left[3\delta_{q_a q_b} \delta_{q_c q_d} - \langle q_a | \vec{\tau} | q_b \rangle \cdot \langle q_c | \vec{\tau} | q_d \rangle \right]. \tag{10b}$$

Fierz transformation (II)

ullet Fierz transformation: from $lpha^{
m HF}$ to $lpha^{
m H}$

$$\alpha_{S}^{H} = +\frac{7}{8}\alpha_{S}^{HF} - \frac{4}{8}\alpha_{V}^{HF} - \frac{12}{8}\alpha_{tV}^{HF}$$

$$\alpha_{tS}^{H} = -\frac{1}{8}\alpha_{S}^{HF} - \frac{4}{8}\alpha_{V}^{HF} + \frac{4}{8}\alpha_{tV}^{HF}$$

$$\alpha_{V}^{H} = -\frac{1}{8}\alpha_{S}^{HF} + \frac{10}{8}\alpha_{V}^{HF} + \frac{6}{8}\alpha_{tV}^{HF}$$
(11a)
$$(11b)$$

$$\alpha_{tV}^{\mathrm{H}} = -\frac{1}{8}\alpha_{S}^{\mathrm{HF}} + \frac{2}{8}\alpha_{V}^{\mathrm{HF}} + \frac{6}{8}\alpha_{tV}^{\mathrm{HF}} \tag{11d}$$

$$\alpha_T^{\rm H} = -\frac{1}{16} \alpha_S^{\rm HF} \tag{11e}$$

$$\alpha_{tT}^{\mathrm{H}} = -\frac{1}{16} \alpha_{S}^{\mathrm{HF}} \tag{11f}$$

$$\alpha_{PS}^{H} = -\frac{1}{8}\alpha_{S}^{HF} + \frac{4}{8}\alpha_{V}^{HF} + \frac{12}{8}\alpha_{tV}^{HF}$$
 (11g)

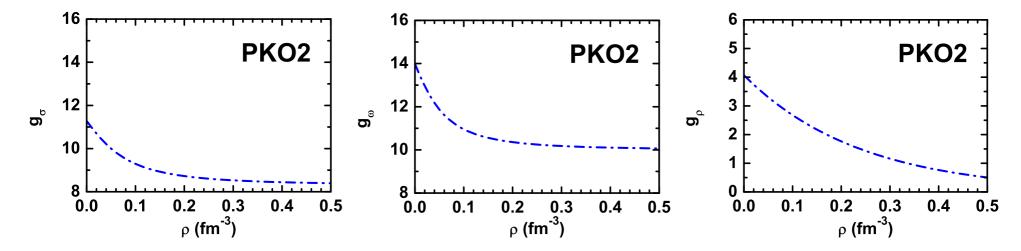
$$\alpha_{tPS}^{H} = -\frac{1}{8}\alpha_{S}^{HF} + \frac{4}{8}\alpha_{V}^{HF} - \frac{4}{8}\alpha_{tV}^{HF}$$
 (11h)

$$\alpha_{PV}^{H} = +\frac{1}{8}\alpha_{S}^{HF} + \frac{2}{8}\alpha_{V}^{HF} + \frac{6}{8}\alpha_{tV}^{HF}$$
 (11i)

$$\alpha_{tPV}^{\mathrm{H}} = +\frac{1}{8}\alpha_{S}^{\mathrm{HF}} + \frac{2}{8}\alpha_{V}^{\mathrm{HF}} - \frac{2}{8}\alpha_{tV}^{\mathrm{HF}} \tag{11j}$$

Nucleon-meson coupling strengths of PKO2

• Starting point: nucleon-meson coupling strengths g_{σ} , g_{ω} , and g_{ρ} of PKO2



Long, Sagawa, Meng, Giai, EPL 82, 12001 (2008)

Zero-range reduction

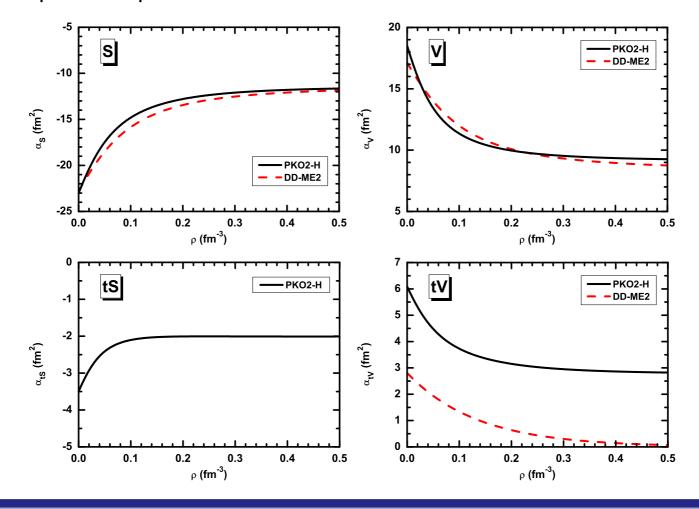
$$lpha_{\mathcal{S}}^{\mathrm{HF}} = -rac{\mathbf{g}_{\sigma}^2}{\mathbf{m}_{\sigma}^2}, \qquad lpha_{\mathcal{V}}^{\mathrm{HF}} = rac{\mathbf{g}_{\omega}^2}{\mathbf{m}_{\omega}^2}, \qquad lpha_{tV}^{\mathrm{HF}} = rac{\mathbf{g}_{\rho}^2}{\mathbf{m}_{\rho}^2},$$

Fierz transformation

$$\alpha_j^{\mathrm{H}} = \sum_{k} c_{jk} \alpha_k^{\mathrm{HF}},$$

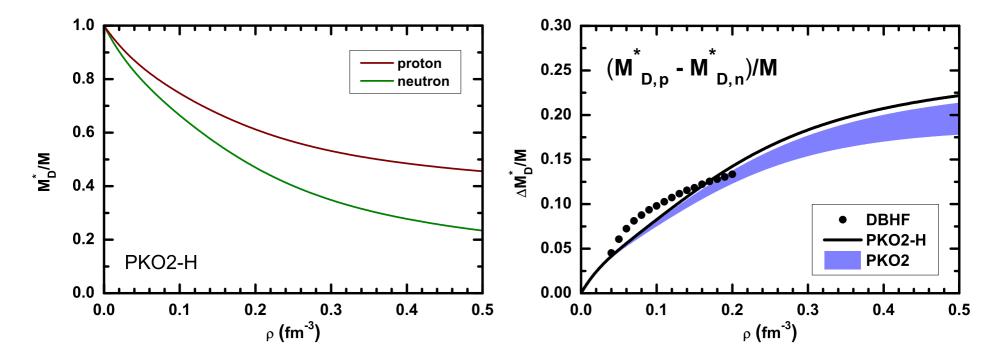
RHF equivalent zero-range coupling strengths (I)

• The RHF equivalent parametrization derived from PKO2 is called "PKO2-H".



- \bullet $\alpha_{\rm S}^{\rm H}$ and $\alpha_{\rm V}^{\rm H}$ are consistent with those of DD-ME2 Lalazissis:2005
- α_{ts}^{H} appears \Rightarrow proton-neutron Dirac mass splitting in asymmetric nuclear matter
- \bullet α_{tV}^{H} is modified for another delicate balance between tS and tV channels

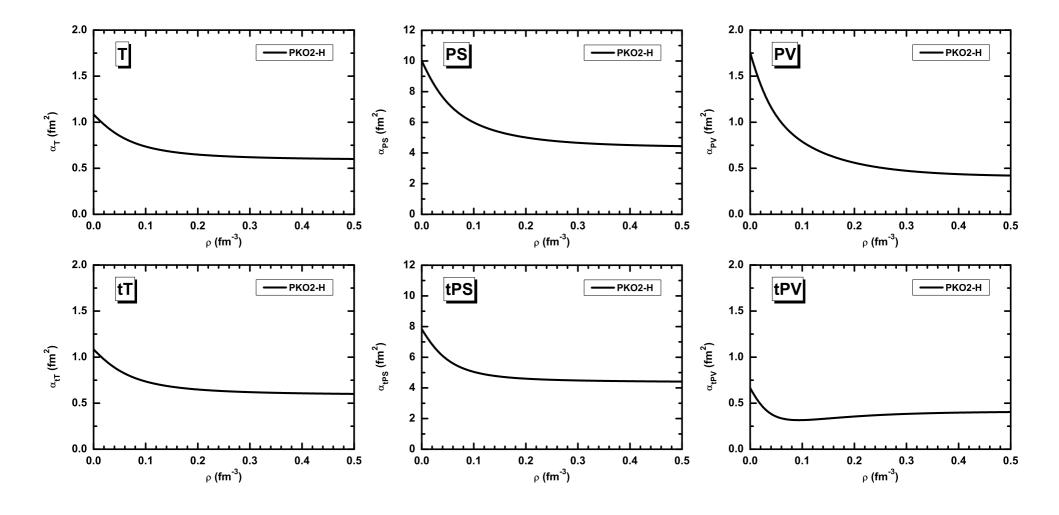
Dirac mass and its isospin splitting



DBHF: van Dalen, et al., EPJA 31, 29 (2007)

- It is found that $M_{D,p}^* > M_{D,n}^*$.
- The splitting behavior in neutron matter is quantitatively consistent with the prediction of the Dirac-Brueckner-Hartree-Fock (DBHF) calculations.
- The constraints introduced by the Fock terms of the RHF scheme into the *tS* channel of the present density functional are straight forward and quite robust.

RHF equivalent zero-range coupling strengths (II)



- $\alpha_{(t)T}^{\rm H}$, $\alpha_{(t)PS}^{\rm H}$, and $\alpha_{(t)PV}^{\rm H}$ are explicitly determined by exchange effects of RHF scheme
- (t)PS and (t)PV channels vanish in ground-state descriptions due to the parity conservation, but crucial for spin-isospin resonances

Particle-hole residual interactions in charge-exchange channel

• Particle-hole (ph) residual interactions

•
$$tS$$
 channel: $V_{tS}(1,2) = \alpha_{tS}^{\mathrm{H}}[\gamma_0 \vec{\tau}]_1 \cdot [\gamma_0 \vec{\tau}]_2 \delta(\mathbf{r}_1 - \mathbf{r}_2),$ (12a)

•
$$tV$$
 channel: $V_{tV}(1,2) = \alpha_{tV}^{H}[\gamma_0 \gamma^{\mu} \vec{\tau}]_1 \cdot [\gamma_0 \gamma_{\mu} \vec{\tau}]_2 \delta(\mathbf{r}_1 - \mathbf{r}_2),$ (12b)

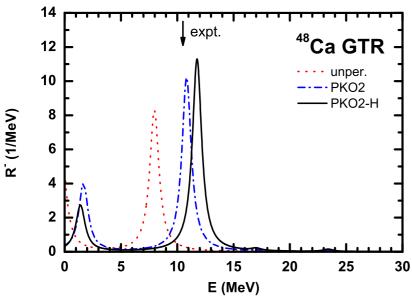
•
$$tT$$
 channel: $V_{tT}(1,2) = \alpha_{tT}^{H} [\gamma_0 \sigma^{\mu\nu} \vec{\tau}]_1 \cdot [\gamma_0 \sigma_{\mu\nu} \vec{\tau}]_2 \delta(\mathbf{r}_1 - \mathbf{r}_2),$ (12c)

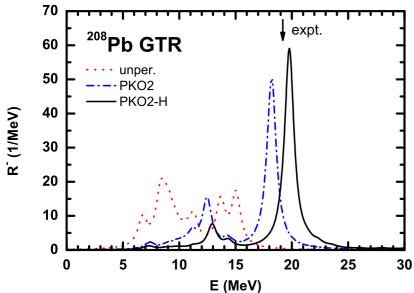
•
$$tPS$$
 channel: $V_{tPS}(1,2) = \alpha_{tPS}^{H}[\gamma_0\gamma_5\vec{\tau}]_1 \cdot [\gamma_0\gamma_5\vec{\tau}]_2\delta(\mathbf{r}_1 - \mathbf{r}_2),$ (12d)

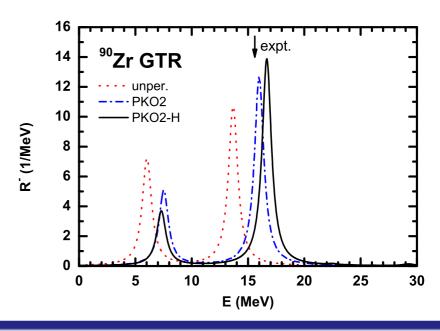
•
$$tPV$$
 channel: $V_{tPV}(1,2) = \alpha_{tPV}^{\mathrm{H}}[\gamma_0\gamma_5\gamma^{\mu}\vec{\tau}]_1 \cdot [\gamma_0\gamma_5\gamma_{\mu}\vec{\tau}]_2\delta(\mathbf{r}_1 - \mathbf{r}_2).$ (12e)

• For the charge-exchange spin-flip modes, the tT and tPV channels are expected to play the dominant roles, where the operator $[\sigma \vec{\tau}] \cdot [\sigma \vec{\tau}]$ is sandwiched by the large components of wave functions.

Gamow-Teller resonances



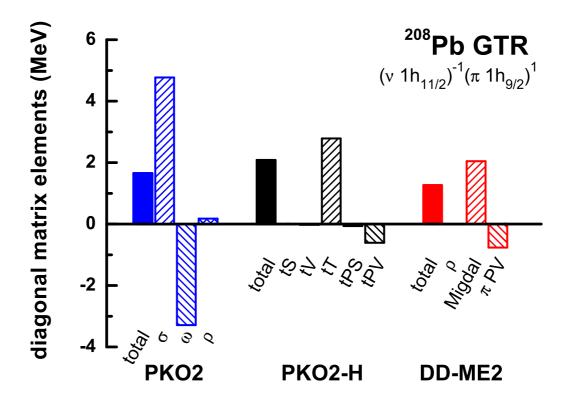




- GTR excitation energies can be well reproduced by the *ph* residual interactions of PKO2-H.
- The present results are similar as those by the original RHF+RPA.
- The difference is due to the zero-range approximation.

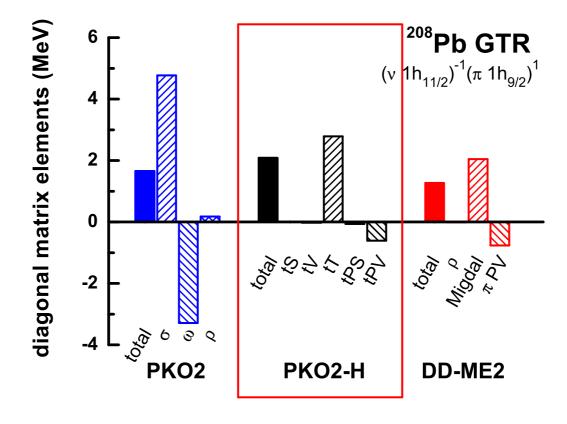
RHF+RPA: HZL, Giai, Meng, PRL 101, 122502 (2008)

Physical mechanisms of GTR



- In RHF+RPA (PKO2), σ and ω -mesons play the most important role in determining the properties of GTR via the exchange terms.
- In the RHF equivalent RPA (PKO2-H), tT and tPV channels are most important, their coupling strengths are intrinsically determined by Fierz transformation.
- In conventional RH+RPA (DD-ME2), the free π residual interaction is attractive and the Migdal term is repulsive by fitting to experimental data.

Physical mechanisms of GTR by PKO2-H

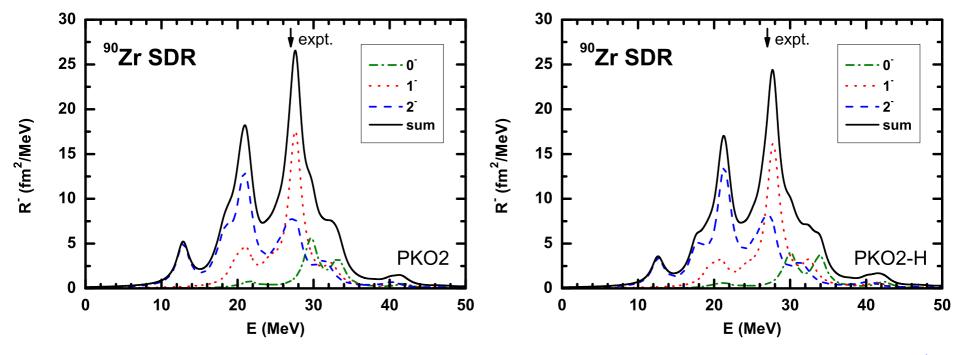


- The dominant ph interactions are the operator $[\sigma \vec{\tau}] \cdot [\sigma \vec{\tau}]$ sandwiched by large components of w.f., i.e., $[\sigma^{ij}\vec{\tau}] \cdot [\sigma_{ij}\vec{\tau}] \propto 2\alpha_{tT}^{\rm H}$ and $[\gamma_5 \gamma^i \vec{\tau}] \cdot [\gamma_5 \gamma_i \vec{\tau}] \propto -\alpha_{tPV}^{\rm H}$
- The net contribution is then proportional to

$$2\alpha_{tT}^{\mathrm{H}} - \alpha_{tPV}^{\mathrm{H}} = -\frac{1}{3} \left(\alpha_{S}^{\mathrm{H}} + \alpha_{V}^{\mathrm{H}} \right)$$

ullet Total ph strengths are determined by the delicate balance between S and V channels.

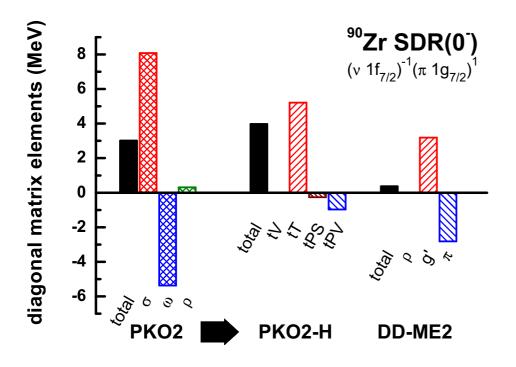
Spin-dipole resonances

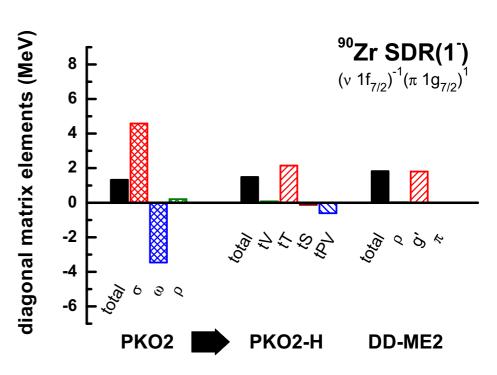


expt: Yako, Sagawa, Sakai, PRC 74, 051303 (2006)

- Not only the total strengths but also the individual contribution from different spin-parity J^{π} components are almost identical.
- The energy hierarchy $E(2^-) < E(1^-) < E(0^-)$ can be obtained naturally in the present RPA calculations in the local scheme.
- The constraints introduced by the Fock terms of the RHF scheme into the *ph* residual interactions are also straight forward and quite robust.

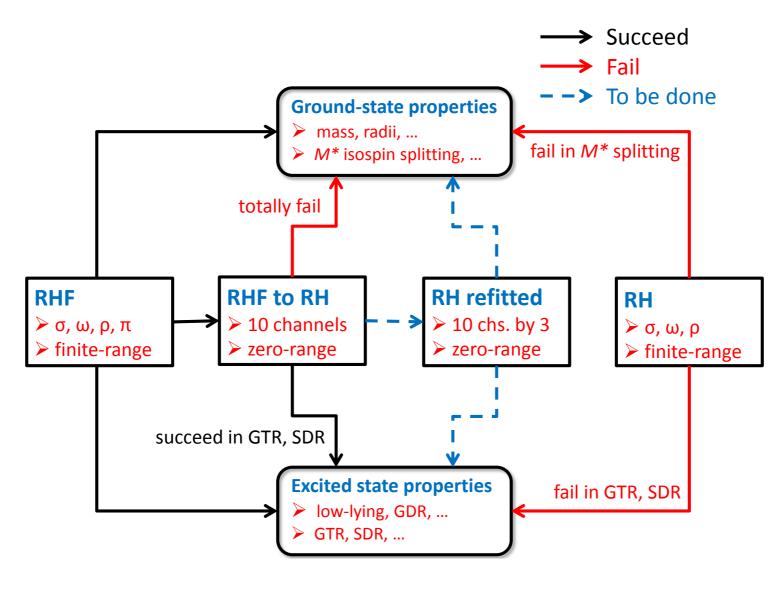
Physical mechanisms of SDR





- In RHF+RPA, the balance between σ and ω -mesons are most important.
- In the Hartree equivalent RPA, the tT and tPV channels are most important.
- In conventional RH+RPA, the balance between the free π and g' terms are changed in different J^{π} components, this leads to $E(0^{-}) < E(1^{-})$.

Strategy map



★ Zhaoxi Li (Beihang) → RIKEN IPA project (2015.10 – 2016.3)

Summary and Perspectives

Summary

- ★ A new method is proposed to take into account the Fock terms in local covariant density functionals.
- ✓ The advantages of existing RH functionals can be maintained, while the problems in the isovector channel can be solved.
 - ★ The neutron-proton Dirac mass splitting in asymmetric nuclear matter is in a very good agreement with the prediction of DBHF.
 - ★ The properties of GTR and SDR can be reproduced in a natural way.

Perspectives

• This opens a new door for the development of nuclear local covariant density functionals with proper isoscalar and isovector properties in the future.

