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Spin and Isospin excitations in Nuclei
I Nucleons are fermions charac. by their spin and isospin
I Nucleons with spin (isospin) may change their state in

phase: spin-scalar S=0 modes (isospin-scalar T=0 modes);
or out of phase: spin-vector S=1 modes (isospin-vector
T=1 modes)

I They can be excited by strong probes (charge-exhange
reactions) and they can decay via the weak interaction
(axial-vector current couples to the spin and induces
β−decay processes)

One of the most important nuclear excitation modes is the
I Gamow Teller Resonance which is a pure spin-isospin

mode (i.e., from a theoretical picture, it is excited by an
operator Ô ∼ στ)

Spin-isospin modes of excitation (such as the GTR) give
direct information on the spin-isospin channel of the ef-
fective interaction (or generator of our EDF)
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Example: β−decay transition

Courtesy of Y. Fujita; taken from his lectures http://www.mi.infn.it/∼colo/lectures/lectures.html
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Example: Gamow Teller transition

Courtesy of Y. Fujita; taken from his lectures http://www.mi.infn.it/∼colo/lectures/lectures.html
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GT and β-decay transitions give the same/similar infor-
mation

Therefore, (as we already know ... )
I allowed GT transitions mainly detemine β-decay

half-lives
I GT transitions determine weak interaction rates essential

role in the core-collapse dynamics of massive stars leading
to supernova explosion

I In neutron-rich environment, neutrino-induced
nucleosynthesis may take place via GT processes

I GT matrix elements are necessary for the study of
double-β-decay

I may be useful in the calibration of detectors used to
measure neutrinos that reach the Earth

I ... (see N. Paar’s Talk)
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Some comments on the nuclear many-body problem:

I Many-body calculations based on NN scattering data in
the vacuum are not conclusive yet:

I different nuclear interactions in the medium are found
depending on the approach

I EoS and (only very recently) few groups in the world are
able to perform extensive calculations for light and
medium mass nuclei

I Based on effective interactions (generators), Nuclear
Energy Density Functionals are successful (but still not
perfect) in the description of masses, nuclear sizes,
deformations, Giant Resonances,...
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Nuclear Energy Density Functionals:
(remenber G. Colò’s Talk)
Kohn-Sham iterative scheme (static approximation)
I Determine a good E[ρ]
I Initial guess ρ0
I Calculate potential Veff from ρ0

I Solve single particle (Schrödinger) equation and find single
particle wave functions φi

I Use φi for calculating new ρ1 =
∑A
i |φi|

2

I Repeat until convergence
Runge-Gross Theorem: dynamic generalization of the static
EDFs. ∫

dt {〈Φ(t)|i∂t|Φ(t)〉− E[ρ(t), t]} = 0

Giant Resonances well described within the small amplitude
limit (known as RPA approach)
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Nuclear Energy Density Functionals:
Main types of successful EDFs derived from the mean-field
approximation
I Relativistic H o HF models, based on Lagrangians where

effective (heavy) mesons carry the interaction.

Lint = Ψ̄Γσ(Ψ̄, Ψ)ΨΦσ +Ψ̄Γδ(Ψ̄, Ψ)τΨΦδ

−Ψ̄Γω(Ψ̄, Ψ)γµΨA
(ω)µ −Ψ̄Γρ(Ψ̄, Ψ)γµτΨA

(ρ)µ

−eΨ̄Q̂γµΨA
(γ)µ

I Non-relativistic HF models, based on Hamiltonians where
effective interactions are proposed and tested:

Veff
Nucl = V

long−range
attractive + V

short−range
repulsive + VSO

I Fitted parameters contain (important) correlations
beyond the mean-field

I Nuclear energy functionals are phenomenological→ not
directly connected to any NN (or NNN) interaction
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Drawbacks on current EDFs ???

On the one side,
I we expect that the H(F)+RPA method based on nuclear

effective interactions of the Skyrme, Gogny or Relativistic
(can be understood as an approximate realization of an
EDF)⇒ reasonable description of g.s. energy and density
of the system

On the other side,
I there are still some openopen problems ... but we will

concentrate here on how to

improve the spin-isospin properties of our EDF
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Motivation: Gamow Teller Resonance
The Ex is not properly
described in H(F)+RPA

I SGIIa: earliest attempt
to give a quantitative
description of the GTR

I SkO’b: accurate in
ground state finite nuclear
properties and improves
the GTR

I PKO1c: relativistic HF,
reasonable GTR still not
perfect

I Relativistic Hd:
residual interaction
modified ad-hoc
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Motivation: Gamow Teller Resonance
Exchange (Fock) effects on GTR in relativistic models
Effect of Migdal term→ fitted to 208Pb in RH
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Motivation: which gs properties are important for
describing the EGTR

x ?
The studya of the GTR and the spin-isospin Landau-Migdal
parameter G′0 using several Skyrme sets,
I concluded that G′0 is not the only important quantity in

determining the excitation energy of the GTR
I spin-orbit splittings also influences the GTR

I Empirical indicationsb

suggest that G′0 > G0 > 0
I Not a very common

feature within available
Skyrme forcesc

aM. Bender, J. Dobaczewski, J. Engel, and W. Nazarewicz, Phys. Rev. C 65, 054322 (2002); bT. Wakasa, M. Ichimura,

and H. Sakai, Phys. Rev. C 72, 067303 (2005); T. Suzuki and H. Sakai, Phys. Lett. B 455, 25 (1999),cLi-Gang Cao, G.

Colo, and H. Sagawa, Phys. Rev. C 81, 044302 (2010) 13



Why spin-orbit splittings are important in EGTR
x ?

Schematic picture of
single-particle
transitions involved
in the Gamow Teller
Resonance of 90Zr.
Transitions excited by
στ− operator.

E1x ≈ επ1g7/2 − εν1g9/2 + ε1ph E2x ≈ επ1g9/2 − εν1g9/2 + ε2ph
∆Ex ≈ ∆επ1g + ∆εph

F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)
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We propose a new fitting protocol that help
improving spin-isospin properties...

Example with a Skyrme interaction
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(Standard) Skyrme Model

[ ... have a quick look!]
Includes central tensor terms (J2 terms) due to the coupling of
tensor and spin and gradients terms and two spin-orbit
parameters (same as SkO and some SkI forces)

H = K+H0 +H3 +Heff +Hfin +HSO +Hsg +HCoul

K =  h2τ/2m

H0 = (1/4)t0[(2+ x0)ρ
2 − (2x0 + 1)(ρ

2
n + ρ2p)] (CENTRAL)

H3 = (1/24)t3ρ
α[(2+ x3)ρ

2 − (2x3 + 1)(ρ
2
n + ρ2p)] (DENSITY DEP.)

Heff = (1/8)[t1(2+ x1) + t2(2+ x2)]τρ

+ (1/8)[t2(2x2 + 1) − t1(2x1 + 1)](τnρn + τpρp) (EFF. MASS)
Hfin = (1/32)[3t1(2+ x1) − t2(2+ x2)](∇ρ)2

− (1/32)[3t1(2x1 + 1) + t2(2x2 + 1)][(∇ρn)2 + (∇ρp)2] (FIN RANGE)
HSO = (1/2)W0J · ∇ρ+ (1/2)W′0(J ·n ∇ρn + Jp · ∇ρp)
Hsg = −(1/16)(t1x1 + t2x2)J2 + (1/16)(t1 − t2)(Jn

2 + Jp
2)
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Fitting Protocol: Inspired on SLy5

χ2 definition: χ2 = 1
Ndata

∑Ndata
i

(Otheo.
i −Odata

i )2

(∆Odata
i )2

Landau-Migdal parameters in infinite nuclear matter G0 and
G′0 fixed to 0.15 and 0.35, respectively, at ρ0.

Table: Data and pseudo-data Oi, adopted errors for the fit ∆Oi and
selected finite nuclei and EoS.

Oi ∆Oi
B 1.00 MeV 40,48Ca, 90Zr, 132Sn and 208Pb
rc 0.01 fm 40,48Ca, 90Zr and 208Pb
∆ESO 0.04×Oi π1g in 90Zr and π2f in 208Pb
en(ρ) 0.20×Oi R. B. Wiringa et al., PRC 38, 1010 (1988)
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Skyrme Aizu Milano interaction: SAMi
Parameter set:

value(σ)
t0 −1877.75(75) MeV fm3

t1 475.6(1.4) MeV fm5

t2 −85.2(1.0) MeV fm5

t3 10219.6(7.6) MeV fm3+3α

x0 0.320(16)
x1 −0.532(70)
x2 −0.014(15)
x3 0.688(30)
W0 137(11)
W′0 42(22)
α 0.25614(37)

σ is the one standard deviation ∆p defined as
χ2(p0 + ∆p) − χ2(p0) = 1
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Skyrme Aizu Milano interaction: SAMi
But those, where not the actual fitted parameters

I we found convenient to use
as parameters nuclear matter
saturation properties instead.

I provides a more transparent
control on the parameter
space you would like to
explore

I the conversion from nuclear
matter parameters to the
Skyrme interaction
parameters is one to one
(Note: we convert all
parameters of the interaction
contributing to NM)

Prop. value(σ)
ρ∞ 0.159(1) fm−3

e∞ −15.93(9) MeV
m∗IS 0.6752(3)
m∗IV 0.664(13)
J 28(1) MeV
L 44(7) MeV
K∞ 245(1) MeV
G0 0.15 (fixed)
G′0 0.35 (fixed)
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SAMi: spin and spin-isospin instabilities
Imposing that spin and isospin d.o.f. at the Fermi surface are
stable under generalized deformations [Bäckman et al., Nucl. Phys. A 321, 10

(1979)]
1+G0 > 0 1+G′0 > 0
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Results
Equation of State: SAMi vs ab–initio calculations
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Figure: Neutron and symmetric matter EoS as predicted by the HF SAMi (dashed line) and SLy5 (solid line)
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Results
Finite Nulcei: spherical double-magic nuclei
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Results
Giant Monopole and Dipole Resonances in 208Pb
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Results

Gamow Teller
Resonance in 48Ca, 90Zr
and 208Pb∑A
i=1 σ(i)τ±(i)

Figure:Gamow Teller strength

distributions in 48Ca (upper panel), 90Zr

(middle panel) and 208Pb (lower panel) as

measured in the experiment [T. Wakasa et al.,

Phys. Rev. C 55, 2909 (1997), K. Yako et al.,

Phys. Rev. Lett. 103, 012503 (2009), A.

Krasznaborkay et al., Phys. Rev. C 64, 067302

(2001), H. Akimune et al., Phys. Rev. C 52, 604

(1995) and T. Wakasa et al., Phys. Rev. C 85,

064606 (2012)] and predicted by SLy5, SkO’,

SGII and SAMi forces.
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Results
Spin Dipole Resonances in 90Zr and 208Pb

Operator:∑A
i=1

∑
M τ±(i)rLi [YL(r̂i)⊗σ(i)]JM

Sum Rule:∫
[RSD− (E) −RSD+ (E)]dE = 9

4π (N〈r2n〉−Z〈r2p〉)
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Conclusions:
I We have remainded some of the problems in the

spin-isospin channels in Skyrme and RH models (as
compared to RHF) using as an example the GTR

I We have briefly presented
I the benefits of the new proposed fitting protocol that cure

part of the previous problems
I test the new protocol and show some results when applied

with a Skyrme interaction
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Conclusions:
I And for the future....

I Include tensor to better descrive spin-isospin resonances
such as the SDR.

I Improve the isospin-nuclear channel by fixing first the
Coulomb channel [models may differ in the Coulomb
energy contribution more than expected→may influence
the isospin channel]

I Since RHF depends on non-local potentials (more
complicated) and implies a non-negligible computational
cost when improving the calculations and/or going beyond
the mean-field: we will propose a new method (see H.
Liang’s talk) to determine a localized RHF model ...
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Thank you!

Work in collaboration with:
G. Colò, H. Sagawa,H. Liang, J. Meng, P. Ring and P. Zhao
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Extra Material
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We propose a new fitting protocol that help
improving spin-isospin properties...

Minimization method used
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Algorithm: variable metric method (minuit)

I In analogy with differential geommetry it is convenient to
consider the properties of a function (χ2(p)) as being
properties of the space in the variables p.

I The fundamental invariant in non-Euclidean space is
∆s2 = ∆pTA∆p (A covariant metric tensor⇒ determines
properties of the space).

I The Hessian matrix (M) behave as a covariant tensor
under coordiante transformations⇒will be our metric

I ∆s2: square of the generalized distance produced by ∆p
I ∆s: the number of standard deviations ∆p away from p0

(optimal set of parameters)
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Algorithm: variable metric method (minuit)

I Vertical distance ∆d2: the other invariant quantity build
with the contravariant tensor M−1 (named covariant
matrix, ∆d2 = gTM−1g)

I ∆d2: scale ∆p so that it has physical (statistical) meaning
and become an invariant quantity (instead of being
expressed in arbitrary units).

I The latter provides a scale-free convergence critrion
I If χ2(p) is not quadratic in p, but more complex, M is

non-constant with variations of p: Variable Metric Method
I One does a kind of Newton-Raphson pi+1 = pi −M−1

i gi
where gi is the gradient vector evaluated at pi and M−1

i+1 is
usualy corrected by using information on the previous step
(that is, not fully re-evaluated) each time.
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SAMi-J and SAMi-m families: AGDR and IAS
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Empirical constraints on G0 and G′0
I Gamow-Teller Resonance using RPA based on the

Woods-Saxon potential have been studied and the
Landau-Migdal parameters estimated by comparing
experiment with theoretical calculations in Refs. [T. Wakasa, M.

Ichimura, and H. Sakai, Phys. Rev. C 72, 067303 (2005) and T. Suzuki and H. Sakai, Phys. Lett. B 455, 25

(1999)].
I In our fit, we do not use the obtained values as

pseudodata because our theoretical framework is
different and the results are associated to different m∗

(our sp energies are based on HF calculations instead of a
Wood-Saxon potential).

I We use the empirical result in which an hierarchy between
spin and spin-isospin parameters is suggested:

G′0 > G0 > 0

34



Motivation: Gamow Teller Resonance
Quenching of the strength

I Experimentally, the GTR exhausts 60–70% of the Ikeda
sum rule:

∫
[RGT−(E) − RGT+(E)]dE = 3(N− Z)

I To explain the problem, two possibilities that go beyond
(1p− 1h) RPA correlations have been drawn:

I the effects of the second-order configuration mixing: 2p-2h
correlations

I within the quark model, a n(p) can become a p(n) or a
∆+(∆++) under the action of the GT− operator and since
there is no Pauli blocking for ∆−h excitations⇒ it may
contribute to the GTR.

I The experimental analysis of 90Zr⇒ quenching ( 2/3) has
to be mainly attributed to 2p-2h coupling and not to
∆−isobar effects much smaller [T. Wakasa et. al., Phys. Rev. C 55, 2909 (1997)].

I Ex GTR in nuclei mainly in the region of several tens of
MeV and the ∆−h states are hundreds of MeV above the
GT⇒ hard to excite the ∆ in the nuclear medium.
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